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ABSTRACT: Freidenfields (1980) introduced for the modeling of several transport

systems demands the concepts of queueing theories and studied the problem of the

capacity expansion of the transport system as a random process of life and death, showing

that it is possible to adapt the stochastic model of demand growth into a deterministic

model. Souza (1996) applied this theory to predict the expansion of the emergency care

systems. The modeling of the supply of Us integrated into the hospitals – emergency

care and inter-hospital removals – despite being considered a restricted market service, as

new solutions are developed new knowledge is aggregated into an increasingly lower cost

(GOLDBERG, 2004). The dimensioning, allocation and distribution of the supply of Us

developed for the pre-hospital mobile care system, utilizing data based on the Brazilian

situation, is a field that deserves extreme attention. That will allow the assessment

of the present situation and can lead to new routes in terms of public policies. Thus,

the distribution of service stations of the regulation centers represents the ordering and

orienting element of the State Systems of Urgency and Emergency. These centers must

be structured in all levels, organizing the relation between several services, qualifying the

flux of patients in the system and generating an integrative gateway for the hospitals, by

which distress signals are received, evaluated and ranked. These rules must be followed

by all services, both public or private. It can be mentioned, as an example, that for

the emergency services a widely used measure is the maximization use of the Us or the

minimization of response time (TR), between any user of the transport system and the

nearest hospital.
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1 Introduction

The first models developed for care emergency services were deterministic
according to (CRONK et al., 1986; GOODMAN et al., 1986) and were important
for planning and investigation analysis, ignoring the stochastic considerations about
the problem. A revision of the specific models of localization of service unit (Us)
for medical emergency is addressed by (BROTCORNE et al., 2003).

A great disadvantage of these models is that they come from the hypothesis
that Us are available when requested, which is not always reasonable in practical
applications. The congestion in emergency care services, that can induce the
unavailability of Us, motivated the development of probabilistic models. In
probabilistic modeling of emergency services, some simplifying hypotheses allow
the use of mathematical programming. Nonetheless, in more general situations
some hypotheses are not applicable; conducting the treatment of these problems
through the use of stochastic process.

Various probabilistic models have been developed, considering the stochastic
nature of the events (accidents), such as the fact that Us operate as servers in a queue
system and sometimes are not available for operation, as occurred in the case study
developed by GOLDBERG et al. (1990) and CHING (1997). The hypercube model,
proposed by Larson (1982), and analyzed by many authors (SWERSEY, 1994) is
an important mathematical tool for the emergency systems planning, especially the
urban systems in which the Us moves to assist in some type of accident. The model
is adequate for analyzing coordinated or centralized systems, where the user who
needs assistance is demanded through a care center system. The system manager
then dispatches the Us of a facility that is close to the occurrence. In the case of no
Us being available, the request is put into a waiting queue so that it can be fulfilled
as soon as the Us is available.

The applications of the hypercube model are innumerable. In Brazil, some
examples are: the ambulance localization in a tract of the BR-111 – SC road
(GONSALVES et al., 1994, 1995), the balancing of the usage factor of ambulances
in the “Asphalt Angels” system of the Presidente Dutra road (MENDONÇA and
MORABITO, 2000, 2001), and the performance analysis of the SAMU-192 system
of Campinas – São Paulo (TAKEDA et al., 2004).

Initially the intention is of calculating the minimum number of Us necessary
from each region R, from estimated parameters of this region, in a way that there is
enough confidence to not have any missing Us for assisting the patient of a specific
region.

To maximize the efficiency of the assistance, it is made necessary to adequately
spread the Us of a city, minimizing the response time TR, defined as the time
between the request of Us and their arrival at the accident location. The most
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severe problem is that, in general, between the reception of the request in the
screening center or service station and the sending of the service unit – Us, some
time is unnecessarily lost as a result of a lack of a perfect operational system in the
screening center.

2 Dimensioning of stations/Integration centers – Hospital
beds

Consider a given region R with initial population h. Each user who belongs
to R has constant long time coordinates (λ, µ), defined by:
λ: user accident average rate;
µ: off-care user average rate.

(λ) and (µ) are denominated average rates because it is necessary to estimate
them from a known population. The accident event is defined as any entry in the
hospital through a service unit – Us. The following hypotheses are premises for the
system demand dimensioning:

1. User of region R can only suffer accidents by being out of hospitalization;

2. All injured and not injured users (operational) are considered as random
independent variables;

3. Individuals who arrive at hospital using a Us as means of transport are
considered users of the system;

4. Population h is considered a function that does not vary during the time of
the modeling.

By the first hypothesis we do not compute as accidents the removals (user patients
that are transferred from a hospital to another), because they are interactions
that do not alter the number of hospitalized individuals (system users). The
definitions hereafter are to be considered: TMH = λ−1, average time of system
user’s hospitalization and TMF = µ−1, average duration time of a not injured
patient – user’s out of system (healthy user).

Considering TV as the travel time of a Us, it can be then written that λ−1 =
TV + TMH, because at the moment the individual suffers an accident, he/she
becomes the system user and at the moment he/she gets out of the hospital, the
user is cured, exiting the system. An approximation of this equation to reality can
be made, because as quoted in (CORDEIRO, 2012) the TMH in Brazil varies from
6, 10 days to 8, 65 days; in other words, it is possible to consider that TMH >>
TV . Thus, this variable can be initially overlooked by doing, TMH = λ−1. The
presumption that TV = 0 is coherent with the third hypothesis, due to the fact that
possible improvements in the Uss services of type GPS are not being considered
because these only alter the TV , that is being relaxed in the initial modeling.

Consider now Xt defined as a random variable that represents the number of
cured citizens or non-injured in the region R in the period of time t. The maximum
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user population of the system (maximum demand of the system – hmax) represents
the whole community (population h) of region R, while the user population of the
system (effective demand) refers to the injured individuals (users) of the region R
that were transferred to a hospital using Us as means of transport. Being j the state
it can be said that the system is in state j – Ej in time t if, and only if, Xt = j. In
this way, it can be defined that the probability of an individual in state j is cured
is represented by: Pj(t) = P (Xt = j).

First and second hypotheses conditioned to the system user rates – injured
individuals (λj) and operational – cured individuals (µj), represent a process of life
and death, respectively. A simplified equation, for the calculation Pj(t) = P (Xt =
j), is detailed in (CORDEIRO, 2002), in other words:

Pj = Cjh

(
λ

µ

)j
h∑
j=0

Cjh

(
λ

µ

)j . (1)

Defining p as being the probability of an individual in R of being cured in the
long run, in other words, p is the proportion of the time he remains out of the system.
This equation represents the quotient between the TMF and (TMF + TMH).
Therefore,

p =
λ

λ+ µ
. (2)

Taking the complement of the Equation (2), it turns out that (1− p) =

(
µ

λ+ µ

)
,

which represents the probability of an individual in region R of becoming a user of
the system. It is important to highlight that these probabilities are stabilized in

the long run. This way, after the replacement of the term

(
λ

µ

)
in Equation (1),

we come from the probability function of Pj , to a very known distribution, which is
the binomial distribution with success probability p and failure probability (1− p).

P (X = j) = Cjh p
j (1− p)h−j , j = 0, 1, . . . , h. (3)

After the definition of the X distribution, it is important to calculate the statistics
distribution. This way, the number of cured individuals (X) after the system reaches
the stable equilibrium follows a binomial distribution of average E(X) = hp and
variance V (X) = hp (1− p).

Being Y another random variable, which represents the number of users
relocated from the system to a hospital, using Us as means of transport. Then,
the population variable can be written as H = X + Y ; and as Y is a binomial, H
also follows the binomial law (HOEL, 1996). Therefore, the probability of j injured
individuals in region R being users of the system can be calculated by,
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P (Y = j) = Cjh(1− p)jph−j , j = 0, 1, . . . , h. (4)

Consider now Y =
∑h
i=0 Yi and Yi as independent. The “dummy” variable concept

is adopted, in which Yi = 1 if the ith individual is a user of the system (relocated
to the hospital, using Us as means of transport) or Yi = 0, if not. In virtue of
h being big in comparison with Y , we understand by the central limit theorem
(HOEL, 1996) that the random variable Y will be a normal one with the following
representation: Y ∼ N(h(1− p), h(1− p)p).

In order to gain a more accurate picture, suppose that the population of region
R is h = 15.000 – order of magnitude 104; it can be understood that the probability
of an individual to be cured (not injured) in region R is of p = 0, 999. So it is
important to know what is the probability of an individual never being a user of
the system – there never is an accident with this individual inside the region R, in
a way that, by suffering an accident, he/she will be relocated to a hospital using Us
as a means of transport. Therefore we have,

P (Y ≤ 0) = P

(
Z ≤ 0− h(1− p)√

h(1− p)p

)
, (5)

where Z ∼ N(0, 1). Making the appropriate substitutions, we can find that
P (Y ≤ 0) = P (Z ≤ −3, 8749) = 0, 0001 6= 0. Thus, using a Z ∼ N(0, 1) – reduced
normal , does not bring significant results, because it imputes P (Y ≤ 0), a 0, 0001
probability – only 10 times smaller than the order of magnitude of (1− p) = 0, 001,
to an event that surely can never happen.

Consequently, for bigger improvements in the pre-hospital care services
(MCALEER and NAQVI, 1994) and (TAVAKOLI and LIGHTNER, 2003) suggest
that the regions corresponding to a city division must be smaller in a way that:
h ↓ implies a P (Y ≤ 0) ↑. In order to correct the distortion of P (Y ≤ 0), it is
necessary to adopt the following procedure: instead of Y being treated as a normal
Z ∼ N(0, 1), treating Y as a truncated normal, which probability density function
(p.d.f.) is given by:

f(y) = c[2π V (Y )]−0,5 exp

−1

2

[
Y − h(1− p)√

V (Y )

]2
 , (6)

with Y > 0 and c representing the correction constant for the p.d.f. of Y , calculated

by: c = Φ−1

(
E(Y )√
V (Y )

)
.

To dimension h it is necessary to know the number of hospital beds (nL) being
supplied by the hospital beforehand, which are situated in the region R. Knowing
nL, the problem consists now in calculating the maximum user population of the
transport by Us, in a way that the probability of not having missing hospital beds
is known (α).
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The solution for this problem will be important in the division of a city in
assistance zones (ZA) which will correspond to the hospitals in a one-to-one relation.
That way, knowing nL, we can arrive to the calculation of its user population and
the corresponding zone. Consider that Y ∼ N(h(1 − p), h(1 − p)p). Then, we can
calculate the probability P (Y ≤ nL) = α, by means of:

P (Y ≤ nL) = c (2π h(1− p)p)−0,5
∫ nL

0

exp
−1

2

(
y − h(1− p)√

V (Y )

)2

dy. (7)

Resolving the Equation (7) we can obtain the estimation of the nL equation.

nL = h(1− p) +
√
h(1− p)p Φ−1

[
1 + (α− 1) Φ

(√
h(1− p)p−1

) ]
. (8)

The Equation (8) is very general, because it allows to calculate nL from h and

vice-versa under any circumstances. However, if the condition h ≥ 16

(
p

1− p

)
is

satisfied, the problem inverts, and the calculation is made by Z ∼ N(0, 1). That
way, knowing h and p, we can now calculate nL by:

nL = h(1− p) +
√
h(1− p)p Φ−1(α). (9)

Considering that there must not be any beds missing in the hospitals, then α = 1.
Therefore, any of the equations can be used for the definition of nL. And based on
the normal distribution table, Φ−1(α) ≥ 4, that means, nL ≥ 4

√
h(1− p)p+h(1−p).

On this case, the search for the minimum value of nL is obtained from the equality:

nLmin
= h(1− p) + 4

√
h(1− p)p. (10)

The city of Recife, currently, provides 8.089 hospital beds; in practice when
dividing the city in ZAs (zones), The nLs being provided are certainly greater than
40. This value was calculated considering the extreme case, in which each Zone
represents a city neighborhood (there are in Recife at least 200 neighborhoods).
Setting the average variability of (1−p) between 4, 2× 10−4 (national average) and

1, 0× 10−2, the condition h ≥ 16

(
p

1− p

)
will always be verified. Thus, the search

for h always comes from the Equation (8). Now, doing the proper isolation of h, we
have:

h =
1

4

p

(1− p)

{[√
(Φ−1(α))2 +

4nL
p

]
− Φ−1(α)

}2

. (11)

In case of interest – no missing beds, α = 1. Replacing Φ−1(1) ≥ 4 in Equation
(11), the value of h is determined according to nL, and vice-versa and, therefore
nL ≥ h(1 − p) + 4

√
h(1− p)p. The maximum user population value (maximum

demand) hmax is calculated by considering the strict equality in the above equation.

hmax =

(√
4p+ nL − 2

√
p
)2

(1− p)
. (12)
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From Equation (11) it is concluded: if α ↑ then h ↓; when α → 0, h → +∞. In
Table 1, the results of the simulation for obtaining the values of h are found from
(1 − p), α and nL. The quantile function of the normal Φ−1(α) = z, being Z ∼
N(0, 1) was calculated using the routines “Cumulative probability” and “Inverse
cumulative probability” (MINITAB, 2011). Values of Φ(z) were generated between
0 and 3.9999. Afterwards Φ−1(α) was selected for α = 0, 8, α = 0, 95 and α =
0, 99999 (hmax – maximum user population or maximum demand). The values of
(1−p) – the probabilities of an individual being a system user were fixated in 0, 001,
0, 002, 0, 004, 0, 008 and 0, 01.

Table 1 - The estimated values for h in function of alpha, nL and (1− p)

α Φ−1 nL h(0, 001) h(0, 002) h(0, 004) h(0, 008) h(0, 1)
0,80 0,84378 250 237.016 118.511 59.259 29.633 23.707
0,95 1,6482 250 225.274 112.643 56.327 28.170 22.538

0,99997 3,99997 250 194.275 97.150 48.587 24.306 19.450
0,80 0,84378 650 628.851 314.431 157.221 78.616 62.895
0,95 1,6482 650 609.335 304.677 152.349 76.184 60.951

0,99997 3,99997 650 555.750 277.897 138.970 69.507 55.614
0,80 0,84378 1000 973.684 486.848 243.431 121.722 97.380
0,95 1,6482 1000 949.245 474.635 237.330 118.677 94.947

0,99997 3,99997 1000 881.313 440.684 220.370 110.213 88.182

The World Health Organization (WHO) recommends for the hospital
conjuncture that the number of hospital beds of a city can be determined by the
ratio of 3 beds for each 1.000 inhabitants. In Brazil, the adopted ratio is usually
2,53 beds for each 1.000 inhabitants (IBGE, 2005). However, each country adopts a
different ratio. It is a fact that the conditions for an inhabitant to suffer an accident
and be taken to a hospital vary according to the region.

In major cities the probability is way higher than in the respective states.
Under the Equation (12), if nL is a lot bigger (nL → +∞) and α is any positive
value greater than zero, we have: h = nL (1 − p)−1 or (1 − p) = nL h−1 and, this
way, (1 − p) can be defined as being the bed per inhabitant unit factor, and that
way, the number of beds is equal to the expected number of injured individuals
E(Y ) (system users).

Therefore, it can be concluded that the greater nL is, the smaller the average
percentage of idleness will be (tendency of system user population being equal to the
bed supply); this average idleness time tends towards zero when nL → +∞. That

way, the usage of hospital beds percentage is given by
h (1− p)

nL
. Thus, for α and

(1−p) being constants, the expected percentage of idle beds is

[
1− h (1− p)

nL

]
100,

which increases when nL increases.
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3 Estimates of P – p̂

Consider Yt be the random variable that represents total the number of injured
individuals (system users) and hospitalized in the period of time t and being In the
number of hospitalized users of a given region R’s hospital in the period of time
∆t = (t2 − t1), which in regards to the survey made by IBGE is annual (365 days).

Consider, now, In1 , the number of hospitalized users remaining in the period
of time t1. The area of the curve Yt between t2 and t1, according to Figure 1,
represents the total of injured users and hospitalization in period of time ∆t (user
x day). So, the average time of hospitalization – TMH for all individuals (cured
individuals + system users) of the region R, after the stable equilibrium, will be
calculated by:

Figure 1 - Curve representation of (Yt) x t.

TMH =
(A− In1

TMH)

(In − In1)
. (13)

Solving it, we come to: TMH = A(In)−1. As TMH = λ−1, then lambda estimative

is λ̂ = In(A)−1. Now, the expected value of Y for t ≥ te (stable equilibrium point)
is: E(Y ) = h(1 − p) = A(∆t)−1 and, then, the estimation for p is given by the
following equation:

p̂ =
(h∆t−A)

h∆t
. (14)

This would be the correct estimation procedure for TMH – Equation (13),
that is, knowing the curve Y in function of t, the value of A would be calculated by
the Y integral between t1 and t2. Therefore, with the result of A (users x day) we
can calculate the value of E(Y ) – average number of injured individuals in region
R, who are taken to the hospital using Us as a means of transport. In practice, the
variation of the Y coefficient – relative dispersion of Y – is very small compared

with h. This coefficient by definition is cY =

√
p

h(1− p)
. Thus, cY in function of
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A and ∆t is given by:

cY =

√
(h∆t−A)

A h
. (15)

To clarify the developed methodology — estimations of TMH, p̂, number of hospital
beds nL, nLmin , TMF , TMH the three main capitals of states of the Northeast
region of Brazil (region that presented the highest TMH) were chosen along with

Belo Horizonte and Curitiba cities. For the estimations of TMH (T̂MH) it was
considered that the relocation of the injured individual will be made to any hospital
institution. In all calculations made for the minimum number of hospital beds
nLmin , the Equation (10) is utilized and for the considerations with reliability 100%
(α = 1). This result is compared with the effective beds with consideration to the
missing beds estimation (deficit). All calculations above are represented in Table 2.
In relation to the entry data for making the proper estimations, they were obtained
from the Medical Sanitary Assistance – AMS (IBGE, 2005).

Table 2 - System User Population × Minimum Number of Beds with 100%
Reliability

Cities Pop− h Hospitalizations-In Beds-nL Beds-nLmim

Recife 1.486.869 328.870 8.089 8.448
Fortaleza 2.332.657 303.585 8.138 8.880
Salvador 2.631.831 279.623 7.676 8.026

B.Horizonte 2.350.504 384.838 8.719 9.002
Curitiba 1.727.010 388.392 6.013 6.323

Cities TMF (days) TMH (days) p̂ (1− p̂)
Recife 1.641,24 9,98 0,994560 0,00544

Fortaleza 2.794,77 9,78 0,996511 0,00349
Salvador 3.425,39 10,02 0,997083 0,00292

BeloHorizonte 2.221,13 8,27 0,996291 0,00371
Curitiba 1.617,35 5,65 0,996518 0,00348

The data of Table 2 was calculated from the estimated values of p(p̂) and
(1 − p) ((1 − p̂)) of the cities of Recife, Fortaleza, Salvador, Belo Horizonte and
Curitiba. This table also presents the total number of hospital beds represented
by the private and official establishments (Municipal, State, Federal and partnered
with SUS – Health Unic System).

For instance, the city of Salvador has a bigger population than Recife; but
the probability of an individual being injured and relocated to hospitalization is
0, 00292 in Salvador city, while in Recife it is 0, 00544. That is why the minimum
number of hospital beds required is greater than Recife (8.448) in comparison with
Salvador (8.026). In regards to the estimated values of TMH, nLmin

and TMF
there are no abnormalities.
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Observe that for the set of elements constituted by the estimated probabilities
(p̂), the value of the variance is of order of magnitude 10−7. As the probabilities
are situated in the same reliability range, it can be stated that the probabilities of
an injured user being relocated to hospitalization is, in the statistical point of view,
practically the same for all analyzed cities, no matter if it is a public or private
institution.

Therefore, hospital beds can not be guaranteed to any individual from the five
analyzed cities. Maybe these arduous deficits are caused by predominant factors,
that hinder the increase of nL. However, if the assistance policy is to guarantee
hospitalization to the insured people of SUS, or to any individual in general – as
predicted in the Federal Constitution – the hospitalization can be made in any
institution – therefore, any variant for the estimation of TMH and p must be
pondered with all hospitals.

For example, the hospital of the University of Pernambuco — “Hospital da
Restauração” – HR – situated in one of the most heavily-trafficked avenues of
Recife, has currently 535 beds. How many patients can utilize the hospital with
100% reliability? Applying the Equation (12), we have: hmax = 83.397 users. This
way, this hospital can serve to an area with 84 thousand inhabitants. If the former
is destined only to the SUS insured, this area will be bigger and, in any case, this
area can be calculated by the estimation of the user density correspondent to the
assistance policy adopted by the hospital.

To estimate p (p̂) we must define the equations before and after the time for
the stable equilibrium (te). Being h the population of region R with J non-injured
individuals, then: λj = (h − j)λ and µj = jµ, for j = 0, 1, . . . , h. The average
value of λ (λ) can be calculated using the concept of weighted average. That is,

λ =
∑h
j=0 λjPj , in which Pj represents the probability of an individual in state j

not being a user of the system. Then,

λ =

h∑
j=0

λjPj =

h∑
j=0

λ(h− j)Pj . (16)

Using Equation (1), for the calculation of Pj and making the proper substitutions,
we arrive to the following expression for the average rate of injured individuals (λ):

λ = h

(
λµ

λ+ µ

)
. (17)

With regards to the average rate of non-injured individuals (µ), it is calculated using
a procedure similar to the calculation of (λ). Making the proper substitutions, we
find the reduced form for µ.

µ = h

(
µ2

λ+ µ

)
. (18)

Thus, to define the average of p (p), that is, the average probability of an individual
being out of the system, the same formalized development for Equation (2) is
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utilized:

p =
1(

1 +
µ

λ

) . (19)

This way, it is determined that p = p – Equation (2). Thus, it is important for
eliminating any doubts about the values of pt to establish a function that explains
the behavior of pt with t. Being qt = (1 − pt) the probabilistic distribution of the
number of injured individuals in a period of time. Consider that g(t) represents the
probability density function (p.d.f.) of the distribution qt, and g(t) is the p.d.f. of
the exponential distribution, represented below:

g(t) = (λ+ µ) e−(λ+µ)t, t ≥ 0 and g(t) = 0, t < 0.

To calculate (1 − pt), it is necessary to use the concept of cumulative distribution
G(t) for g(t). For this, we must calculate the g(t) integral in its domain.

G(t) = (λ+ µ)

∫ t

0

e−(λ+µ)tdt, with t ≥ 0.

Solving the integral in the interval of (0, t), the expression that defines the
probability of an individual suffering an accident before the stable equilibrium is
found.

G(t) = −e−(λ+µ)t
∣∣∣t
0
, G(t) = 1− e−(λ+µ)t. (20)

As the probability of an individual suffering an accident after t ≥ te (stable

equilibrium) is (1 − p) =

(
µ

λ+ µ

)
, the probability of an individual suffering an

accident in the period of time t is:

(1− pt) = (1− p) G(t), or (1− pt) =
µ

λ+ µ
(1− e−(λ+µ)t ). (21)

Consequently, the probability of an individual not suffering an accident in the period
of time t is:

pt = 1− µ

λ+ µ

(
1− e−(λ+µ)t

)
. (22)

If Xt has a binomial distribution, then E(Xt) = hpt and V (Xt) = hpt(1 − pt) =
hptqt. The probability of existing j cured individuals – out of the system in time t
is calculated through the Equation (3):

P (Xt = j) = Cjh pt
j (1− pt)h−j , j = 0, 1, . . . , h. (23)

After the stable equilibrium we get the limit of the Equation (22), that is, lim
t→+∞

pt =(
1− µ

λ+ µ

)
= p. Thus:

lim
t→+∞

P (Xt = j) = Cjh p
j (1− p)h−j , j = 0, 1, . . . , h. (24)
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The Equation (24) is invariant with t, because lim
t→+∞

pt=p and lim
t→+∞

(1−pt)=(1−p)
This way, it is shown that the Equations (24) and (4) are equal; and that p

represents the proportion of time an individual stays non-injured. Now, as Yt is
the number of system user individuals in time t, that are relocated to hospitals
using the Us, then, the probability of j injured individuals in time t also follows a
binomial distribution.

P (Yt = j | t ≤ te) = Cjh (1− pt)j (pt)
h−j

, j = 0, 1, . . . h. (25)

When t increases, pt decreases from 1 to p =

(
λ

λ+ µ

)
, remembering that the

initial condition equivalent to a p0 = 1; (1−pt) increases from 0 to

(
µ

λ+ µ

)
, when

t increases from 0 to +∞. In actuality, when t ≥ te, we can consider pt and (1−pt)
as constants and, consequently, the value of E(Yt) is, too, constant. This way, we
must do a detailed evaluation for the dimension of te. The evaluation for te is done
based on the data of the TMHs calculated previously for the five cities: Recife,
Fortaleza, Salvador, Belo Horizonte and Curitiba. These estimated periods of time
TMHs for the cities are, respectively: 8,98 days, 9,78 days, 10,02 days, 8,27 days
and 5,65 days.

Substituting now the expression (TMF−1 + TMH−1) by (µ + λ) and later
calculating for each city the function G(t) = 1 − e−(λ+µ)t, with t varying between
0 and +∞, we arrive to the equilibrium when the distribution function G(t) = 1,
that is, when the result of the expression (1 − e−(λ+µ)t) is equal to 1. In Table 3,
the results of tes calculated for each city are presented, considering the value of the
distribution function G(t) = 1− e−(λ+µ)t = 1.

Table 3 - Values of Time for the Stable Equilibrium – te

City TMH(days) te(days) TMF (days) %Equil.
Recife 8,98 110 1.641 6,70

Fortaleza 9,78 130 2.795 4,60
Salvador 10,02 130 3.425 3,80

Belo Horizonte 8,27 110 2.221 4,90
Curitiba 5,65 70 1.617 4,30

The values of the tes vary from 70 days to 130 days. Curitiba has the shortest
time and Fortaleza the longest, which is tied with Salvador. Recife is equal to Belo
Horizonte, with a te = 110 days. Calculating the percentages of participation of
the te with the respective TMFs, we come to a variation of 3,8% (Salvador) to
6,70% (Recife). The average of these percentages of participation is 4,86% with a
standard deviation of 0, 96% and the dispersion coefficient 0, 19 from the average.

In the case of regions with shorter TMH, the stable equilibrium te is reached
faster. This way, it is viable to establish conditions, in the sense of defining a
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strategy for the values of p before and after the stable equilibrium. In Cordeiro
(2012), a detailed behavior analysis of the curve E(Yt) is made with the intention
of making a more robust estimation of p in the period of time. The obtained results
suggest a difference in the average percentage of the relative error varying from
0, 06743% to 0, 07106%. However, when crossing the averages of the values of p̂s
there is a difference, which order of magnitude is 10−6.

4 Random variable time between successive entries in
hospitalization – TEESH

The time between successive entries in hospitalization (TEESH) is a concept
that is independent of how the patient got to the hospital, by using Us or not.
But the time between successive entries in emergency (TEESE) for patients that
need emergency treatment must have the transport service guaranteed – pre-hospital
assistance via a Us. This provided service satisfying serves to all emergency patients,
who are its potential users.

Thus, the other patients enter hospitalization via queues, with elaborated
guidelines, being booked for hospitalization, without emergency. To dimension
the number of Us capable of serving all injured individuals in region R, that are
hospitalized with emergency, it is important to define a variable that explains the
time between successive entries for these potential users; patients that arrive via
pre-hospital mobile care denominated Us. Initially, this variable – time between
successive entries for patients that arrive via Us (TEESUs) is equal to TEESE.

Considering that the region reached the stable equilibrium and being X the
number of non-injured individuals, then the average value of this time conditioned
to j cured individuals is: E(TEESH)| j cured) = E(TEESH(j)). Therefore, the
average value E(TEESH) is calculated weighting the E(TEESH)| j cured) with
the Pj :

E(TEESH) =

h∑
j=0

E(TEESH(j))Pj . (26)

Observe that in a given region R of population h in time t has j cured
individuals equal to E(X) = hp e (h − j) and injured equal to E(Y ) = h(1 − p).
TNA is the variable that measured the time of a non-injured individual out of the
system. This way, for hp cured individuals:

TEESH = MIN(TNA, TNA, . . . , TNA) or TEESH = MIN(TNA)hp.

As the P (TNA ≥ t) =
(

1−
∫ t

0
fTNA dt

)
=
(

1−
∫ t

0
µe−µtdt

)
= e−µt, then:

P (TEESH(hp) ≥ t) = e−µhpt. (27)

Thus, there are always hp cured individuals susceptible to accidents. Therefore,
the p.d.f. of the variable TEESH is exponential, because the TEESH(hp) is
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exponential. Considering that In represents the number of hospitalizations in the

period of ∆t = 1 year, then In = µhp∆t; as µp = λ(1− p), then

(
In
∆t

)
= λh(1− p)

and being A the area below the curve Y(t) – Figure 1, then h(1 − p) =

(
A

∆t

)
,

which is the Equation (14) for the calculation of p.
For the ZAs of the Us it is of good measure to affix to h an order of magnitude

that varies between 104 and 105 inhabitants. This way, it is possible to decentralize
the Us or as a single region to concentrate all Us in a single spot. Distributing
them in assistance zones is a more viable solution both economically and efficiently
in relation to the response time. This way, the travel times computed by the Us
are shorter with the decentralization, when compared to the travel times of the Us
concentrated in a single spot (GOLDBERG et al., 1990).

A structure equation, similar to Equation (27) – P (TEESH(hp) ≥ t) =
e−µhpt, can be obtained considering the proportion of the TEESH in relation to

∆t, that means,

(
1− t

∆t

)
. This way, the P (TEESH(hp) ≥ t) can be calculated

also through the equation below:

P (TEESH(hp) > t) =

(
1− t

∆t

)In
,

being In = µhp∆t. As In – hospitalizations or entries of injured individuals in the
hospitals – is very big because the period ∆t is long (1 year), then P (TEESH(hp) ≥

t) is approximated to exponential. Remember that limx→+∞

(
1− 1

x

)x
= e−1. So,

P (TEESH(hp) > t) =

(
1− t

∆t

)In
= e

(
−
t

∆t

)
In

or P (TEESH(hp) > t) = e−µhpt.

Differentiating in relation to t, the distribution function accumulated from the
variable TEESH, we obtain the p.d.f. fTEESH(t) (remembering that In is big),

fTEESH(t) =

(
In
∆t

)(
1− t

∆t

)In−1

or fTEESH(t) = µhp

(
1− µhpt

In

)In−1

. (28)

The statistics E(TEESH) and V (TEESH) from this distribution fTEESH(t) are

similar to the Equation (27). As In is big, then the relation

(
In

In + 1

)
≈ 1. We

have,

E(TEESH) =
∆t

In + 1
and V (TEESH) =

In
(In + 1)2(In + 2)

∆t2. (29)

When replacing

(
In
∆t

)
for µhp, we obtain the expected value E(TESEH)=(µhp)

−1
,

which is the same found from E(TEESH) of Equation (27). In the long run, ∆t=1
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year, the distribution processes of TEESH are coincidental. Actually, the expected
value E(TEESH) is greater for the exponential – most favorable case –; on the good
side, the standard deviation is greater.

Based on the average of the Ins related to the five cities, the imputed values for
the increase percentages are: %∆(E(TEESH)) = 0, 0002973% and %∆σTEESH =
0, 0004450%. This way, working for the distribution of the variable TEESH as
exponential – Equation (27) is closer to reality and, therefore, its sudden variations
are predicted, resulting from a higher standard deviation.

5 Studies of the random variables that represent the time
between the entries in hospitalization (TEESHUs) and in
emergency (TEESE)

Consider the random variable that represents the time between successive
entries for injured individuals that need emergency treatment – TEESE. Supposing
In entries in hospitalization during the period ∆t. Being K entries in emergencies
then (In − K) represents the entries in the hospitals without emergency. For the
hypothesis based on a service policy for the pre-hospital assistance, the equation
TEESE = TEESHUs, is feasible, in which the TEESHUs represents the time
between successive entries in hospitalization for the injured that need a mobile
pre-hospital assistance – Us. It is very hard to determine TEESHUs beforehand,
from statistics made for the entries with the service units (Us), because there is
no availability to quantify the data relative to the number of emergency calls
that were not answered and effected to SAMU-192. The (In–K) entries in the
hospitals are statistics of easy determination and more reliability, because they can
be made through the hospital inpatient admission order. Therefore, the hypothesis
of TBESE = TEESHUs is the most unfavorable case of assistance through Us,
that is, assisting every emergency accidents.

Two types of failure can occur in the assistance given by the service units.
The first comes from the lack of assistance by the Us to the injured, that is, the
injured dies before receiving medical assistance by the Us. On the second type, the
injured is assisted by the Us, but dies on the way to the hospital – dies before being
hospitalized. It is aggravating that there is no statistics from SAMU that makes it
possible to estimate the failure occurrence percentages.

The assistance requests through a Us in which the injured dies before arriving
for hospitalization are inserted into the K emergencies. By exclusion, Z1 is the
variable that represents the number of entries with emergency that are not realized,
via Us, although they are done more efficiently via other means of transport. This
can occur sometimes, because the patient’s transportation is done more quickly by
a vehicle that is closer to him/her – private vehicle.

On the other hand, Z2 also exists, which represents the number of entries
without emergency in the hospitals, that due to the patient’s health condition, the
transportation must be done by a Us, although the time of the transportation can
be booked beforehand.
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In general, the values of Z1 and Z2 are negligible when compared to In and K;
this way, we can suppose that Z1 = Z2, making the equation TEESE = TEESHUs
valid, and consequently, the expected values as well: E(TEESE) = E(TEESHUs).

Considering that the K entries in emergency are independent and distributed
in a random way at any moment, in a period ∆t and, being both probable, that
one entry can be in any point of ∆t, then we can establish for the expected

value E(TEESE) =

(
1×∆t

K + 1

)
analogous to the Equation (29), that is to say,

E(TEESHUs) =
∆t

In + 1
. Therefore, crossing the equation E(TEESE) with

Equation (29) comes Equation (30).

E(TEESE) =

(
In + 1

K + 1

)
E(TEESH). (30)

As a result of the similarity of the equations mentioned, we can state that
the process of distribution of K emergencies in the In entries in hospitals – injured
individuals that arrive to the hospitals – spaced out from E(TEESH) (discreet
process) is equivalent to considering that the emergency entries are independent
and randomly distributed in a period of time ∆t (continuous process). Therefore, it
is important to state that the random variable TEESE has a distribution analogous
to the random variable TEESH.

This way, we can make for the equations P (TEESE), fTEESE and
V (TEESE) from distribution TEESE, expressions analogous to the expressions
(28) and (29) for the distribution TEESH. Therefore, to establish these equations
we only need to change the variable In for the variable K:

P (TEESE > t) =

(
1− t

∆t

)K
and fteese(t) =

K

∆t

(
1− t

∆t

)K−1

. (31)

Thefore,

E(TEESE) =

(
∆t

K + 1

)
and V (TEESE) =

K

(K + 1)2(K + 2)
∆t2. (32)

Consider that
ψ

100
represents the proportion of entries, which purpose is the

emergency assistance. As ∆t =
In
µhp

and K =

(
ψ

100

)
In, it occurs that:

P (TEESE > t) =

(
1− t

∆t

)ψµhp∆t
100


or

P (TEESE > t) = exp

(
−ψµhpt.

100

)
.

(33)
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As verified before, the exponential represents an excellent approximation for the

variable TEESH and also for the variable TEESE, whose average is
100

ψµhp
. This

approximation is favorable, because it imputes in the long run ∆t = 1 year a more
expected value for E(TEESE):

E(TEESE) =

(
∆t

K + 1

)
or E(TEESE) =

(
K

K + 1

)
100

ψµhp
. (34)

In a very long ∆t period,

(
K

K + 1

)
≈ 1. This way, the Equation (34) is in function

of the statistic ψ and the entries in hospitals µhp.
For the exposed reasons, the adoption of the exponential distribution, also,

for the variable TEESE is more appropriate, because it provokes less risks derived

from a higher variation for the expected value, that is %∆(E(TEESE)) =
1

K
.

However for the variable TEESE, the number of emergency entries in a long period

of time ∆t > 0 also follows a Poisson distribution

(
ψ

100
µhp∆t

)
. It is known

that K ∼ P

(
ψ

100
µhp

)
, then the probability of the hp cured individuals having k

hospitalized individuals in emergency in ∆t is:

P (K(∆t) = k) =

exp

(
−ψµhp∆t

100

) (
ψµhp∆t

100

)k
k!

if ∆t > 0. (35)

and k = 0, 1, 2, . . .
This way, we have the mathematical formalization of the variable distributions

of TMF , TEHS, TEESH and TEESE, as well as their respective statistics, all
inherent to the hospitals. These hospitals will be treated as integration stations,
whose means of transport are the service units Uss, for the pre-hospital assistance.
All in all, to compute all statistics, it is fundamental to safely estimate the variable
ψ, that represents the proportion of the entries that are destined strictly to hospital
emergencies.

5.1 Study of the variable ψ – Proportion of entries destined to hospital
emergencies

There are some difficulties on the construction of the variable ψ. The first one
refers to the data collection relative to strict emergency; since the last statistical
yearbook made by (IBGE, 2005) does not contain any information for this purpose.
The second is that in hospitals, the hospital inpatient admission order reflects in its
majority normal entries. The emergency entries established in the medical record
receive a mark of adequate or inadequate characterization. Although the variable
ψ can easily be superiorly limited – security factor favorable for the dimensioning
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of the Us – its big imprecision can generate big idleness and majority encumber
the costs associated to transportation. That is because an improvement in the Us
service can significantly increase the number of emergency entries.

To define the estimation for ψ in favor of security, we use the law of
large numbers. The estimation is based on the study developed about “The
profile of emergency in the “Hospital da Restauração” – HR: an analysis of the
possible impacts after the municipalization of health services”, (CAVALCANTI and
ARAÚJO, 2004). The authors emphasize that between 1993 and 2001 the number of
emergency entries increased almost 50%. The traumatology procedure participates
with 35%, probably in its vast majority caused by traffic accidents.

Almost all patients of HR (90%) come from Recife or from the Metropolitan
Region, being Monday and daytime the periods with highest demand. The HR is
characterized as an emergency hospital, with a monthly average of 25.800 entries
being 12.000 (46, 51%) strictly emergencies. Not including patients diagnosed
with cholelithiasis submitted to operation on emergences (CUNHA et al., 2016).
What is most surprising in the assistance point of view is that in the computed
entries destined to HR’s emergency, 74, 5% are characterized as inadequate for this
emergency – patients whose diagnoses could be cured by basic treatment. (SALLA
et al., 2002) found in a broad hospital research a 60, 6% percentage of entries in
emergencies that were characterized as inadequate.

In a survey made in the 62.500 entries in HR – about 73 days, in each 2
emergencies of 100 observed entries, in almost 99% of them, the relative frequency

observed

(
K

In

)
would be at less than 2% from 46, 51%. It can be claimed that

ψ̂ = 48, 51% is a safe estimation for a hospital with a strict emergency characteristic.
This way, we observe for ψ̂ the variation interval (44, 51%, 48, 51%).

Based on the calculations already properly computed, it is verified that in
Recife, in the year of 2005, the expected value E(TEESE) = 9, 32 minutes, that is
to say, averagely in each 9,32 minutes an injured individual is entered in emergency.
Furthermore, the probability that the TEESE in 2005 is superior to 10 minutes
is of 0, 007821. It can be observed that the tendency of the expected value for the
variable TEESE is to reduce substantially with the increase of h; particularly for
constant ψ.

6 Study of the service time variable TS of Any Us

The care policy for the service units (Us) is to assist only emergency patients.
Therefore, considering Z1 – the number of entries in emergency not carried out by
Us, and Z2 – the number of non-emergency entries using the Us, to maximize the
emergency care via Us we must look for Z1 = Z2 = 0. This way this situation
converges to the most unfavorable case for the dimensioning of the Us aimed at
pre-hospital care. This way, it can be considered that the variable Time Between
Successive Entries in Hospitalization Using Service Unit Us (TEESHUs) represents
the same variable TEESE. So the equations for the variable TEESHUs are the
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same defined for TEESE. It is worth to emphasize that the values of Z1 and Z2

participate with very small representativeness, when compared to the volume of In
– entries in hospitals and K – entries in emergency. Therefore it is appropriate to
set the Us only to care for emergencies, and this way we can consider Z1 ' Z2 ' 0.

Being TS a random variable that establishes the service time of any Us and
W , an also random variable that represents the wait time for a Us to be available
and be assigned to the call (wait time in queue). Initially, the variable TS is defined
as the sum of a set of random independent variables defined below:

• TP : Time spent for the Us to leave; that is, the time between the occupation
of the Us and its exit from the storage location;

• TV : Travel time of departure or arrival;

• TA: Time spent for picking up the injured patient and helping him on spot,
that is, time spent between the arrival to the location of the accident and the
departure of the Us from the location;

• TD: Time spent to deliver the patient to the hospital until the clearance of
the Us – service unit ready for return.

Besides those, the variable TS is defined by the sum below:

TS = TP + 2TV + TA+ TD, (36)

he variables TP , TV , TP and TD depend a lot on the work dynamic established
for the collection and confirmation of the results. As a consequence of that, the
estimations produced can provoke big distortions, especially because of the strong
sensitivity of these variables. This way, the estimations to be obtained are originated
from a probabilistic distribution properly adjusted to the observed statistics. A
feasible distribution to be adjusted to a specific interval of time ∆t is the beta
distribution.

Suppose, the following time measurements, all obtained from a sample of ∆t:
∆t (average), ∆tmin, ∆tmax and σ∆t (standard deviation). Consider the following
distribution for Ω defined by the equation below:

Ω =
∆t−∆tmin

∆tmax −∆tmin
. (37)

Exemplifying, if ∆t corresponds to the sequence (t1, t2, t3, t4, t5), the assumed values
for Ω are in between 0 ≤ Ω ≤ 1. This is valid for any sequence. Therefore, it is
possible to consider that Ω ∼ β(a, b), where the a and b are real positive parameters
of the distribution denominated scale and declivity, respectively. These parameters
are determined from the equations below:

Ω=
∆t−∆tmin

∆tmax −∆tmin
=

a

a+ b
and σΩ =

σ∆t

∆tmax −∆tmin
=

1

a+ b

√
ab

a+ b+ 1
. (38)
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With relation to the variable TV , it depends on the geometry of the assistance
service zone (ZA) made by the service unit (Us) and also of the location where the
hospital is. As the clearance of the Us obey a queueing system, it is possible to
calculate through the queueing model the average and variance of the variable TS.
The response time TR, as defined previously, represents the time between the Us
request and its arrival at the patient, This variable is represented by the following
equation:

TR = W + TP + TV. (39)

After the definitions of the equations for the variables TS and TR and, based on the
distribution that represents the variable TEESE, we seek for a representation for
the variable distribution that represents the time between the successive requests
of Us in the screening center for assistance to the injured – TECSUs.

7 Study of the variable time between successive request of
Us – TECSUs

For the purpose of studying the distributions for the variables TECSUs and
TEESHUs we must consider a hospital that is assisting a small user population
situated in a determined ZA, whose dimension reproduces a smaller TR. Thus,
the number of service units ns, allocated to the hospital tends to be small. For
example, ns = 1 to ns = 3. It is important to emphasize that to maximize the care
system’s efficiency, it is necessary to increase the idleness factor (1-ρ) or to decrease
the usage ρ; or to change the wait time in queue to W = 0 and consequently the
following inequations must be obeyed, that is TS < TECSUs and TS < TEESE.
The equation that measures this idleness is expressed by the usage factor ρ, being
determined in function of the variables TS, TECSUs and ns – number of service
units, according to the expression below:

ρ =
E(TS)

E(TECSUs) ns
. (40)

As seen before, the distribution of the variable TEESE is recognized and
represented by the Poisson distribution. This way, the behavior of the system
will be represented by the variable TECSUs – system entry, by the variable
TS – service assistance, and by the variable TEESE – system exit. Being the
system exit a Poisson distribution and the variable TS ruled by the exponential
distribution, then the variable TECSUs follows a Poisson with the same exit rate.
Therefore, we have an stigmatic system and, this way, we can state that TECSUs
= TEESE. A detailed demonstration about this theme is found in (HILLIER et
al., 1986). This way we stumble over a problem that is based on the strict queueing
theory. This queueing system is characterized by being a Markov process. Still
in relation to the queueing system, the moments (expected value and variance) of
the chosen distributions TECSUs, TEESE and TS are extremely necessary as an
optimization tool. In case of finding difficulties in the expression of the moments of
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these distributions, it is necessary to find approximated methods for the acquisition
of the moments, as for example, the Laplace Transform. Making the response
time exponentially distributed to a queueing system of type M/M/ns, then the
probability distribution function of the variable TR is given by:

P (TR ≤ t) = FTR(t) = 1− e−µ ns(1−ρ)t. (41)

Observe that the minimization of the response time is caused due to the increase
of the idleness factor (1 − ρ) or usage minimization. In the same way, it can
be demonstrated that for the system M/M/ns the probability distribution of the
random variable W – wait time is represented by the equation:

P (W ≤ t) = FW (t) = 1− e−λ ns(1−ρ)t. (42)

This way it is shown that the idleness increase or the usage decrease of the Us
responds sensitively to the wait time reduction W and also to the behavior change
of the response time function (TR); this time rapidly decreases with the increase
of the idleness. To demonstrate that these are exponential times, it is necessary to
apply the Laplace Transform to fW (t) e fTR(t). It is shown that FW (s) = L[λe−λt],
having as exponential the fW (t). The same procedure for the response time, that
is FTR(s) = L[µe−µt], having fTR as exponential, too.

This way, it can be generalized for queuing system with assistance through
Us, the representation M/G/ns, where the M represents the Poisson’s entry
distribution, G a general distribution for the service time TS and ns the number
of units Us, that represent the service servers. Therefore, it is possible to admit
for this general system, that the entry distribution is equal to the exit distribution;
therefore, TECSUs = TEESE. It can be observed that for the variable distribution
TECSUs the Equations (31) and (35) explain this distribution.

It is worth to emphasize that there are particular difficulties in adopting
the same distribution TECSUs throughout the entire day. These difficulties are
inherent to the abrupt variations that occur in the demand – higher search of the
Us at rush hours – periods with larger traffic volumes. This way, it is possible
to partition the day in periods of time. For example, the TECSUs1 of smaller
value and constant for the period ∆t1 = ndP1; the TECSUs2 of greater value and
constant for period ∆t2 = ndP2. Being nd the number of days in ∆t = ∆t1 + ∆t2
and P1 two periods of the day defined as the first shift from 6:00H to 14:00H and
the second shift from 14:00H to 22:00H. While the second period P2 refers to the
third shift from 22:00H to 6:00H. Therefore, ∆t1 = 2∆t2 e P1 = 2P2. In this sense,
there is the necessity to guarantee a homoscedasticity of the request rates during
the study period, in such a way that guarantees the Poisson process.

8 Methodology for estimating of the request rates of the Us

– λ1 and λ2

Consider that the request rate λ1s is constant in ∆t1 and λ2s is constant in
∆t2. Suppose that in the first period ∆t1 all the consecutive P1s are formed and
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later in the second period ∆t2, all the consecutive P2s are also formed. The request
rates λ1 and λ2 of the Us in the independent process and identically distributed over
∆t1 and ∆t2, respectively and, admitting that TECSUS , TECSUs1 and TECSUs2
are exponentials.
As the variable K represents the number of emergency entries using as means of
transport the Us, and making ` the request probability of this Us being in ∆t1, the
expected values for the variables TECSUs, TECSUs1 and TECSUs2 are:

E(TECSUs) =
∆t

K
, E(TECSUs1) =

∆t1
`K

and E(TECSUs2) =
∆t2

(1− `)K
. (43)

Having considered ∆t1 =
2

3
∆t and ∆t2 =

1

3
∆t, that is, in K hospitalizations with

service units, it is seen that `K hospitalizations are at day and (1 − `)K at night.
Thus, making the proper substitutions in the previous equations:

E(TECSUs1) =
2

3`
E(TECSUs) and E(TECSUs2) =

1

3(1− `)
E(TECSUs). (44)

Observe that E(TECSUs) =
100

ψµhp
and V (TECSUs) =

10000

(ψµhp)2
. Therefore, it

is possible to put E(TECSUs1) and E(TECSUs2) in function of
100

ψµhp
. What

happens is:

E(TECSUs1) =
2

3`

100

ψµhp
and E(TECSUs2) =

1

3(1− `)
100

ψµhp
. (45)

After the expressions of the expected values of the variables TECSUs1 and
TECSUs2 we come to the result of the variances and with that the distributions’
characteristics:

V (TECSUs1) =
40000

(3`ψµhp)2
and V (TECSUs2) =

10000

[3(1− `)ψµhp]2
. (46)

The variables TECSUs1 and TECSUs2 have exponential distributions of
parameters λ1 and λ2. In all explaining equations of the variables TECSUs1 and
TECSUs2 it is necessary to estimate the value of the proportion `. The methodology
for this estimation is similar to the one described for the variable ψ. Therefore the
estimated values of the average rates for the attendances in ∆t1 and ∆t2 are:

λ1 =
3`ψµhp

200
and λ2 =

3(1− `)ψµhp
100

. (47)

9 Dimensioning of the Us to efficiently help the users of an
assistance zone ZA

In Cordeiro (2012), it is demonstrated that for each station of an service unit
(Us) that belongs to an assistance zone we must use the queuing system structured
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in the form of M/G/ns (∞, First in First out –FIFO) with entries (λs) given by
the Equations (47):

λ∗1 =
3`ψµhp(1− lost1)

20000
and λ∗2 =

3(1− `)ψµhp(1− lost2)

10000
.

The service time – Equation (36) given by TS = TP + 2TV + TA + TD.
All those times are estimated from a function adjusted to the observed values and
E(TV ) and V (TV ) are determined by the equation – E(D) = 0, 50

√
A and V (D) =

A

36
. Depending on the layout of the ZA, V (D) = 0, 108

A

N
(N, number of sub-zones

of the ZA). More details consult (CORDEIRO, 2015).
WD, WM and W are the average wait time in the queue of an assistance

request of an injured individual using Us, considering the queuing models M/D/ns,
M/M/ns and M/G/ns, respectively. Owen (1971) while studying the average wait
time in queue, in the M/Em/ns model through theoretical results obtained with
simulation, concluded that it is possible to acquire an adequate approximation for
this W , from the interpolation between WM and WD, as long as the average wait
time in queue is small (W ≈ 0).

This way, it is possible to consider for the queuing system the model M/Em/ns
adjusted to the general model M/G/ns and, as a consequence of that, obtain the
W interpolating between WM , WD by the means of:

W = WD + c2(WM −WD) and c =
σTS
E(TS)

. (48)

Remembering that TS ∼ β(a, b), then c =
1

a

√
ab

a+ b+ 1
. The probability density

function of the Erlang of order m with request rate (call rate) of Us constant λ is:

f(x) =
λmxm−1e−λx

(m− 1)!
0 ≤ x <∞. (49)

The expected value of X is given by:E(X) =
m

λ
and the variance, by: V (X) =

m

λ2
.

For m = 1, we have the exponential distribution and a Poisson arrival process. As m
increases, the distribution’s relative dispersion decreases, reaching the deterministic
situation (constant intervals between requests) when m → ∞. As m = 1, 2, . . . ns,
then what shall be the probability of all ns being occupied – a Us request to enter
the queue or the probability of the number of injured users being greater or equal
to ns? It is used, in this case, the Erlang’s delay formula, where P (ns, a) is equal to

this probability with a =
λ

µ
, that represents the number of Us requests per service

time. Based on the usage factor (utilization factor) ρ =
λ

µns
and on the idleness

factor (1− ρ), we have Erlang’s delay formula given by the equation:

P (ns, a) =
ans

[(ns − 1)!(ns − a)]
∑(ns−1)
m=0

am

m!
+ ans

0 < a < ns. (50)
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For the calculation of the average wait time in queue WM for the model M/M/ns
we need to divide the P (ns, a) by the difference between the attendance total and
the average request rate of the Us:

WM =
P (ns, a)

(µns − λ)
, when a < ns. (51)

To express the average wait time in queue WD for the model M/D/ns, we use the
Molina’s approximated formula (CORDEIRO, 2012), if ns ≥ 1:

WD =
P (ns, a)

2(µns − λ)
, when ns = 1. (52)

WD =
P (ns, a)

(µns − λ)

ns
ns + 1

1−
(
a

ns

)ns+1

1−
(
a

ns

)ns
, when ns > 1. (53)

The term P (ns, a) that represents the probability of all ns being occupied is found
in the Erlang distribution’s table. The purpose of illustration – for the case study
addressed – the “Hospital da Restauração” – HR – located in the Agamenon
Magalhães avenue (Recife), assists all emergency injured. The number of beds
nL is equal to 535, data from (IBGE, 2005). For the city of Recife, we have the

following information: a) Average estimated time in hospital: T̂MH = 8, 98 days;
b) Average estimated departure rate from the hospital µ̂ = 0, 0006092953; c) The
estimated probability of an individual suffering an accident (1 − p̂) = 0, 00544; d)

Average estimated proportion of entries destined strictly to emergency ψ̂ = 0, 4851.
The estimated request probability of Us (in ∆t2 – night period) is (1− ˆ̀) = 0, 1934

and in ∆t1 (day period) is ˆ̀= 0, 8066. This hospital is located in a ZA located in
the Politic Administrative Center Region – RPA1.

This RPA presents a population of 77.607 inhabitants (IBGE, 2005),
distributed through an area of 1.606 ha (16, 06 Km2) and 22.579 residences, with

population density
48, 63 hab

ha
, equivalent to

4.832 hab

Km2
. As all the inhabitants are

part of the SUS, when injured they must use as emergency the HR. Furthermore,
it is admitted that all the Us are destined exclusively to emergencies. For an
assistance of good quality, that is, a good service provided by the pre-hospital
mobile care system, it is considered for the Maximum Response Time (TMR):

T̂MR = 7 min (approximately 50% more than the established for the city of New
York). Furthermore, because it is a hospital located in a perimeter of a great flux
of vehicles, it is considered an estimated speed of v̂ = 35 Km/h and the estimated
probability of finding an available bed is α = 0, 975, that is, from the normal
distribution table, the function Φ−1(α) = 1, 96. Reporting the Equation (11), for
the calculation of the user population h with α < 1, we have h = 91.047users.
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Considering the constant population density d =
4.832 hab

Km2
, it happens that

the coverage area of this hospital is estimated to Â =
91.593

4.832
Km2 = 18, 85 Km2. So

we have to define a rule to make the knowledge of these variables tangible via their
estimations, because they are important for the acquisition of the service time (TS)
and of the response time (TR). Consider that these variables are evenly distributed
over the 24 hour period (BURNS et al., 1985), inside the following variation intervals
in minutes: TP ∼ U(0, 4), TA ∼ U(0, 8) and TD ∼ U(0, 4). So, E(TP ) = 2 min,
E(TA) = 4 min and E(TD) = 2 min. The variances are: V (TP ) = 1, 33 min2,
V (TA) = 5, 33 min2 and V (TD) = 1, 33 min2. For the characterization of the
assistance zone, consider that ZA has geometrical shape different from the square
with spin of ∠45 degrees in relation to the horizontal axis. Thus, to analyze the
compatibility of ZA, it is necessary to verify if the equations below demonstrated
in (CORDEIRO, 2012) are satisfied, that is:

A ≤ [TMR− E(TP )]2
v2

1410
= 21, 72Km2.

As the coverage area is estimated for 18, 85 Km2, the equation is satisfied, because
its result is of 21, 72 Km2; superior to the 18, 85 Km2 – which completely
satisfies the zone ZA. The following stages refer to the sensitivity analysis for
the quantification or dimensioning of the number of Us(ns), corresponding to the
equations (50), (51), (52) and (53).

1) The values of the average request rates for assistance in ∆t1 (day) and ∆t2
(night) are:

λ1 =
3 x 0, 8066 x 48, 51% x

0, 0006092953

60 x 24
x 91.047 x 0, 99456

200
= 0, 0224

calls

min
.

λ2 =
3 x 0, 1934 x 48, 51% x

0, 0006092953

60 x 24
x 91.047 x 0, 99456

100
= 0, 0108

calls

min
.

2) Consider that the RPA1 is divided in a single assistance zone ZA, that is N = 1.
Therefore, the values referring to the metrical D are given by the equations below:

E(D) =

√
A

4N

√
π

2
= 2, 713 Km and V (D) =

(
0, 108

A

N

)
= 2, 036 Km2.

3) The travel time TV considered constant in every way is calculated in function of
E(D), for a constant speed of v = 35 Km/h:

E(TV ) = 60
E(D)

v
= 4, 65 mins and V (TV ) = 602V (D)

v2
= 5, 98 mins2.

4) After determining the travel time and the estimation for the times TP , TA,
and TD, we find the expected value of the service time E(TS) = 17, 30 mins and
V (TS) = 31, 91 mins2.
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5) The calculation of the dispersion coefficient c = 0, 326 is used for the
determination of the interpolation of W . 6) After the calculation of the service
time E(TS) it is necessary to calculate the average assistance rate µ. Thus with
the probability P (ns, a), ns, λ1, λ2 and µ we determine the values of WM , WD and,
afterwards W :

µ =
1

E(TS)
= 0, 0578

calls

min
.

7) For the dimensioning of the number of service units (ns), we need to apply the
Equation (50) (P (ns, a)), Equation (51) (WM ), Equation (52) (WD), for ns = 1 and
Equation (53) (WD), para ns > 1. The values of a1 = 0, 387 and a2 = 0, 187, that
are used as entry in Erlang’s table, for the calculation of P (ns, a), with ns = 1, 2 . . .
until the convergence of W ≈ 0 (SHAPIRO, 2001) and (KMENTA, 1990). Then for
the day and night periods the minimum departure values for ns is a Us. Observe
the calculations below:

1) Day period

For ns = 1,

P (1, 0, 387) = 0, 387, WM = 10, 93 min, WD = 5, 466 min and
W = 6, 047 min.

For ns = 2,

P (2, 0, 387) = 0, 0627, WM = 0, 6727 min, WD = 0, 4625 min and
W = 0, 4848 min.

For ns = 3,

P (3, 0, 387) = 7, 1652 × 10−3, WM = 0, 0475 min, WD =
0, 0356 min and W =≈ 0.

2) Night period

For ns = 1,

P (1, 0, 187) = 0, 187, WM = 3, 98 min, WD = 1, 99 min and
W = 2, 20 min.

For ns = 2,

P (2, 0, 187) = 0, 0158, WM = 0, 151 min, WD = 0, 101 min and
W = 0, 106 min.

For ns = 3,

P (3, 0, 187) = 9, 5 × 10−4, WM = 5, 4 × 10−3 min, WD = 7, 16 ×
10−4 min and W ≈ 0.

Conclusions

a) The effective need of service units for the day period is of ns = 3. But,
with ns = 2 – reduction of 33, 33% it is necessary to neglect the travel time
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(E(TV ) = 4, 65 min) in a percentage of

(
29, 08 sec

60× 4, 65 sec

)
= 10, 42%. This

negligence causes a risk to the injured in a way, for not assisting him/her in
the critical time – time to save the life;

b) In the night period the need is also of ns = 3. In case of choosing 2
service units, the travel time must be neglected at about 2,27%, but with
more ease because of a possible increase in the commercial speed of the
Us. Thus, adopting the variance interval as the average wait time in queue
W = 29, 08 seconds would augment the E(TV ) to about 10,42%. So for
a user population of the hospital HR with 91.047 users, 3 service units are
satisfactory for the day period and 3 service units are satisfactory for the night
period considering W ≈ 0;

c) Observe that in the day period, considering two (ns = 2) or three (ns = 3)
service units, the probability of a request in the service station of the ZA,
that contemplates the HR, of not finding a Us is of 0, 0627 and of 0, 000716,
respectively. This way, the increase of 50% in the service units provokes a
reduction of 99% in this probability, since it is little representative. It is
emphasized that the usage factor, that measures the effectiveness of the fixed
costs of the Us, represents an efficiency indicator in relation to the costs. With
the increase of this ns this usage factor decreases at 33,33%. As the fixed costs
represents about 75% of the total cost, this consideration (ns = 3) imputes in
an increase of the total cost for the Us at about 25%;

d) For the night period there are 3 (ns = 3) service units. The probability of a
request in the service station of the ZA, that contemplates the HR, of not
finding a Us is of 0, 0158 (ns = 2) and 0, 00095 (ns = 3). All the probabilities
are very small; configuring as excellent results. It is highlighted that for the
efficiency indicator of the system, the choice of ns = 3 is much more favorable;

e) The RPA1 has a population of 77.607 inhabitants. Thus, the ZA
that contemplates the user population of HR has 91.047 users. This
way, the 13.440 remaining users can be considered in an extra area of
13.440 hab

4832 hab
Km2 = 2, 89 Km2, where a satellite station with one or two

service units would be allocated, probably in an area with high chances
of accidents, as for example the “Conde da Boa Vista” avenue where the
occurrence of people getting run over by cars has increased in a significant
way. Another option is the “Complexo Salgadinho” in the division between
the cities of Recife and Olinda. All in all, this user demand of 13.440 much
likely come from other assistance zones;

f) In case of the user population being smaller than the population of the ZA
it is necessary to relocate this assistance deficit to another close zone and
recalculate its coverage area, as well as the increase of beds directed at the
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hospital where the assistance units station is located. Then, it is necessary to
recalculate the increase of Us units that must supply these new attendances;

g) When estimating the speed v = 20Km/h, the results of the Us’s dimensioning
differ very little. For the day period, the effective necessity of service units
remains in ns = 3. But, for ns = 2 and due to the substantial increase in the
E(TV ), the risk in not assisting the injured individual in critical time due to

traffic jams is
35, 88 seg

488, 4 seg
= 7, 36%. This number in relation to the previous

result (10, 42%) is about 30% smaller. The impedance of adopting ns = 2 is
based on the high probability (0, 0685) of lacking Us, when the requests are
made.
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CORDEIRO, D. M., CORDEIRO, G. M., CUNHA, D. J. D. Otimização do Sistema
de Atendimento Pré-Hospitalar Móvel: Estudo de Caso. Rev. Bras. Biom., Lavras,
v.36, n.1, p.157-187, 2018.

RESUMO: Freidenfelds (1980) introduziu para a modelagem da demanda em diversos

sistemas de transporte, os conceitos de teoria das filas e estudou o problema de expansão

da capacidade do sistema de transporte como um processo aleatório de nascimento e

morte, mostrando que é posśıvel se adaptar o modelo estocástico de crescimento da

demanda para um modelo determińıstico. Souza (1996) aplicou esta teoria para predizer

a expansão dos sistemas de atendimento emergencial. A modelagem integrada aos

estabelecimentos hospitalares – atendimento emergencial e remoções inter-hospitalares,

apesar de ser um serviço de mercado estritamente restrito, à medida que novas soluções

vão sendo desenvolvidas, novos conhecimentos vão sendo agregados a um custo cada

vez menor (GOLDBERG, 2004). As Centrais de Regulação que contém os Postos

ou Estações de serviço representam o elemento ordenador e orientador dos Sistemas

Estaduais de Urgência e Emergência. Essas Centrais devem ser estruturadas em todos

os ńıveis, organizando a relação entre os vários serviços, qualificando o fluxo dos pacientes

no Sistema e gerando uma porta de integração aos estabelecimentos hospitalares, por

meio dos quais os pedidos de socorro são recebidos, avaliados e hierarquizados. Estas

regras devem ser seguidas por todos os serviços, sejam públicos ou privados. Pode-se

citar, a t́ıtulo de exemplo, que para os serviços emergenciais uma medida bastante usada

é a maximização da utilização da Us ou a minimização do tempo resposta (TR), entre

qualquer usuário do sistema de transporte e o estabelecimento hospitalar mais próximo.

PALAVRAS-CHAVE: População usuária; tempo de viagem; tempo resposta; tempo
máximo resposta; unidade de serviço; teoria das filas; processo de Poisson.
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