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ABSTRACT: The multivariate t models are symmetric and have heavier tail than the

normal distribution and produce robust inference procedures for applications. In this

paper, the Bayesian estimation of a dynamic factor model is presented, where the factors

follow a multivariate autoregressive model, using the multivariate t distribution. Since

the multivariate t distribution is complex, it was represented in this work as a mix of

the multivariate normal distribution and a square root of a chi-square distribution. This

method allowed the complete define of all the posterior distributions. The inference on

the parameters was made taking a sample of the posterior distribution through a Gibbs

Sampler. The convergence was verified through graphical analysis and the convergence

diagnostics of Geweke (1992) and Raftery and Lewis (1992).
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1 Introduction

A main problem in building a model for a vector time series is that the number
of parameters grows with number of series. Therefore, models for reduction of
dimensions are needed to model a large number or time series. Dynamic factor
models are a useful tool for dimension reduction in time series.
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Sáfadi and Peña (2007) used dynamic factor models to analyze a vector
of q time series, assuming that factors follow a V AR(p) model. The authors
developed a full Bayesian approach, considering independent errors with normal
distribution. The inference was made through a Gibbs Sampler to obtain the
Markov Chain Monte Carlo (MCMC) and the convergence was verified through
the convergence diagnostics of Gelman and Rubin (1992). In that work, all the
posterior distributions were developed.

The statistics inference is mainly developed using the normal model. However,
in some cases, this model is not appropriate; for example, when the data belongs to a
distribution with heavier tail than the normal distribution, or when there is influence
of outliers. Fisher (1956) pointed out that slight differences in the specification of
the distribution of the model errors may play havoc on the resulting inferences.

To examine the effects on inference, Fisher (1960) analyzed Darwin’s data
under normal theory and later under a symmetric non-normal distribution. In the
last decades, there has been an increased interest in multivariate t distribution as
a robust alternative to normal distribution.

Motivated by this, Borges (2008) dealt with the model presented by Sáfadi
and Peña (2007) using multivariate t errors, but the author could not evaluate the
posterior distributions explicitly, because the density was highly complex.

The solution reached by Borges (2008) was to use the Griddy-Gibbs Sampler.
This is a numerical method to generate random samples from a distribution, even
when the posterior density is unknown.

In this study, an alternative to this numerical method is presented. This
is achieved by using the multivariate t distribution as a mix of a multivariate
normal distribution and a square root of a chi-square distribution. With this
alternative, the posterior distributions can be obtained; therefore, the samples from
these distributions can be built with no need for a numerical method.

The purpose of this study is to develop a full Bayesian approach to estimate
the dynamic factor model for the main stock indices in the world. It is worth
mentioning that the empirical analysis is only an illustration of the methodology.
The choice of financial data is to complementing the studies of Sáfadi and Peña
(2007), and Borges (2008). This methodology can also be applied to data in the
biological sciences.

2 Materials and methods

In this paper, the factor model given by the following two equations is
considered:

yt =β +Cft + et;

ft =

p∑
i=1

ρift−i +wt, (1)
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where:

• yt is a q × 1 vector of observed time series;

• ft is a k×1 vector which follows a multivariate autoregressive model V AR(p);

• ρi is autoregressive matrix with ρi = diag(ρi1, ..., ρik) for all i = 1, ..., p; and
{ρ1j , ρ2j , ..., ρpj} satisfy the stationary condition for all j = 1, 2, ..., k;

• β is the q × 1 mean vector;

• C is a q × k matrix of unknown constants;

• et are independent q-vectors;

• wt are independent k-vectors;

• et and ws are independent for all t and s.

As is well-known, the k-factor model must be further constrained to define
only a single vector of parameters, free from identification problems. A solution
adopted by Sáfadi and Peña (2007), and used here, is to constrain the matrix C, so
that it is a block lower triangular matrix, assumed to be of full rank. That is,

C =



1 0 0 . . . 0
c21 1 0 . . . 0
c31 c32 1 . . . 0
...

...
...

. . .
...

ck1 ck2 ck3 . . . 1
...

...
...

. . .
...

cq1 cq2 cq3 . . . cqk


.

This form provides both the identification and useful interpretation of the
factor model. From a Bayesian point of view, this is equivalent to assigning fixed
values to these matrix C parameters with probability one, and in the analysis they
are not estimated.

The main objective of this paper is to fit the dynamic factor model to a financial
vector time series which, in general, has a behavior away from the normal case; thus,
the use of the multivariate t distribution is more suitable.

The data in studied are the daily values of stock indices: S&P500 (USA),
Shanghai Comp Index (China), FTSE100 (UK), CAC40 (France), DAX (Germany),
S&P/TSX (Canada), Bovespa (Brazil), Merval (Argentina) and Nikkei 225 (Japan);
between 2008 and 2011. Consequently, there are q = 9 time series, with n = 650
observations.

The index returns were analyzed in this paper, because, according to Morettin
and Toloi (2008), this process exhibits both stationarity and ergodicity.
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The return is defined by ri = log(It)− log(It−1), where It is the stock indices
at time t.

The returns plot, the histograms and the normal Q-Q plot, were analyzed to
identify a possible distance from the normal distribution, as expected, since it comes
to financial data.

The number of factors k was selected through analysis of the graph of
eigenvalues versus the number of factors (scree plot).

It is assumed that the errors, et and wt, of the models have a multivariate t
distribution in the Bayesian inference.

2.1 Multivariate t distribution

Student’s t distribution is defined as the distribution of the random variable
X with

X =
Z√
Q/ν

(2)

where Z ∼ N(0, 1) and Q ∼ χ2
ν are independent, and the density function is given

by

f(x) =
Γ(ν+1

2 )
√
νπΓ

(
ν
2

) 1(
1 + x2

ν

) ν+1
2

. (3)

In the multivariate case, the density function of a random vector Y =
[Y1, Y2, . . . , Yq]

> with Y ∼ tq(µ,Σ, ν) is, in general, given by

fY (y,µ,Σ, ν) =
Γ
(
ν+q
2

)
(πν)

q
2 Γ
(
ν
2

)
|Σ| 12

[
1 +

1

ν
(y − µ)TΣ−1(y − µ)

]− ν+q2

, (4)

where Y has mean µ and covariance matrix νΣ/(ν − 2) when ν > 2.

Borges (2008) tried to use the density given for equation (4) to compute the
posterior distribution; however, it was not possible due to its complexity. The
author used a numerical method of integration to obtain the MCMC through the
Griddy-Gibbs Sampler.

The alternative to the numerical method in this paper was to use the
multivariate t distribution as a mix of a normal multivariate and a square root
of a chi-square variable.

Consider an auxiliary variable A ∼
√
χ2
ν/ν, with χ2

ν being a random variable
with chi-square distribution with ν > 0 degrees of freedom, and Y ∼ tq(β,Σ, ν); it
can be shown that the joint density function of Y and A is defined by

fY ,A(y, a; ν,Σ) =(2π)−q/2aq|Σ|−1/2 exp

{
−1

2
a2(y − β)>Σ−1(y − β)

}
× νν/2

Γ(ν/2)2ν/2−1
aν−1e−νa

2/2. (5)
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The concept of augmented data was used in order to apply this joint density
in the Bayesian analysis.

2.2 Bayesian analysis

Once it has been diagnosed that the data do not follow the multivariate normal
distribution, one can assume three sets for the distributions of the model errors, as
shown in Table 1.

Table 1 - Possible sets to the distribution of errors

Set et wt
1 tq(0,Σ, νe) tk(0, I, νw)
2 tq(0,Σ, νe) Nk(0, I)
3 Nq(0,Σ) tk(0, I, νw)

In these three sets, for p = 1, Cov(ft) = Λ, with Λ = ρ1Λρ
>
1 + Ik.

To compute the posterior distributions of each parameter in θ = (β,C,Σ,ρ),
the likelihood function is needed, which is given by the product of the likelihoods
of yt and ft.

When the error, et or wt, has a multivariate t distribution, the likelihood
function must be augmented by A1t ∼

√
χ2
νe/νe or A2t ∼

√
χ2
νw/νw, respectively.

Therefore, for et ∼ Nq(0,Σ), the density used to calculate the likelihood is

f(yt) = (2π)−
q
2 |Σ|− 1

2 exp

{
−1

2
(yt − β −Cft)>Σ−1(yt − β −Cft)

}
, (6)

and for et ∼ tq(0,Σ, νe), the density is augmented as follows

f(yt, a1t) =(2π)−
q
2 a

(q+νe−1)
1t |Σ|− 1

2
ν
νe
2
e e−

νea
2
1t

2

Γ(νe2 )2
νe
2 −1

× exp

{
−a

2
1t

2
(yt − β −Cft)>Σ−1(yt − β −Cft)

}
. (7)

For wt ∼ Nk(0, I) the normal density used is

f (ft) = (2π)−
k
2 |Ik|−

1
2 exp

{
−1

2
(ft −

p∑
i=1

ρift−i)
>(ft −

p∑
i=1

ρift−i)

}
, (8)

and for wt ∼ tk(0, I, νw) the multivariate t distribution is given by the mix as
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follows

f (ft, a2t) =(2π)−
k
2 a

(k+νw−1)
2t |Ik|−1/2

ν
νw/2
w e−νwa

2
2t/2

Γ(νw/2)2νw/2−1

× exp

{
−a

2
2t

2
(ft −

p∑
i=1

ρift−i)
>(ft −

p∑
i=1

ρift−i)

}
. (9)

Thus, since the random sample, in n instants, is Y = (y1, . . . ,yn), the vector
of latent factors is F = (f1, . . . ,fn), and also, when the auxiliary variables are
needed, A1 = (a11, . . . , a1n) and A2 = (a21, . . . , a2n), the augmented likelihoods
are obtained, in each set, by the products shown in the Table 2.

Table 2 - Likelihood functions for each set

Set Likelihood function

1 f(Y ,F ,A1,A2|θ) = f(Y ,A1)f (F ,A2) =

n∏
t=p+1

f(yt, a1t)f (ft, a2t)

2 f(Y ,F ,A1|θ) = f(Y ,A1)f (F ) =

n∏
t=p+1

f(yt, a1t)f (ft)

3 f(Y ,F ,A2|θ) = f(Y )f (F ,A2) =

n∏
t=p+1

f(yt)f (ft, a2t)

As Lee and Shi (2000) did, a procedure based on data augmentation was
developed. The essential idea is to determine posterior distributions for all unknown
parameters conditioned on the latent factor and, then, the conditional distribution
of the latent factor given the observable data and the other parameters. That is,
the observable data are ‘augmented’ by samples from the conditional distribution
for the factor given the data and the parameters of the model. Specifically, the
joint posterior distribution for the unknown parameters and the unobserved factors
can be sampled by using a Markov Chain Monte Carlo procedure on the full set
of conditional distributions. Additionally, in each set, the observable data are
‘augmented’ again by samples from the auxiliary variables that are needed.

Independent prior distributions given as

P (A1)P (A2)P (β)P (C)P (ρ)P (F ) ∝ constant

and γi = σ−2i ∼ Γ(α0, β0) are assumed, so that the distribution of σ2
i is an Inverse

Gamma, for each component of Σ = diag(σ2
1 , . . . , σ

2
q ). To implement the Gibbs

sampler, it is necessary to derive the full conditional posterior distribution of each
parameter given all the others parameters.
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Here, the full conditional distribution for θ = (β,C,Σ,ρ) and F , and also
for A1 and A2, when necessary, is presented. The posterior distributions for sets
1, 2 and 3 are presented in Tables 3, 4 and 5, respectively. The derivations for the
posterior distributions are similar to the normal case, as expected, and were not
shown in this paper.

The number of degrees of freedom could been considered unknown and also be
estimated. According to Lange et al. (1989), low values of degrees of freedom have
shown good performance for small samples. Thus, the determination of low values
of degrees of freedom was preferred, since higher values would lead to approximately
normal distributions, when, in fact, an alternative distribution is wanted.

Since the posterior distributions are known, it is possible to apply the Gibbs
sampler to get the Markov chains. However, it is not known which set is more
suitable to determine the right posterior distributions. Therefore, the analysis is
performed in the three sets and the model that best fits is chosen according to a
model comparison method, such as the Bayes factor.

Therefore, initially, chains of size N = 5000, for each parameter, were
generated for each set through a Gibbs Sampler. The Raftery and Lewis (1992)
diagnostic was used to estimate the size needed (NT ) for the Markov chains.

New chains were generated with size NT . The Raftery and Lewis (1992)
diagnostic was used again to estimate the burn-in and thin size in order to eliminate
the efect of initial values and to get a sample approximate uncorrelated sample
for each parameter. The Geweke (1992) diagnostic was applied to verify the
convergence of the chains.

After appropriately performing the burn-in and the thin and verifying the
convergence of the chains, the parameter estimate was obtained through the mean of
the respective Markov chain values. The highest probability density (HPD) intervals
were computed, the chain traces were graphically analyzed and the posterior
densities were graphically determined.

3 Results and discussion

The time series analyzed were the daily values of stock indices: S&P500 (USA),
Shanghai Comp Index (China), FTSE100 (UK), CAC40 (France), DAX (Germany),
S&P/TSX (Canada), Bovespa (Brazil), Merval (Argentina) and Nikkei 225 (Japan);
between 2008 and 2011. Consequently, there were q = 9 time series, with n = 650
observations. The graphs of the returns of the indices are presented in Figure 1.

The decision of working with returns was made once, according to Morettin
and Toloi (2008), they are better to work with because they are free of scale and
have interesting properties, such as stationarity and ergodicity. Indeed, it can be
seen in Figure 1 that the series does not present tendency or seasonality.

Through the scree plot, presented in Figure 2, the number of factors k = 2
was chosen, since from that value the differences in variance are not significant.

In the histograms presented in Figure 3, the estimates for the density functions
of each variable can be seen. It can be seen that the shape of estimated densities is

146 Rev. Bras. Biom., Lavras, v.36, n.1, p.140-156, 2018 - doi: 10.28951/rbb.v36i1.155



Table 3 - Posterior distributions for the set 1

Parameter Posterior distribution

A1t A2
1t|θ,Y ,F ,A2 ∼ Γ

(
α

2
,
δ

2

)
(t = 1, . . . , n) α = q + νe + 1;

δ = (yt − β −Cft)>Σ−1(yt − β −Cft) + νe

A2t A2
2t|θ,Y ,F ,A1 ∼ Γ

(
α

2
,
δ

2

)
(t = 1, . . . , p) α = k + νw + 1

δ = f>t Λ−1ft + νw

A2t A2
2t|θ,Y ,F ,A1 ∼ Γ

(
α

2
,
δ

2

)
(t = p+ 1, . . . , n) α = k + νw + 1

δ = (ft −
∑p
i=1 ρift−i)

>
(ft −

∑p
i=1 ρift−i) + νw

β|C,Σ,ρ,Y ,F ,A1,A2 ∼ Nq (α,Σδ)
β α = δ

∑n
t=p+1 a

2
1t(yt −Cft)

δ =
(∑n

t=p+1 a
2
1t

)−1
C∗i |β,Σ,ρ,Y ,F ,A1,A2 ∼ Nk(αi;σ

2
i δ)

C αi = δ
∑n
t=p+1 a

2
1tft(yit − βi)

δ =
(∑n

t=p+1 a
2
1tftf

>
t

)−1
γi|β,C,ρ,Y ,F ,A1,A2 ∼ Γ

(
α

2
,
δi
2

)
Σ α = n− p+ 2α0

δi = 2β0 +
∑n
t=p+1 a

2
1t(yit − βi −C∗>i ft)

>(yit − βi −C∗>i ft)

ρν |β,C,Σ,Y ,F ,A1,A2 ∼ Nkp(α, δ)
ρ α = δ

∑n
t=p+1B

>
t fta

2
2t

δ =
(∑n

t=p+1B
>
t Bta

2
2t

)−1
Ft ft|β,C,Σ,Y ,A1,A2 ∼ Nk(α, δ)

(t = 1, . . . , p) α = δ(C>Σ−1(yt − β)a21t)
δ = (C>Σ−1Ca21t + Λ−1a22t)

−1

Ft ft|ρ,β,Σ,C,Y ,A1,A2 ∼ Nk(α, δ)
(t = p+ 1, . . . , n) α = δ

(
C>Σ−1(yt − β)a21t + a22t

∑p
i=1 ρift−i

)
δ = (C>Σ−1Ca21t + Ika

2
2t)
−1
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Table 4 - Posterior distributions for the set 2

Parameter Posterior distribution

A1t A2
1t|θ,Y ,F ∼ Γ

(
α

2
,
δ

2

)
(t = 1, . . . , n) α = q + νe + 1;

δ = (yt − β −Cft)>Σ−1(yt − β −Cft) + νe
β|C,Σ,ρ,Y ,F ,A1 ∼ Nq (α,Σδ)

β α = δ
∑n
t=p+1 a

2
1t(yt −Cft)

δ =
(∑n

t=p+1 a
2
1t

)−1
C∗i |β,Σ,ρ,Y ,F ,A1 ∼ Nk(αi;σ

2
i δ)

C αi = δ
∑n
t=p+1 a

2
1tft(yit − βi)

δ =
(∑n

t=p+1 a
2
1tftf

>
t

)−1
γi|β,C,ρ,Y ,F ,A1 ∼ Γ

(
α

2
,
δi
2

)
Σ α = n− p+ 2α0

δi = 2β0 +
∑n
t=p+1 a

2
1t(yit − βi −C∗>i ft)

>(yit − βi −C∗>i ft)

ρν |β,C,Σ,Y ,F ,A1 ∼ Nkp(α, δ)
ρ α = δ

∑n
t=p+1B

>
t ft

δ =
(∑n

t=p+1B
>
t Bt

)−1
Ft ft|β,C,Σ,Y ,A1 ∼ Nk(α, δ)

(t = 1, . . . , p) α = δ(C>Σ−1(yt − β)a21t)
δ = (C>Σ−1Ca21t + Λ−1)−1

Ft ft|ρ,β,Σ,C,Y ,A1 ∼ Nk(α, δ)
(t = p+ 1, . . . , n) α = δ

(
C>Σ−1(yt − β)a21t +

∑p
i=1 ρift−i

)
δ = (C>Σ−1Ca21t + Ik)−1
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Table 5 - Posterior distributions for the set 3

Parameter Posterior distribution

A2t A2
2t|θ,Y ,F ∼ Γ

(
α

2
,
δ

2

)
(t = 1, . . . , p) α = k + νw + 1

δ = f>t Λ−1ft + νw

A2t A2
2t|θ,Y ,F ∼ Γ

(
α

2
,
δ

2

)
(t = p+ 1, . . . , n) α = k + νw + 1

δ = (ft −
∑p
i=1 ρift−i)

>
(ft −

∑p
i=1 ρift−i) + νw

β|C,Σ,ρ,Y ,F ,A2 ∼ Nq (α, δ)
β α = (n− p)−1

∑n
t=p+1(yt −Cft)

δ = Σ(n− p)−1
C∗i |β,Σ,ρ,Y ,F ,A2 ∼ Nk(αi; δi)

C αi =
(∑n

t=p+1 ftf
>
t

)−1∑n
t=p+1 ft(yit − βi)

δi = σ2
i

(∑n
t=p+1 ftf

>
t

)−1
γi|β,C,ρ,Y ,F ,A2 ∼ Γ

(
α

2
,
δi
2

)
Σ α = n− p+ 2α0

δi = 2β0 +
∑n
t=p+1(yit − βi −C∗>i ft)

>(yit − βi −C∗>i ft)

ρν |β,C,Σ,Y ,F ,A2 ∼ Nkp(α, δ)
ρ α = δ

∑n
t=p+1B

>
t fta

2
2t

δ =
(∑n

t=p+1B
>
t Bta

2
2t

)−1
Ft ft|β,C,Σ,Y ,A2 ∼ Nk(α, δ)

(t = 1, . . . , p) α = δ(C>Σ−1(yt − β))
δ = (C>Σ−1C + Λ−1a22t)

−1

Ft ft|ρ,β,Σ,C,Y ,A2 ∼ Nk(α, δ)
(t = p+ 1, . . . , n) α = δ

(
C>Σ−1(yt − β) + a22t

∑p
i=1 ρift−i

)
δ = (C>Σ−1C + Ika

2
2t)
−1
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Figure 1 - Daily returns of the stock indices.

Figure 2 - Screeplot.
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similar to the shape of a normal distribution or Student’s t distribution.

Figure 3 - Histograms of daily returns of stock indices and respective estimated
densities.

On the other hand, the normal Q-Q plots, presented in Figure 4, confirm the
distance from normal distribution for each variable, as expected, since financial data
are being analyzed.
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Figure 4 - Normal Q-Q plot of daily returns of stock indices.

Therefore, the methodology proposed to this data set can be applied. The
assumption that the violations of normality can be treated in three ways, according
to sets 1, 2 and 3 discussed in this paper, may be made in order to adjust the
dynamic factor model.

The model, in the three sets, was adjusted for the actual data, and the Bayes
factor was calculated in order to compare the models 2 by 2 to choose the best fit.

The results for the logarithm of the Bayes factor are presented in Table 6.
The logarithm was used to avoid higher values. Besides, it is necessary for the
interpretation of the Bayes factor results, in terms of information theory.

Table 6 - Logarithm of Bayes factor values to compare the models M0 and M1

M0 M1 log10B(y)
set 1 set 2 -0.0585
set 2 set 3 167.8849

Inittialy, the models defined by the sets 1 and 2 were compared according to
what was defined in Table 7 (JEFFREYS, 1961). The interpretation of the result
was negative, that is, in favor of set 2.

Then, the models defined by sets 2 and 3 were compared. The interpretation
in that case was decisive in favor of set 2.
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Table 7 - Scale of interpretation of Bayes factor

B(y) log10(B(y)) Interpretation in favor of H0

< 1 < 0 Negative (in favor of H1)
1 a 3.2 0 a 0.5 Insignificant
3.2 a 10 0.5 a 1 Significant
10 a 100 1 a 2 Strong
> 100 > 2 Decisive

Therefore, the dynamic factor model was fitted to the data, assuming that
et ∼ tq(0,Σ, νe) and wt ∼ Nk(0, Ik) with νe = 3. The Bayesian analysis was
performed considering the dynamic factor model with k = 2 factors, which follows
a V AR(1) model. The Markov chains were obtained through the Gibbs sampler
with the posterior distributions defined by set 2.

The results from the analysis of the Markov chains are presented in Table 8,
with the posterior estimates given by the mean of the chains, the standard deviation
of the Markov chains, the HPD intervals and the p value of the convergence test
from the Geweke (1992) diagnostic.Values in bold, for p value, indicate the chains
that do not converge by the Geweke (1992) diagnostic.

The purpose of adjusting the dynamic factor model to the time series of values
of stock indices was to determine a simple and parsimonious model to represent this
data set.
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Table 8 - Posterior means and standard deviations, HPD intervals, p value from
the Geweke (1992) diagnostic, for set 2, for the series of returns of stock
indices

Standard HPD intervals Geweke
Parameters Mean deviation IL SL (p value)

β1 -0.0013 0.0405 -0.0814 0.0790 0.7086
β2 -0.0010 0.0414 -0.0829 0.0802 0.7682
β3 -0.0003 0.0024 -0.0052 0.0041 0.4459
β4 0.0000 0.0023 -0.0049 0.0043 0.7245
β5 0.0002 0.0023 -0.0046 0.0045 0.9433
β6 0.0003 0.0024 -0.0047 0.0049 0.5006
β7 0.0011 0.0025 -0.0038 0.0058 0.4357
β8 -0.0003 0.0023 -0.0052 0.0040 0.9571
β9 -0.0005 0.0024 -0.0052 0.0042 0.9727
C1 0.0083 0.0588 -0.1147 0.1222 0.6296
C2 0.0102 0.0127 -0.0152 0.0349 0.7401
C3 0.0098 0.0126 -0.0152 0.0341 0.0661
C4 0.0101 0.0123 -0.0140 0.0341 0.3306
C5 0.0134 0.0134 -0.0132 0.0395 0.2277
C6 0.0129 0.0135 -0.0139 0.0389 0.5857
C7 0.0047 0.0127 -0.0208 0.0291 0.3626
C8 0.0032 0.0134 -0.0240 0.0287 0.6275
C9 0.0123 0.0126 -0.0125 0.0369 0.0378
C10 0.0111 0.0124 -0.0132 0.0355 0.0215
C11 0.0083 0.0121 -0.0157 0.0319 0.4362
C12 0.0111 0.0131 -0.0144 0.0372 0.2170
C13 0.0118 0.0132 -0.0144 0.0377 0.3378
C14 0.0071 0.0126 -0.0174 0.0321 0.9438
C15 0.0044 0.0132 -0.0217 0.0305 0.2080
σ2
1 0.1277 0.0213 0.0869 0.1687 0.4714
σ2
2 0.1311 0.0222 0.0910 0.1758 0.0243
σ2
3 0.0103 0.0006 0.0091 0.0113 0.0032
σ2
4 0.0102 0.0006 0.0091 0.0113 0.7310
σ2
5 0.0100 0.0006 0.0090 0.0111 0.9266
σ2
6 0.0107 0.0006 0.0095 0.0118 0.7554
σ2
7 0.0108 0.0006 0.0097 0.0120 0.6250
σ2
8 0.0106 0.0006 0.0093 0.0116 0.2874
σ2
9 0.0111 0.0006 0.0099 0.0123 0.4242
ρ1 0.0332 0.1955 -0.3516 0.4180 0.3257
ρ2 0.0312 0.1942 -0.3453 0.4151 0.0342
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Conclusions

Full analysis of the dynamic factor model, to a vector time series, using the
multivariate t distribution was developed.

In order to estimate the parameters of the model the Gibbs sampler was applied
to obtain the Markov chains.

This was possible because, despite the complexity of the multivariate t
distribution, this variable was used as a mix of multivariate normal distributions
and a square root of a chi-square variable, and the calculations were similar to the
normal case. So, the posterior distributions were calculated.

The posterior densities estimated are similar to the densities expected
according to the posterior distributions calculated, indicating consistency in the
results.

In a follow-up study, the authors of this paper intend to work considering
unknown degrees of freedom and the order of the autoregressive model p > 1.
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RESUMO: Os modelos t multivariados são simétricos e têm caudas mais pesadas

do que a distribuição normal e produzem procedimentos de inferência robustos para

aplicações. Neste artigo, apresenta-se a estimativa bayesiana de um modelo de fator

dinâmico, onde os fatores seguem um modelo autoregressivo multivariado, usando a

distribuição t multivariada. Uma vez que a distribuição t multivariada é complexa, ela

foi representada neste trabalho como uma mistura da distribuição normal multivariada e

uma raiz quadrada de uma distribuição qui-quadrado. Este método permitiu a definição

completa de todas as distribuições posteriores. A inferência sobre os parâmetros foi feita

tomando uma amostra da distribuição posterior através de uma amostra de Gibbs. A

convergência foi verificada através de análise gráfica e os diagnósticos de convergência

de Geweke (1992) e Raftery e Lewis (1992).
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SÁFADI, T.; PEÑA, D. Bayesian Analysis of dynamic factor models: an application
to air polution and mortality in São Paulo, Brazil. Environmetrics, v.18, p.1-20,
2007.

Recebido em 07.07.2016.

Aprovado após revisão em 03.10.2017.

156 Rev. Bras. Biom., Lavras, v.36, n.1, p.140-156, 2018 - doi: 10.28951/rbb.v36i1.155


