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ABSTRACT: In this paper, we consider transmuted generalized Lindley distribution,
obtained via the quadratic rank transmutation map under the Lindley distribution.
This distribution exhibits, in addition to decreasing, increasing and bathtub hazard
rates, depending on its parameters, also unimodal hazard rate shape. A comprehensive
mathematical treatment of this distribution is provided. Expressions for the moment
generating function, moments, order statistics, residual life and reversed failure rate
function are derived. The model parameters are estimated by the maximum likelihood
method. A simulation study is performed to verify the behavior of the estimation
procedure in terms of mean square errors and coverage probability. Global and local
influence diagnostic procedures are provided. We then analyse a real data set on
time-up-to-cure of patients treated with a triazole antifungal drug in an intensive care
unit in Brazil.
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1 Introduction

In many applied sciences such as medicine, engineering and finance, amongst
others, modeling and analyzing lifetime data is crucial. Several lifetime distributions
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have been used to model such kinds of data. For instance, the exponential, Weibull,
gamma, Rayleigh distributions and their generalizations (GUPTA; KUNDU, 1999).
Each distribution has its own characteristics due specifically to the shape of the
failure rate function, which may be only monotonically decreasing or increasing or
constant in its behavior, as well as nonmonotone, being bathtub shaped or even
unimodal.

Here we consider a real data on time-up-to-cure of patients treated with a
triazole antifungal drug in an intensive care unit. The fluconazole is a triazole
antifungal drug used in the treatment and prevention of superficial and systemic
fungal infections. This antifungal is used as a empirical anticandidal therapy in
patients in Intensive Care Unit (ICU) once at least 1% to 2% of all ICU patients
develop invasive cadidiasis at some point during their stay. The mortality rate
attributable to candidemia and invasive infection with Candida specie at other
normally sterille sites exceed 30% to 40%, and invasive candidiasis is associated
with increased length of ICU stay and health care costs (SCHUSTER et al., 2008).

Our data set consists of time-up-to-cure of 54 patients treated in 2010 with
this drug in an ICU at University Hospital, in Maringá city, Paraná State, Brazil.
All patients were treated for a period of 1 to 39 days.

In order to verify the possible shape for the hazard function Figures 1, left
panel, shows the TTT plots. Interested readers can refer to Barlow and Campo
(1975) for more information on TTT plotting. Overall, if the TTT plot is concave
it indicates increasing hazard, which is our case. Furthermore, the boxplot in Figure
1 right panel, shows the distribution of the treatment times (times-up-to-cure).
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Figure 1 - Left panel: TTTPlot of times; Right panel: boxplot of treatment times.

The quality of the procedures used in a statistical analysis depends heavily
on the assumed probability model or distributions. Because of this, considerable
effort has been expended in the development of large classes of standard probability
distributions along with relevant statistical methodologies, since there still remain
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many important problems where the real data does not follow any of the classical
or standard lifetime probability distributions.

In this paper, we consider a new lifetime distribution by transmuting
and compounding the generalized Lindley distribution, hereafter Transmuted
Generalized Lindley (TGL) distribution. Briefly, it is the functional composition
of a cumulative distribution function on a distribution with the inverse cumulative
distribution (quantile) function of a non-Gaussian distribution (SHAW; BUCKLEY,
2007). In this case, it incorporates a new third parameter (in our case λ),
which introduces a skewness while preserving the moments of the distribution
base (SHAW; BUCKLEY, 2007; GRANZOTTO; LOUZADA, 2015; GRANZOTTO;
LOUZADA; BALAKRISHNAN, 2017).

The paper is organized as follows. A background of the Lindley and its
generalization are presented in Section 2 beyond the genesis of the transmutation
map. The derivation of the transmuted generalized Lindley distribution is presented
in Section 3. The important properties such as moments, moment generating
function, quantiles, residual life, etc, for the transmuted Lindley distribution
are presented in Section 4. In Sections 5 and 6 we presented the minimum,
maximum and median order statistics, and the maximum likelihood estimates and
the asymptotic confidence intervals of the unknown parameters, respectively. A
simulation study performed to verify the behavior of the estimation procedure in
terms of mean square errors and coverage probability is presented in Section 7. In
Section 8 the new distribution is illustrated in a real data set on time-up-to-cure
of patients treated with a triazole antifungal drug in an intensive care unit at the
University Hospital, in Maringá city, Paraná State, Brazil. Further in this section,
global and local influence diagnostic procedures are provided. Final remarks are
presented in Section 8.1.

2 Background

The generalization of some well-known distributions has been considered by
various authors, which also studied the various of their structural properties. Only
citing some: the transmuted generalized extreme value distribution was considered
by Aryal and Tsokos (2009). Aryal and Tsokos (2009) considered the transmuted
Weibull distribution. Elbatal and Aryal (2013) proposed transmuted log-logistic
distribution. Khan and King (2013) considered the transmuted modified Weibull
distribution. Elbatal and Aryal (2013) considered the transmuted additive Weibull
distribution that extends the additive Weibull distribution. Elbatal; Diab and Alim
(2013)considered the transmuted modified inverse Weibull distribution. Merovci
and Elbatal (2014) considered the transmuted generalized Linear Exponential
Distribution. Merovci and Elbatal (2014) considered transmuted Lindley geometric
distribution. Tian; Tian and Zhu (2013) considered the transmuted linear
exponential distribution. Granzotto and Louzada (2015) considered a new lifetime
distribution by using a quadratic rank transmutation map in order to add a
new parameter to the log-logistic distribution. Lucena; Silva and Cordeiro
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(2015) considered the transmuted generalized gamma distribution. Nofal et al.
(2016) considered the Kumaraswamy transmuted exponentiated additive Weibull
Distribution. Louzada and Granzotto (2016)considered the transmuted log-logistic
regression model.

2.1 Lindley distribution

The Lindley distribution, in spite of little attention in the statistical literature,
is important in the context of stress-strength reliability modeling. Besides, some
researchers have proposed new classes of distributions based on modifications of
the Lindley distribution, including also their properties. Lindley (1958) used a
mixture of exponential and length biased exponential distributions to illustrate the
different between fiducial and posterior dstributions. This mixture is called the
Lindley distribution and the cumulative distribution function (c.d.f.) is given by

FL(x, θ) = 1− (1 +
θx

θ + 1
)e−θx, x > 0, θ > 0, (1)

and the corresponding probability density function (p.d.f.) is given by

fL(x, θ) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0, (2)

where θ is scale parameter. Ghitany; Atieh and Nadarajah (2008 argue that
the Lindley distribution could be a better lifetime model than the exponential
distribution through a numerical example. In addition, they show that the
hazard function of the Lindley distribution does not exhibit a constant hazard
rate, indicating the flexibility of the Lindley distribution over the exponential
distribution.

2.2 Generalized Lindley distribution - GL

Nadarajah and co-authors (NADARAJAH; BAKOUCH; TAHMASBI, 2011)
proposed a new distribution, called Generalized Lindley (GL) distribution, for
modeling lifetime data. As the authors showed in their paper, the GL distribution
has better hazard rate properties than the gamma, lognormal and the Weibull
distributions.

Let X be a nonnegative random variable denoting the lifetime of an individual
in some population. The random variable X is said to be generalized Lindley (GL)
distributed with parameters θ and α if its cumulative density function (c.d.f.) is
given by

FGL(x, θ, α) =

[
1− (1 +

θx

θ + 1
)e−θx

]α
, (3)
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where θ > 0 and α > 0. The corresponding probability density function (p.d.f.)
and the hazard (failure) rate function are given, respectively, by

fGL(x, θ, α) =
αθ2

θ + 1
(1 + x)e−θx

[
1− (1 +

θx

θ + 1
)e−θx

]α−1
; x > 0, θ > 0. (4)

and

hGL(x, θ, α) =
αθ2(1 + x)e−θx

[
1− (1 + θx

θ+1 )e−θx
]α−1

(θ + 1)
{

1−
[
1− (1 + θx

θ+1 )e−θx
]α} . (5)

Note that equation (4) has two parameters, θ and α, just like the gamma,
lognormal, Weibull and exponentiated exponential distributions. Note also that
equation (5) has the attractive feature of allowing for monotonically decreasing,
monotonically increasing and bathtub shaped hazard rate functions though not
allowing for constant hazard rate functions.

2.3 Transmutation map

In this subsection we demonstrate transmuted probability distribution. Let
F1 and F2 be the cumulative distribution functions, of two distributions with a
common sample space. The general rank transmutation as given in Shaw e Buckley
(2007) is defined as

GR12(u) = F2(F−11 (u)) and GR21(u) = F1(F−12 (u)).

Note that the inverse cumulative distribution function also known as quantile
function is defined as

F−1(y) = inf
x∈R
{F (x) ≥ y} for y ∈ [0, 1] .

The functions GR12(u) and GR21(u) both map the unit interval I = [0, 1]
into itself, and under suitable assumptions are mutual inverses and they satisfy
GRij(0) = 0 and GRij(0) = 1. A Quadratic Rank Transmutation Map (QRTM) is
defined as

GR12(u) = u+ λu(1− u), |λ| ≤ 1, (6)

from which it follows that the cdf’s satisfy the relationship

F2(x) = (1 + λ)F1(x)− λF1(x)2, (7)

which on differentiation yields,

f2(x) = f1(x) [(1 + λ)− 2λF1(x)] , (8)

where f1(x) and f2(x) are the corresponding pdfs associated with cdf F1(x)
and F2(x) respectively. An extensive information about the quadratic rank
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transmutation map is given in Shaw and Buckley (2007). Observe that at λ = 0
we have the distribution of the base random variable. The following Lemma proved
that the function f2(x) in given (8) is a probability density function.

Lemma 2.1. f2(x) given in (8) is a well defined probability density function.
Proof. Rewriting f2(x) as f2(x) = f1(x) [(1− λ(2F1(x)− 1] we observe that f2(x)
is nonnegative. We need to show that the integration over the support of the random
variable is equal one. Consider the case when the support of f1(x) is (−∞,∞). In
this case we have∫ ∞

−∞
f2(x)dx =

∫ ∞
−∞

f1(x) [(1 + λ)− 2λF1(x)] dx

= (1 + λ)

∫ ∞
−∞

f1(x)dx− λ
∫ ∞
−∞

2f1(x)F1(x)dx

= (1 + λ)− λ
= 1

Similarly, other cases where the support of the random variable is a part of real line
follows. Hence f2(x) is a well defined probability density function. We call f2(x) the
transmuted probability density of a random variable with base density f1(x). Also
note that when λ = 0 then f2(x) = f1(x). This proves the required result. �

3 The transmuted generalized Lindley distribution - TGL

In this Section we present the derivation of the transmuted generalized
Lindley distribution, presenting its cumulative density function, probability density
function, reliability function and cumulative hazard function.

Proposition 3.1. Let X be a nonnegative random variable denoting the lifetime of
an individual in some population. The random variable X is said to be transmuted
generalized Lindley (TGL) with parameters θ, α and λ if its cumulative density
function (c.d.f.) is given by

FTGL(x, θ, α, λ) = G(x) [(1 + λ)− λG(x)]

=

[
1− (1 +

θx

θ + 1
)e−θx

]α
×
{

(1 + λ)− λ
[
1− (1 +

θx

θ + 1
)e−θx

]α}
, (9)

and the corresponding probability density function (p.d.f.) is given by

fTGL(x, θ, α, λ) =
αθ

θ + 1
(1 + x)e−θx

[
1−

(
1 +

θx

θ + 1

)
e−θx

]α−1
×
[
1 + λ− 2λ

[
1−

(
1 +

θx

θ + 1

)
e−θx

]α]
, (10)
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where θ, α > 0 and λ ∈ (−1, 1).

Proof. The proof is given directly by using the method presented in Section
2.3. �

It is observed that the transmuted generalized Lindley distribution is an
extended model to analyse data from complex situations and it generalizes some
of the widely used distributions in reliability analysis. For instance when α = 1 it
reduces to transmuted Lindley as discussed in Merovci and Elbatal (2014). The
generalized Lindley distribution is clearly a special case for λ = 0 (NADARAJAH;
BAKOUCH; TAHMASBI, 2011). When λ = 0 and α = 1 then the resulting
distribution is an Lindley distribution, see for example (GHITANY; ATIEH;
NADARAJAH, 2008)).

The reliability function of the TGL model is denoted by RTGL(t) and is defined
as

RTGL(t) = 1− FTGL(t)

= 1−
[
1− (1 +

θt

θ + 1
)e−θt

]α{
(1 + λ)− λ

[
1− (1 +

θt

θ + 1
)e−θt

]α}
.(11)

For different parameters values the estimated curves can bee seen in Figures 2,
upper panels. One of the characteristic in reliability analysis is the hazard rate
function defined by

hTGL(t) =
fTGL(t)

1− FTGL(t)
. (12)

It is important to note that the units for hTGL(t) is the probability of failure per
unit of time, distance or cycles. These failure rates are defined with different choices
of parameters, see Figures 2, lower panels.

The cumulative hazard function of the model is defined as

HTLG(t) = − ln

∣∣∣∣[1− (1 +
θt

θ + 1
)e−θt

]α{
(1 + λ)− λ

[
1− (1 +

θt

θ + 1
)e−θt

]α}∣∣∣∣ .
(13)

It is important to note that the units for HTLG(t) is the cumulative probability
of failure per unit of time, distance or cycles. For all choice of parameters the
distribution has the decreasing patterns of cumulative instantaneous failure rates.

4 Statistical properties

This section is devoted to the study of the statistical properties of the proposed
TGL distribution.
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Figure 2 - Upper panels: Survival curves; Lower panels: Hazard curves.

4.1 Quantiles and random number generation

The quantile xq of the transmuted generalized Lindley TGL(α, θ, λ, x) is
obtained from the following equation

F (xq) =

[
1− (1 +

θxq
θ + 1

)e−θxq
]α{

(1 + λ)− λ
[
1− (1 +

θxq
θ + 1

)e−θxq
]α}

= q

setting φ =
[
1− (1 +

θxq
θ+1 )e−θxq

]α
then we have

φ [(1 + λ)− λφ] = q.

By solving the above equation with respect to φ we get

φ =
(1 + λ) +

√
(1 + λ)2 − 4λq

2λ
.
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Hence we can obtain the quantile xq of the transmuted generalized Lindley as follows

(1 +
θxq
θ + 1

)e−θxq = 1−

{
(1 + λ) +

√
(1 + λ)2 − 4λq

2λ

} 1
α

. (14)

The above equation has no closed form solution in xq, so we have to use a numerical
technique to get the quantiles. In particular, put q = 0.5 in equation (14) one gets
the median of TGL(α, θ, λ, x).

Thus, random number generation as x of the TGL(α, θ, λ, x) is defined by the
following relation[

1− (1 +
θx

θ + 1
)e−θx

]α{
(1 + λ)− λ

[
1− (1 +

θx

θ + 1
)e−θx

]α}
= u,

where u ∼ U(0, 1). This yields,

(1 +
θx

θ + 1
)e−θx = 1−

{
(1 + λ) +

√
(1 + λ)2 − 4λu

2λ

} 1
α

. (15)

Equation (8) above does not have a closed form solution so we generate u as uniform
random variables from U(0, 1) and solving it for x in order to generate random
numbers from the TGL distribution.

4.2 Moments

In this subsection we discuss the rth moment for TGL distribution. Moments
are necessary and important in any statistical analysis, especially in applications.
It can be used to study the most important features and characteristics of a
distribution (e.g., tendency, dispersion, skewness and kurtosis).

Theorem 4.1. If X has TGL(α, θ, λ, x) then the rth moment of X is given by the
following

µ
′

r(x) =

 αθ2

θ + 1

∞∑
j=0

j∑
i=0

(−1)j
(
α−1
j

)(
j
i

)( θ

θ + 1

)i
(16)

[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)] [ Γ(r + i+ 1)

(θ(j + 1))
r+i+1

(
1 +

r + i+ 1

θ(j + 1)

)]}
.

Proof. Let X be a random variable with density function (10). The rth ordinary
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moment of the TGL distribution is given by

µ
′

r(x) = E(Xr) =

∫ ∞
0

xrf(x)dx

=
(1 + λ)αθ2

θ + 1

∫ ∞
0

xr(1 + x)e−θx
[
1− (1 +

θx

θ + 1
)e−θx

]α−1
dx

−2λαθ2

θ + 1

∫ ∞
0

xr(1 + x)e−θx
[
1− (1 +

θx

θ + 1
)e−θx

]2α−1
dx. (17)

using the series expansion

(1− z)k =

∞∑
j=0

(−1)j
(
k
j

)
zj , (18)

where|z| < 1 and k > 0, equation (17) can be demonstrated by

µ
′

r(x) =
θ2(1 + λ)

θ + 1

∞∑
j=0

(−1)j
(
α−1
j

) ∫ ∞
0

xr(1 + x)(1 +
θx

θ + 1
)je−θ(j+1)xdx

−2λαθ2

θ + 1

∞∑
i=0

(−1)i
(
2α−1
i

) ∫ ∞
0

xr(1 + x)(1 +
θx

θ + 1
)je−θ(j+1)xdx (19)

also applying the binomial expression for (1 + θx
θ+1 )j where

(1 +
θx

θ + 1
)j =

j∑
i=0

(
j
i

)( θ

θ + 1

)i
xi, (20)
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substituting from (20) into (19) we obtain

µ
′

r(x) =

αθ2(1 + λ)

θ + 1

∞∑
j=0

j∑
i=0

(−1)j
(
α−1
j

)(
j
i

)( θ

θ + 1

)i

×
∫ ∞
0

xr+ie−θ(j+1)xdx+

∫ ∞
0

xr+i+1e−θ(j+1)xdx

}

−

2λαθ2

θ + 1

∞∑
j=0

j∑
i=0

(−1)j
(
2α−1
j

)(
j
i

)( θ

θ + 1

)i

×
∫ ∞
0

xr+ie−θ(j+1)xdx+

∫ ∞
0

xr+i+1e−θ(j+1)xdx

}

=

 αθ2

θ + 1

∞∑
j=0

j∑
i=0

(−1)j
(
α−1
j

)(
j
i

)( θ

θ + 1

)i
[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)] [ Γ(r + i+ 1)

(θ(j + 1))
r+i+1

(
1 +

r + i+ 1

θ(j + 1)

)]}
.

Which completes the proof. �

We notice that if we put λ = 0, we get the rth moment of generalized Lindley
(NADARAJAH; BAKOUCH; TAHMASBI, 2011). Based on the first four moments
of the TGL distribution, the measures of skewness A(Φ) and kurtosis k(Φ) of the
TGL distribution can obtained as

A(Φ) =
µ3(θ)− 3µ1(θ)µ2(θ) + 2µ3

1(θ)

[µ2(θ)− µ2
1(θ)]

3
2

,

and

k(Φ) =
µ4(θ)− 4µ1(θ)µ3(θ) + 6µ2

1(θ)µ2(θ)− 3µ4
1(θ)

[µ2(θ)− µ2
1(θ)]

2 .

The moment generating function for the TGL model is derived as Theorem
4.2 shows.

Theorem 4.2. If X has TGL distribution, then the moment generating function
MX(t) has the following form

MX(t) =

 αθ2

θ + 1

∞∑
j=0

j∑
i=0

(−1)j
(
α−1
j

)(
j
i

)( θ

θ + 1

)i
(21)

[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)] [ Γ(i+ 1)

(θ(j + 1)− t)i+1

(
1 +

i+ 1

(θ(j + 1)− t)

)]}
.
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Proof. We start with the well known definition of the moment generating function
given by

MX(t) = E(etx) =

∫ ∞
0

etxf(x)dx

=
(1 + λ)αθ2

θ + 1

∫ ∞
0

(1 + x)e−(θ−t)x
[
1− (1 +

θx

θ + 1
)e−θx

]α−1
dx

−2λαθ2

θ + 1

∫ ∞
0

(1 + x)e−(θ−t)x
[
1− (1 +

θx

θ + 1
)e−θx

]2α−1
dx (22)

using (18) and (20) into (22) we obtain

MX(t) =

 αθ2

θ + 1

∞∑
j=0

j∑
i=0

(−1)j
(
α−1
j

)(
j
i

)( θ

θ + 1

)i
(23)

[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)] [ Γ(i+ 1)

(θ(j + 1)− t)i+1

(
1 +

i+ 1

(θ(j + 1)− t)

)]}
Which completes the proof. �

4.3 Residual life and reversed failure rate function

Given that a component survives up to time t ≥ 0, the residual life is the period
beyond t until the time of failure and defined by the conditional random variable
X − t|X > t. In reliability, it is well known that the mean residual life function
and ratio of two consecutive moments of residual life determine the distribution
uniquely (GUPTA; GUPTA, 1983).

Proposition 4.3. Let X be a nonnegative random variable distributed by a TGL
distribution. The rth-order moment of the residual life is given by

µr(t) =
αθ2(1 + λ)

(θ + 1)F (t)

r∑
k=0

∞∑
j=0

j∑
i=0

(−t)j+k
(
r
k

)(
j
i

)( θ

θ + 1

)i
×
[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)]

×

[
1

(θ(j + 1))
r+i+−k+2

Γ(r + i− k + 2, (θ(j + 1)t)) + θ(j + 1)

× Γ(r + i− k + 1, (θ(j + 1)t))] .

Proof. In order to obtain the rth-order moment of the residual life we use
the general formula

µr(t) = E((X − t)r | X > t) =
1

F (t)

∫ ∞
t

(x− t)rf(x, φ)dx, r ≥ 1.
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Then, applying the binomial expansion of (x− t)r and substituting f(x, φ) given by
(10) into the above formula gives

µr(t) =

 αθ2(1 + λ)

(θ + 1)F (t)

r∑
k=0

∞∑
j=0

j∑
i=0

(−t)j+k
(
α−1
j

)(
r
k

)(
j
i

)( θ

θ + 1

)i

×
∫ ∞
t

xr+i−ke−θ(j+1)xdx+

∫ ∞
t

xr+i−k+1e−θ(j+1)xdx

}

−

 2λαθ2

(θ + 1)F (t)

r∑
k=0

∞∑
j=0

j∑
i=0

(−t)j+k
(
2α−1
j

)(
r
k

)(
j
i

)( θ

θ + 1

)i

×
∫ ∞
t

xr+i−ke−θ(j+1)xdx+

∫ ∞
t

xr+i−k+1e−θ(j+1)xdx

}
.

Thus, the µr(t) is given by

µr(t) =
αθ2(1 + λ)

(θ + 1)F (t)

r∑
k=0

∞∑
j=0

j∑
i=0

(−t)j+k
(
r
k

)(
j
i

)( θ

θ + 1

)i
×
[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)]

×

[
1

(θ(j + 1))
r+i+−k+2

Γ(r + i− k + 2, (θ(j + 1)t)) + θ(j + 1)

× Γ(r + i− k + 1, (θ(j + 1)t))] ,

where Γ(s, t) =
∫∞
t
xs−1e−xdx is the upper incomplete gamma function. �

Also the mean residual life of the TGL distribution is given by

µ(t) = E((X − t) | X > t) =
1

F (t)

∫ ∞
t

xf(x, ϕ)dx− t

= −t+
αθ2(1 + λ)

(θ + 1)F (t)

∞∑
j=0

j∑
i=0

(−1)j
(
j
i

)( θ

θ + 1

)i
×
[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)]

×

[
1

(θ(j + 1))
i+3

Γ(i+ 3, (θ(j + 1)t)) + θ(j + 1)Γ(i+ 2, (θ(j + 1)t))

]
.

On the other hand, we analogously discuss the reversed residual life and some
of its properties. The reversed residual life can be defined as the conditional random
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variable t−X|X ≤ t which denotes the time elapsed from the failure of a component
given that its life is less than or equal to t. This random variable may also be
called the inactivity time (or time since failure). Also, in reliability, the mean
reversed residual life and ratio of two consecutive moments of reversed residual life
characterize the distribution uniquely.

Proposition 4.4. The r th-order moment of the reversed residual life is given by

mr(t) =
αθ2(1 + λ)

(θ + 1)F (t)

r∑
k=0

∞∑
j=0

j∑
i=0

(−t)j+k
(
r
k

)(
j
i

)( θ

θ + 1

)i
×
[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)]
×

[
1

(θ(j + 1))
r+i+−k+2

γ(r + i− k + 2, (θ(j + 1)t))

+θ(j + 1)γ(r + i− k + 1, (θ(j + 1)t))] ,

where γ(s, t) =
∫ t
0
xs−1e−xdx is the lower incomplete gamma function.

Proof. The expression can be obtained directly by using the well known
formula

mr(t) = E((t−X)r | X ≤ t) =
1

F (t)

∫ t

0

(t− x)rf(x, ϕ)dx, r ≥ 1,

and applying the binomial expansion of (t− x)r. �

Thus the mean of the reversed residual life of the TGL distribution is given by

m1(t) = m(t) = t−

 αθ2(1 + λ)

(θ + 1)F (t)

∞∑
j=0

j∑
i=0

(−1)j
(
j
i

)( θ

θ + 1

)i

×

[
1

(θ(j + 1))
i+3

Γ(i+ 3, (θ(j + 1)t)) + θ(j + 1)Γ(i+ 2, (θ(j + 1)t))

]
×
[
(1 + λ)

(
α−1
j

)
− 2λ

(
2α−1
j

)]}
.

Using m(t)and m2(t) we obtain the variance of the reversed residual life of the TGL
distribution , and hence the coefficient of variation of the reversed residual life of
the TGL distribution can be easily obtained.

5 Distribution of the order statistics

In fact, the order statistics have many applications in reliability and life testing.
The order statistics arise in the study of reliability of a system. Let X1, X2, . . . ,
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Xn be a simple random sample from TGL(α, θ, λ, x) with cumulative distribution
function and probability density function as in (9) and (10), respectively. Let X(1:n)

≤ X(2:n) ≤ . . . ≤ X(n:n) denote the order statistics obtained from this sample. In
reliability literature, X(i:n) denote the lifetime of an (n− i+1)− out− of− n system
which consists of n independent and identically components. Then the pdf of X(i:n)

, 1 ≤ i ≤ n is given by

fi::n(x) =
1

β(i, n− i+ 1)

[
F (x(i))

]i−1 [
1− F (x(i))

]n−i
f(x(i)). (24)

Moreover, the joint pdf of X(i:n) , X(j:n) and 1 ≤ i ≤ j ≤ n is

fi::j:n(xi, xj) = C [F (xi)]
i−1

[F (xj)− F (xi)]
j−i−1

[1− F (xj)]
n−j

f(xi)f(xj),
(25)

where

C =
n!

(i− 1)!(j − i− 1)!(n− j)!
.

Proposition 5.1. Let X(1:n) ≤ X(2:n) ≤ . . . ≤ X(n:n) be independently
identically distributed order random variables from the transmuted generalized
Lindley distribution. The first order statistics X(1) = Min(X1, X2, ..., Xn) is given
by

f1:n(x) = n
{

1− ζα(1)
[
(1 + λ)− λζα(1)

]}n−1
× αθ2

θ + 1
(1 + x(1))e

−θx(1) ζα−1(1)

{
(1 + λ)− 2λζα(1)

}
, (26)

where

ζ(i) = 1− (1 +
θx(i)

θ + 1
)e−θx(i) (27)

Proof. We start with the well known definition of the first order statistic

f1:n(x) = n
[
1− F (x(1))

]n−1
f(x(1)).

By using the results of the Proposition 3.1, the proof is given directly. �

Proposition 5.2. Let X(1:n) ≤ X(2:n) ≤ . . . ≤ X(n:n) be independently
identically distributed order random variables from the transmuted generalized
Lindley distribution. The last order statistics X(n) = Max(X1, X2, . . . , Xn) is given
by

fn:n(x) = n
{
ζα(n)

[
(1 + λ)− λζα(n)

]}n−1
× αθ2

θ + 1
(1 + x(n))e

−θx(n) ζα−1(n)

{
(1 + λ)− 2λζα(n)

}
(28)
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where ζ(i) is given by equation (27).

Proof. We start with the well known definition of the last order statistic

fn:n(x) = n
[
F (x(n),Φ)

]n−1
f(x(n)),Φ).

By using the results of the Proposition 3.1, the proof is given directly. �

Proposition 5.3. Let X(1:n) ≤ X(2:n) ≤ . . . ≤ X(n:n) be independently
identically distributed order random variables from the transmuted generalized
Lindley distribution. The median order statistics Xm+1 is given by

fm+1:n(x̃) =
(2m+ 1)!

m!m!

{
ζα(m+1)

[
(1 + λ)− λζα(m+1)

]}m
×
{

1− ζα(m+1)

[
(1 + λ)− λζα(m+1)

]}m
(29)

× αθ2

θ + 1
(1 + x(m+1))e

−θx(m+1) ζα−1(m+1)

{
(1 + λ)− 2λζα(m+1)

}
.

where ζ(i) is given by equation (27).

Proof. We start with the well known definition of the median order statistic

fm+1:n(x̃) =
(2m+ 1)!

m!m!
(F (x̃))m(1− F (x̃))mf(x̃).

By using the results of the Proposition 3.1, the proof is given directly. �

We notice that the minimum, maximum and median order statistics of three
parameters transmuted generalized Lindley distribution have different life time
distributions when its parameters are changed.

Now, by using the Propositions 5.1 and 5.2, the joint distribution of the the
ith and jth order statistics can be obtained from transmuted generalized Lindley
distribution and it is given by

fi::j:n(xi, xj) = C [F (xi)]
i−1

[F (xj)− F (xi)]
j−i−1

[1− F (xj)]
n−j

f(xi)f(xj)

= C
{
hα(i)

[
(1 + λ)− λhα(i)

]}i−1
×
{
hα(j)

[
(1 + λ)− λhα(j)

]
− hα(i)

[
(1 + λ)− λhα(i)

]}j−i−1
×
{

1− hα(j)
[
(1 + λ)− λhα(j)

]}n−j
× αθ2

θ + 1
(1 + x(i))e

−θx(i) hα−1(i)

{
(1 + λ)− 2λhα(i)

}
× αθ2

θ + 1
(1 + x(j))e

−θx(j) hα−1(j)

{
(1 + λ)− 2λhα(j)

}
. (30)
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As a special case, if i = 1 and j = n we get the joint distribution of the
minimum and maximum of order statistics

f1::n:n(xi, xj) = n(n− 1)
[
F (x(n))− F (x(1))

]n−2
f(x(1))f(x(n))

= n(n− 1)
{
hα(n)

[
(1 + λ)− λhα(n)

]
hα(1)

[
(1 + λ)− λhα(1)

]}n−2
× αθ2

θ + 1
(1 + x(1))e

−θx(1) hα−1(1)

{
(1 + λ)− 2λhα(1)

}
× αθ2

θ + 1
(1 + x(n))e

−θx(n) hα−1(n)

{
(1 + λ)− 2λhα(n)

}
. (31)

Also we can find the joint of minimum and maximum order statistics of three
parameters transmuted generalized Lindley distribution when its parameters are
changed.

6 Inference

In this section we consider the maximum likelihood estimators (MLE’s) of TGL
distribution. Let φ = (α, θ, λ)T ,in order to estimate the parameters α, θ,and λ of
transmuted generalized Lindley distribution, let X1, . . . , Xn be a random sample of
size n from TGL(x;α, θ, λ) , from equation (10) , we obtain the likelihood function
as follows

L(α, θ, λ) =

(
αθ2

θ + 1

)n n∏
i=1

{
(1 + xi)e

θxi

[
1−

(
1 +

θxi
θ + 1

)
e−θxi

]α−1
×
[
(1 + λ)− 2λ

[
1−

(
1 +

θxi
θ + 1

)
e−θxi

]α]}
, (32)

then the log likelihood function can be written as

lnL(α, θ, λ) = n lnα+ 2n ln θ − n ln(1 + θ) +
∑n

i=1
ln(1 + xi)

+(α− 1)
∑n

i=1
ln

[
1−

(
1 +

θxi
θ + 1

)
e−θxi

]
− θ

∑n

i=1
xi

+
∑n

i=1
ln

[
1 + λ− 2λ

[
1−

(
1 +

θxi
θ + 1

)
e−θxi

]α]
. (33)

Differentiating lnL(α, θ, λ) with respect to each parameter α, θ, and λ and setting
the result equals to zero, we obtain maximum likelihood estimates. The partial
derivatives of lnL(α, θ, λ) with respect to each parameter or the score function is
given by

Un(φ) = (Uα, Uθ, Uλ)
T
,
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where

Uα =
∂ lnL

∂α
=
n

α
+
∑n

i=1
ln

[
1− (1 +

θxi
θ + 1

)e−θxi
]

−2λ
∑n

i=1

ln
(

1− (1 + θxi
θ+1 )e−θxi

)(
1− (1 + θxi

θ+1 )e−θxi
)α

[
1 + λ− 2λ

(
1− (1 + θxi

θ+1 )e−θxi
)α] , (34)

Uθ =
∂ lnL

∂θ
=

2n

θ
− n

(1 + θ)
−
∑n

i=1
x

−(α− 1)
∑n

i=1

xie
−θxi

(
1

((1+θ))2
− θxi

θ+1

)
[
1− (1 + θxi

θ+1 )e−θxi
]

−
∑n

i=1

2λαxie
−θxi

(
1− (1 + θxi

θ+1 )e−θxi
)α−1 (

1
((1+θ))2

− θxi
θ+1

)
[
1 + λ− 2λ

(
1− (1 + θxi

θ+1 )e−θxi
)α] (35)

and

Uλ =
∂ lnL

∂λ
=
∑n

i=1

1− 2
(

1− (1 + θxi
θ+1 )e−θxi

)α
[
1 + λ− 2λ

(
1− (1 + θxi

θ+1 )e−θxi
)α] . (36)

The maximum likelihood estimation φ̂ = (α̂, θ̂, λ̂)T of φ = (α, θ, λ)T is obtained
by solving the non linear equations Un(φ) = 0. These equations cannot be solved
analytically but statistical software can be used to solve them numerically. For
interval estimation and hypothesis tests on the model parameters, we require the
information matrix. The 3× 3 observed information matrix is given by

In(ϕ) = −

 Iαα Iαθ Iαλ
Iθα Iθθ Iθλ
Iλα Iλθ Iλλ

 ,
where In(φ) = ∂2 lnL/∂φ∂φT . Applying the usual large sample approximation,

MLE of φ, i.e φ̂ can be treated as being approximately N3(φ, Jn(φ)−1), where
Jn(φ) = E [In(φ)]. Under conditions that are fulfilled for parameters in the interior
of the parameter space but not on the boundary, the asymptotic distribution of√
n(φ̂−φ) is N3(0, J(ϕ)−1) , where J(φ) = limn→∞n

−1In(φ) is the unit information
matrix. This asymptotic behavior remains valid if J(φ) is replaced by the average

sample information matrix evaluated at φ̂, say n−1In(φ̂) . The estimated asymptotic

multivariate normal N3(φ, In(φ̂)−1) distribution of φ̂ can be used to construct
approximate confidence intervals for the parameters and for the hazard rate and
survival functions. An 100(1−γ) asymptotic confidence interval for each parameter

φr is given byACIr = (φ̂r − z γ
2

√
Îrr, φ̂r + z γ

2

√
Îrr), where Îrr is the (r, r) diagonal
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element of In(ϕ̂)−1 for r = 1, 2, 3, and z γ
2

is the quantile 1 − γ
2 of the standard

normal distribution.

7 Simulation study

In order to study the behavior of the MLEs, this section presents the results
of a Monte Carlo experiment on finite samples. For that, we consider six different
set of parameters for n = 30, 50, 80, 100, 150 and 300, generated according to a
TGL distribution. Note that, generated for each value of the TGL distribution, we
had to solve a nonlinear equation by the Newton Raphson method. All results were
obtained from 1, 000 Monte Carlo replications and fixed θ = 1.0 and α = 3.

The results are summarized in two tables (the estimation process was made
by using the SAS software). Table 1 shows the generated and estimated parameter
values and their respectively mean square errors (MSE) over the 1, 000 MLEs, which
are observed to decay as the sample size increases. Figure 3 shows the coverage
probability of a 95% two sided confidence intervals for the model parameters for
parameter λ = −0.5,−0.2, 0.2 and 0.5, respectively.

8 Actual data application

In this section we analyse the real data set presented in the introduction
section. Firstly, we fitted three models: Lindley, GL and TGL; the fitted estimatives
are presented in Table 2. In order to compare the models, we calculated the values
of AIC (Akaike criteria) and weighed these values so that the result of this indicate
the chance that the model i is the best among the whole set of candidate models.
For the models Lindley, GL and TGL the results are, respectively, 0.2902, 0.3381
and 0.3717, providing evidence in favor of the TGL distribution.

Figure 4, left panel, shows us the empirical survival curve obtained via
Kaplan-Meier method versus the estimated TGL survival curve which we can see
the closeness of the two curves. In right panel we can see the increasing curve of
hazard, as the TTTPlot indicated initially.

Moreover, as a goodness-of-fit procedure, we performed a global and local
influence study and a residuals analysis for the TGL model by using Martingale
and deviance measures.

8.1 Global and local influence

In this section we made an analysis of global and local influence for the data
set given, using the TGL model and a residual analysis.

The first tool to assess the sensitivity analysis are measures of global
influence. Starting with the case-deletion, that we study the effect of withdrawal
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Table 1 - Estimated parameter values and their respectively mean square errors
(MSE) for different values of the λ parameter and different sample sizes

Sample Generated Estimated MSE
Size θ α λ θ α λ
30 −0.2 0.990 4.008 −0.178 0.133 0.990 0.454

−0.5 0.984 4.037 −0.441 0.115 1.031 0.455
0.2 1.015 4.090 0.155 0.159 1.033 0.458
0.5 1.004 4.047 0.491 0.169 1.001 0.441

50 −0.2 0.978 3.903 −0.162 0.111 0.837 0.444
−0.5 0.974 4.005 −0.405 0.095 0.909 0.458

0.2 1.010 3.894 0.113 0.143 0.816 0.437
0.5 1.009 4.010 0.464 0.155 0.835 0.418

80 −0.2 0.973 3.874 −0.145 0.102 0.773 0.435
−0.5 0.964 3.973 −0.383 0.086 0.907 0.462

0.2 1.003 3.847 0.150 0.133 0.681 0.434
0.5 1.005 3.941 0.453 0.155 0.703 0.412

120 −0.2 0.970 3.874 −0.134 0.097 0.732 0.417
−0.5 0.971 3.973 −0.408 0.077 0.888 0.430

0.2 1.006 3.874 0.133 0.135 0.653 0.418
0.5 1.008 3.977 0.449 0.147 0.635 0.382

300 −0.2 0.978 3.878 −0.162 0.076 0.605 0.364
−0.5 0.980 3.995 −0.431 0.054 0.754 0.342

0.2 0.994 3.848 0.166 0.109 0.482 0.363
0.5 1.017 3.995 0.435 0.130 0.510 0.332

600 −0.2 0.984 3.841 −0.199 0.062 0.517 0.320
−0.5 0.990 3.966 −0.485 0.022 0.620 0.228

0.2 0.996 3.900 0.181 0.084 0.311 0.291
0.5 1.015 3.990 0.444 0.104 0.357 0.274

of the ith element sampled. The first measure of global influence analysis is
known as generalized Cook’s distance, which is defined as the standard norm of
θi = (αi, βi, λi) and θ̂ = (α̂, β̂, λ̂) and is given by

CDi(θ) =
[
θi − θ̂

]T [−L̈(θ)
] [

θi − θ̂
]
, (37)

where L̈(θ) can be approximated by the estimated covariance and variance matrix.
Another way to measure the global influence is through the difference in likelihoods
given by

LDi(θ) = 2
{
l(θ̂)− l(θi)

}
. (38)

Figures 5 and 6 left panels show us, respectively, the Cook’s generalized
distance and likelihood distances where we could see some possible influences points:
6, 8, 16, 24, 29, 34 and 37.
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Figure 3 - Probability of coverage by considering 95% of confidence for θ = 1, α = 4
and λ = −0.5 (upper left panel), −0.2 (upper right panel), 0.2 (lower left
panel) and 0.5 (lower right panel).

Furthermore, we know that the main objective of the local influence method
is to evaluate changes in the results from the analysis when small perturbations
are incorporated in the model and/or in the data. If such perturbations provoke
disproportionate effects, it can be an indication that the model is fitted inadequately
or serious departures from the assumptions of the model may exist.

In order to analyse the local influence, here we consider the response variable
perturbation, ie, we will consider that each ti is peturbed as tim = ti+miSt , where
St is a scale factor that may be the estimated standard deviation of T and mi ∈ R.
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Table 2 - Estimatives for the parameters of the Lindley, GL and TGL models

Model Parameter Estimative
Standard Confidence Interval 95%

Error Lower Upper
Lindley θ 0.1599 0.0156 0.1579 0.1618

GL
θ 0.1729 0.0235 0.1574 0.1889
α 1.1718 0.2389 1.0232 1.3416
θ 0.1827 0.0262 0.1643 0.2002

TGL α 1.0773 0.3155 0.8362 1.2842
λ −0.2850 0.4565 −0.6280 0.0410
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Figure 4 - Left panel: Survival curves estimated by TGL model versus empirical
(by using Kaplan-Meier method); Right pane: Estimated hazard curve.

Then, the perturbed log-likelihood function becomes expressed as

lnL(α, θ, λ | t,m) = n lnα+ 2n ln θ − n ln(1 + θ) +
∑n

i=1
ln(1 + tim)

+(α− 1)
∑n

i=1
ln

[
1−

(
1 +

θtim
θ + 1

)
e−θtim

]
− θ

∑n

i=1
tim

+
∑n

i=1
ln

[
1 + λ− 2λ

[
1−

(
1 +

θtim
θ + 1

)
e−θtim

]α]
.

After analyze the results of the perturbation, we can see that the points
16, 24, 29, 34 and 37 are distincts of another observations (see Figures 5 and 6 right
panels). Furthermore, we made a residual analyse by using the Martingale-type
(39) and deviance (40) as follow:

rMi
= 1 + α log (ζi) + log {(1 + λ)− λζαi } (39)
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Figure 5 - Cooks’s distance: influence global in left panel and in right panel after
pertubation.
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Figure 6 - Likelihood distance: influence global in left panel and in right panel after
pertubation.

and

rDi = sign( ˆrMi
) [−2( ˆrMi

+ log(1− ˆrMi
))]

1/2
, (40)

where ζi = 1−
(

1 + θt
θ+1

)
eθti .

Figures 7 show us the results of this analyse in left and right panels,
respectively.
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Figure 7 - Left panel: Martingale residuals; Right panel: Deviance residuals.

To reveal the impact of the detected influential observations, the RCθj can be
calculated as

RCθj =

∣∣∣∣∣ θ̂j − θ̂j(I)θ̂j

∣∣∣∣∣× 100%, j = 1, . . . , p+ 1,

where θ̂j(I) denotes the MLE of θj after the set I of observations has been removed.
Suggested by Lee; Lu e Song (2006), the impact can bee measured by using the
total and maximum relative changes and the likelihood displacement given by

TRC =

np∑
i=1

∣∣RCθj
∣∣ , MRC = max

j

∣∣RCθj
∣∣ and LD(I)(θ) = 2{l(θ̂ − l(θ̂I)},

where TRC is the total relative changes, MRC the maximum relative changes and
LD the likelihood displacement, with np = 3 (the number of parameters) and θ̂0

denotes MLE of θ after the set I of observations has been removed. Thus, we
removed each of these points and fitted the model TGL again for each case as we
can see in Table 3.

After the influence and residual analysis, the possible influentials observations
were identified. Note that, when we removed the points I = {16, 24, 29, 34, 37} the
impact in the estimated values is high and the loss of information is low (note that,
we removed 4 different times since the 16th and 24th are the same values). Thus,
the indicated points were removed and the model TGL was fitted again as we can
see in Table 4.

Is important to note that the value of likelihood estimated was 154.2010, much
smaller compared to that estimated in the presence of influential points model
180.6748. Figure 8, left panel, shows us the empirical survival curve obtained via
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Table 3 - RC (in %) and the corresponding TRC, MRC and LD(I)

Case removed Parameter RC TRC MRC LD(I)

{6}or{8} ∗ ∗ θ 2.1984 18.2210 9.9088 7.2784
α 9.9088
λ 6.1138

{16}or{24} ∗ ∗ θ 1.9149 5.4714 2.7235 8.6506
α 0.8329
λ 2.7235

{29} θ 5.2703 17.1133 9.1149 11.3655
α 2.7281
λ 9.1149

{34} θ 7.9071 29.6336 17.2271 13.6961
α 4.4993
λ 17.2271

{37} θ 1.5592 6.1659 3.9605 8.3759
α 0.6462
λ 3.9605

{6, 8} θ 4.7477 49.0360 23.9047 15.0094
α 23.9047
λ 20.3837

{16, 24, 29, 34, 37} θ 24.3344 63.6175 25.9083 52.9481
α 13.3749
λ 25.9083

{6, 8, 16, 24, 29, 34, 37} θ 31.6887 88.8944 45.1855 68.1520
α 45.1855
λ 12.0202

∗∗ The same value of time-up-to-cure.

Table 4 - Estimatives for the parameters of the TGL model

Parameter Estimative
Standard Confidence Interval 95%

Error Lower Upper
θ 0.2272 0.0310 0.2063 0.2482
α 1.2214 0.3704 0.9529 1.4712
λ −0.3588 0.3992 −0.6557 −0.0878

Kaplan-Meier method versus the reestimated TGL survival curve and; in right panel
we can see the increasing curve of hazard.

After fit the final model, some statistics were obtained. The median time
of hospitalization of patients who are using fluconazole at ICU was estimated at
8.8458 days. The confidence interval by considering the delta method with 95% of
confidence, is given by (7.9748; 9.6033 days). The first and third estimated quantiles
are given, respectively, by 5.2616 and 13.5391 days.
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Figure 8 - Left panel: Survival curves estimated by TGL model versus empirical
(by using Kaplan-Meier method); right panel: Estimated hazard curve.

Conclusions

Several lifetime distributions have been used to model such kinds of data.
In this paper, in order to analyse the data set on time-up-to-cure of patients
treated with a triazole antifungal drug in an intensive care unit, we developed
the transmuted generalized Lindley distribution. The considered distribution
was constructed by using a quadratic rank transmutation map and taking the
generalized Lindley distribution with two parameters as the baseline distribution.
Some mathematical properties along with order statistics and estimation issues are
addressed.

A simulation study was performed to verify the behaviour of the estimation
procedure in terms of mean square errors and coverage probability. Global and local
influence diagnostic procedures were provided.
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RESUMO: Neste artigo, consideramos a distribuição de transmutada generalizada de

Lindley, obtida através do mapa de transmutação de quadrática sob a distribuição de

Lindley. Esta distribuição apresenta dependendo de seus parâmetros, tanto curvas de

risco decrescentes e crescentes, como em forma de banheira e risco unimodal. Um

tratamento matemático abrangente desta distribuição é fornecido. Expressões para a

função geradora de momentos, momentos, estat́ısticas de ordem, vida residual e função

de taxa de falha reversa são derivadas. Os parâmetros do modelo são estimados pelo

método de máxima verossimilhança. Um estudo de simulação foi realizado para verificar

o comportamento do procedimento de estimação em termos de erros quadráticos médios

e probabilidade de cobertura do intervalo. Na aplicação, apresentamos procedimentos

de diagnóstico de influência global e local. Além disso, analisamos um conjunto de dados

reais sobre o tempo de cura dos pacientes tratados com um fármaco antifúngico triazol

em uma unidade de terapia intensiva no Brasil.

PALAVRAS-CHAVE: Distribuição de Lindley; método de máxima verossimilhança;

mapas de transmutação; análise de influência.
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