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» ABSTRACT: The problem on estimating a multivariate normal mean Ny (6,1) when
the vector mean is bounded awaked interest practical and theoretical. Under such
hypothesis it’s possible to obtain estimators which dominate the sample mean estimator
in relation to square loss. Generalizing previous results obtained, for univariate normal,
J.A. Hartigan obtained, for multivariate normal with independent components, a Bayes
estimator defined on a bounded closed convex set, with non-empty interior, which
dominates the sample mean estimator. In this work, this result is presented in details
for the case where the restriction set is a sphere centered at origin. A geometrical
interpretation, useful to understand the phenomenon, is presented. Others estimators
based on Gatsonis et. al. (1987) are proposed and the risks of all these estimators are
compared through simulations, for the cases of dimensions p =1 and p = 2.
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1 Introduction

After Stein’s (1956) result, namely, a shrinkage estimator for the mean vector
of a p-variate normal, Ny, (6,1I), which dominates the usual estimator § (X) = X
with respect to squared risk, there was an intense search for other estimators which
dominate § (X). In this line of thought, it arises the problem of, supposing the mean
vector @ being restricted to a limited set C C RP, obtaining the estimator which
dominate ¢ (X) when to the risk function is restricted to 8 € C. Generalizing
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previous results from Casella-Strawderman (1981), Gatsonis et al. (1987) and
Hartigan (2004) obtained a generalized Bayes estimator for a uniform priori in
a bounded closed convex set, with non-empty interior C and smooth enough border
that has squared risk smaller or equal to 0 (X) for any @ € C. Since the result
is stated for general convex sets it uses techniques as measure theory and also
the paper being succinctly written makes its comprehension difficult, both for the
mathematical aspects and for a intuitive interpretation of the result.

In this paper, Hartingan’s result is rewritten in details where is assumed that
C is a sphere centered at origin and emphasizing the geometrical aspect. Others
estimators based on Gatsonis et al. (1987) are proposed and a computational
simulation study related to risk reduction is performed. It is proved that for origin-
centered hypercube, the Bayes estimator also dominates the maximum likelihood
estimator. The used notation is similiar to that one used by Gatsonis close as
possible to the of Gatsonis et al. (1987) and Hartigan (2004).

2 Bayes estimator related to uniform priori dominates mean
estimator

Consider the random vector X = (X1,...,X,) ~ N, (0,I), 0 = (04,...,0,) €
C C RP with C as a ball centered at origin and radius m. Probability density of X
is the p-multivariate normal given by

1 . | . 2 B
fx (x;0) = re 2ol = re 20 =TT 6 (2 — 6)
(2m)F G5 11
in which ¢ (2) = \/%76_%22. Is used, with certain abuse of the notation, ¢ (x — ) =

fx (xl,...xp;g) = f[1¢($1 — 91)

Considering a uniform priori on C, given by 7 () = #(C), then the posteriori
distribution is given by
_ 9O p(x—6)
m(0]x) = £¢(x70)#(c)d0 - ij(i)(fo)dG'

Bayes estimator T (x) = (T1(x),...,Tp(x))is given by the posteriori mean,

e.g.
[ 66 (x — 0)do
T = < .
5 (%) To(x—6)do
c
JO0¢(x—0)do
For simplicity, it is used the notation T (x) = Cf¢(—0)da Squared risk of this
.
C
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estimator is given by

R (8) = Eq | Y (Ti (x) - eoﬂ = / (Ti(x) — 0:)%6 (x — O)dx.

i=1

i=1g,

For the estimator ¢ (X) = X, not considering any restriction about mean vector 6,
the risk is

P

(X; — 91)2] =3 Ey [(Xi - aﬂ -y 1=p.

i=1 i=1

Ry (6) = Eo [IX — 0]°] = Ey |

1

P
=1

The boundary 9C of the p-dimensional ball C is a (p — 1)-dimensional sphere. The
unit normal vector to dC in a point € € JC is given by ﬁ =1(0). See Figure 1.

ac n(0)

Figure 1 - Sphere unit normal field.

If p(x) =p(x1,...%p) = [ ¢ (x — 0)d6, then

C
Jp 0 _ 0
o, (x) = P ¢(X_0)d0_/5xi¢(x_0)d9
C C
0 1 -3¢ i —0;)2
_ ez 2 (zi—b; d@:/—¢(x—9)($i—01)d0
o 83:1 (271-)5 4

—xi/(b(x—e)de +/ei¢(x—0>de=—xip<x>+Ti<x>p<x>,
C C

and therefore T; (x) = x; + ﬁ% (x).

Comparing risks for a vector £ in the interior of C
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Rr(€) - Rs(€) = Rr(€)-»p
= Be|IT - €] - Be [IX - €]

= Be[IT—¢l” - 1X - ¢l’]

|
|
s

R VR NN SO N/ A O
- /;[(px) P () +200-6) xi()]o:( )d
p 1 op 2
= —— = (%)) ¢ (x—€)da
;L[(p(x O )
1 0Op
+2RZ (Xl - El) pix)ixl (X)QS(X—f) dX:|
To calculate this integral, observing that
o0 (x—&) = ~p(x—8) (1 - &) 1)
we get that,
-—~Lapx X— X = X X— Lapxx
R[@cl 6) g e () (x-6)d /( 6)0 (x—6) 5oL ()4
Y O AN S N g
[ (o052 )

By integration by parts,

[ = 6) s B 6 (x-hax = - [@b x-9 (sgme @)

-/ [p(lx) - (s @) ] 6 (x — € dx.
4

Rev. Bras. Biom., Lavras, v.34, n.2, p.304-316, 2016 307



From this identity follows that,

H@[Ggf( >>2¢<X—€>dx=R/ Lt e

1 op e dx
2 (- ) a)}d
1 [d%p op
= [ 20— (- &) 52 ()| 0 (x— £)dx
R[p(x) {8%2 Ox; ]

Replacing this equality in the expression Rt (£) — Rs (&) we have

= ) o) P (ol x £y ax
Re(§) ~ Ry (€) = /;[(p 2 0) H2tu—) xi()]qﬁ( )
Y R B A5 RN I D
‘Rpgpw(aﬁ” (5 -6) 2 ) 0 (x - ©
1 0p

|
—
(1=
o)
-
— g
7N —~
Dl Q
= [
=

Notethatp(x):chﬁ(xfa)dﬂ, gf‘ (x)ffgqs(xfe)( —0,)d0
G = = [[rolc=0)ts -0+ ox—0)]a0
C
_ /qb(xfe)[( 6.~ 1]de
C

hence

= / { |:(l‘7, —0,)° — 1} b(x—0)— (z; — &) (xi — 0:)p (x — 0)} 0. 3)
c
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Using the following equality

0¢ B Y
99, X~ 0) = —ox—0)(wi—0) (4)
¢ o¢

= G(x—0) (5 —0)’ — 6 (x—0) = [(2: 0" — 1] 6 (x~ 6),

replacing in equation (3) and sum in ¢ we have
02 9?
S [5L 00+ -6 2 0] - /2[89‘5’ ~0)+ (0 6) G (x—0)] .

If g(z,....,zp) = (91(x1,,2p), s gp(z1,...,2p)) 1S a vector field and
Y = ¢(z1,...,xp) a scalar function, the divergence of the fiel ¢ is defined

as V- g = g% + o+ 891’ and the gradient of 1 is the vector field

grady(z1, ...,xp) = (%,...,%). The classical divergence theorem (Gauss

Theorem) ensures us that the volume integral of the divergent of the field in a
ball is equal to surface integral of inner product of the vector field with unit normal

field n
/V gdv—/(g n)ds.

oC
To use this theorem consider the vector field

grade (x —0) — (x =) ¢ (x —0) =

d¢ 9¢
(aal (X—G) — (3?1 —fl)QS(X—H),...

,%(x—m—(xp—gpw(x—e))

grad¢ (x — @) is taken in relation to 6 with z fixed in which grad¢(x — 0) is the
gradient field of the function ¢ (x — 0). Follow from (4) that grade (x —6) =
(x — 0) ¢ (x — 0). Adding and subtracting £ the gradient field can be expressed as

gradg(x —0) — (x —§) o (x—0) = (£ - 0)p(x—0).
Then V- (§ —0))¢ (x —0) =V - [grad¢ (x — 0) — (X—€)¢(X—9)] =
V- gradt (x — 0) = V- [(x ~ €) 0 (x = )] = 2 [ 55% (x — 0) + (v ~ &) 5
Applying the divergence theorem we get the equality

[V €e-0ox-ow- [ <£0>¢<x0>~(2”>ds-

C Sp—1
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Observe that n(x) = Hg%\l is the unit normal field to sphere SP~!. Replacing this

result in (2) we have

Re(© 1@ = | [ | [ € oox-0): (g0) ds| 0 6x- ax

i=1 P p—1

Now it is possible to have an interesting geometrical interpretation as described on
Figure 2. The angle between the vector & — @ and the unit normal vector n(f), for
any £ in the interior of the ball and any vector @ in the border SP~!, is bigger than
90°, so the inner product of these vectors is always negative that is,

@—®~(a><OSORﬂO—RMS<&

and hence T estimator dominates mean estimator §. See Figure 2.

n(0)
=

aC = S

Figure 2 - The angle between 7(6) and & — 6.

2.1 Some new results

Comparison between Bayes estimator T and the usual estimator § (X) = X is
not really fair, because d estimator does not consider that the mean vector parameter
is bounded. A more suitable estimator to compare is the maximum likelihood
estimator in relation to parametric restriction.

X >
ma— 2
G = (x) = ="
X, %] < m.

A Hartigan-kind integral formula for the difference between the risks of these
estimators would be excessively complex. However, an interesting observation is
that the comparison can be obtained through the analysis of unidimensional case
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developed by Gatsonis et al. (1987). They also considered an uniform priori on the
interval [—m, m], getting the Bayes estimator

m
Jo, 00 (x—0)do
- .
fim o (x—0)do
6 dominates the usual ¢ estimator, and dominates the maximum likelihood unit
estimator 5% for # in an interval close to [f%m, Zm]

To use the unidimensional result consider the case in which the parametric
restriction defines a hypercube centered at origin, i.e., 8 = (01, ...,6,) with |6;] < m
i = 1,...,p. Observe that for practical applications this restriction can be more
natural than ||@]] < m. In this case, Bayes estimator T has components in the form

Om (z) =

Ti (.’L‘) =

& i
I 06 (i — 0d6; [™ ™ (T b (a; — 6;)d0
] J2i
o0 T T et e
i

7 0i¢ (s — 6;)db;
" b (xi — 0;)db;

Then, it follows that Hartigan estimator for the hypercube is expressed in
terms of the unidimensional estimator obtained by Gatsonis et al. (1987) as T'(x) =
(0m (X1),--,0m (Xp)). This estimator will be denoted by d,,(x). In this case the
difference is

R (€) — Rays (€) = E[HT(m)—sHQ} — B [[|o% (@) — ¢]’]
E|ITi(@) - &) - B |63 @) - &) }

{
{B[10n(e) - &l*] - 2[|0}" @) - &l"]}
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By the result of Galtonis et al. (1987) for —3m < x; < 3m, we have R (§) —
Rsae (€) <0 and therefore T dominates ML The case where the restriction is a
sphere will be studied through computational simulation.

2.2 A study through computational simulation

Aiming to relate Hartigan’s result (2004) with the estimators studied in Casella
and Strawderman (1981) and Gatsonis et al. (1987) a computational simulation in
dimension 2 was performed. In these papers, the estimators are

SML " Maximum likelihood restricted estimator

5m(x)—x+‘zl((§; , glz)=d(m—-2)+P(m+2x)—1

(x) = m tanh(mx)

I
where ® is the standard normal cumulative function and the mean is limited to the
interval (—m,m).

The results were:

e 60 is minimax for 0 < m < mg =~ 1,056742 and dominates )/~ for m < 1.

e §,, dominates usual mean estimator, e.g, it has risk smaller than 1.

3

SME in the approximated interval (—2m, 3m).

e 0, dominates

For a multivariate normal mean case with the vector mean limited to a sphere
of radius m in RP, these results can be generalized:

e Hartigan T estimator generalizes estimator d,,.
e Estimator 60, will be generalized to the form

69 (x) = (mtanh(may), ..., mtanh(may)) .

e §,, can be also generalized to d,,,(x) = (0 (1), ..., I (2p))-

Observe that the estimators 09, (x) and 4,,(x) are in fact generating estimates
on a p-dimensional m sided hypercube, { (x1,.y2p) € RPY, —m < z; < m,
i=1,.., p}. However by simulation is observed that these estimmatives are more
concentrated in the m radius sphere inside the hipercube. Therefore it makes sense
to compare 6%, (x) and ,,(x) with the estimators 52/ and T which generate only
estimates in the sphere. Since there isn’t an explicit formula for the risks of these
estimators the comparation were obtained through simulation.

Simulation was carried out at is software R environment. A bidimensional
reticulate with 2500 points 6 = (61, 62) was built in the sphere. For each value of 6
a sample of the two dimensional normal N» (6, I) is generated. Then, it is obtained
a discret version of the risk graphics (Figures 3-7).

312 Rev. Bras. Biom., Lavras, v.34, n.2, p.304-316, 2016



20

Ly

Risk
1.0

00
L

Figure 3 - Estimator risks for dimension 1 and m=1.
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Figure 4 - Estimator risks for dimension 1 and m=2.
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Figure 6 - Estimator risks for dimension 2 and m= 2.
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Figure 7 - Estimator risks for dimension 2 and m= 3.

Through graphic analysis we obtain:

e Unidimensional minimax estimator 60, when generalized to dimension 2
completely loses its relative advantages to other estimators.

o Hartigan estimator T(x), dominates d,,(x) on the sphere of radius m = 3. For
radius 2 and 1 and 6 close to the border of the sphere an inversion happens
with d,,(x) dominating T(x).

e Hartigan estimator T(x) dominates the maximum likelihood estimator
ML (x) except when  is close to the sphere’s border. This fact was intuitively
expected since, 6} % (x) tends to produce estimates at the border.

Conclusion

The mathematical theory of Hartigan’s estimator is accessible and for the
sphere and it has a geometrical meaning. The properties of unidimensional
estimators for the bounded mean changes when generalized to the two dimensional
space.
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= RESUMO: O problema de se estimar a média de uma normal multivariada N, (0, 1)
quando se supoe que o vetor de médias é limitado desperta o interesse pratico e tedrico.
Sob tal hipbtese é possivel obter estimadores que dominam o estimador média amostral
em relacdo a perda quadréatica. Generalizando resultados obtidos anteriormente, para a
normal univariada, J.A. Hartigan obteve, para a normal multivariada com componentes
independentes, um estimador de Bayes definido sobre um conjunto fechado limitado e
convexo, com interior nao vazio, que também domina o estimador média amostral. Neste
trabalho, este resultado é apresentado com detalhes para o caso em que o conjunto
restrito é uma esfera centrada na origem. A interpretagdo geométrica, tutil para a
compreensao desse fendomeno, é apresentada. Outros estimadores baseados em Gatsonis
et. al. (1987) sdo propostos e os riscos de todos esses estimadores sdo comparados por
simulagdo computacional, para os casos de dimensao p=1 e p-=2.

» PALAVRAS-CHAVE: Normal multivariada; conjuntos convexos; priori uniforme;
estimador de Bayes.
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