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 ABSTRACT: The main objective of this simulation study was to explore the effect of shape of the 

 distribution on the generalized nominal and ordinal Mantel-Haenszel statistics used for detecting 

DIF in polytomous items. The variables manipulated were: trait (), distribution shape (normal, 

positively skewed, and platykurtic),  distribution difference between the reference and the focal 

group (equal and unequal), sample size (500/ 500 and 500/250 examinees in the reference/focal 

group), and DIF conditions (No DIF, constant and shift-high DIF patterns). The generalized ordinal 

Mantel-Haenszel statistic was calculated using integer and log-rank scores. The results show: a) a 

little impact of the  distribution shape on the performance of all the statistics, and b) the advantages 

of employing log-rank scores, especially when the items show a shift-high DIF pattern.  

 KEYWORDS: Differential item functioning; nonnormal distributions; partial credit model; log-

rank scores; polytomous items. 

1 Introduction 

The Mantel-Haenszel methods constitute one of the most popular nonparametric 

differential item functioning (DIF) detection procedures. In the case of polytomous items, 

generalizations of the MH chi-squared statistic 
2

MH  have also been used for detecting DIF: 

the generalized Mantel-Haenszel test - GMH (MANTEL and HAENSZEL, 1959; ZWICK 

et al., 1993a) and the Mantel test (MANTEL, 1963; ZWICK et al., 1993a). Fidalgo and 

Madeira (2008) have showed a unified framework for the analysis of DIF using the 

generalized Mantel-Haenszel statistic proposed by Landis at al. (1978). As is pointed out 

there, the GMH test and the Mantel test are particular cases of the generalized nominal 

Mantel-Haenszel (QGMH(1)) statistic and the generalized ordinal Mantel-Haenszel (QGMH(2)) 

statistic, respectively. In the same article they showed the results of a little simulation study 

about the effect of the choice of scores assigned to the response variables on the QGMH(2) 

statistic. They found that the use of log-rank scores instead of the usual integer scores 

increased the power of QGMH(2)  for detecting the shift-high. This topic has received little 

attention given that studies on DIF have routinely employed integer scores 
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(ANKENMANN at al., 1999; SU and WANG, 2005; WANG and SU, 2004b; ZWICK and 

THAYER, 1996). 

On the other hand, although there is a increased interest in the development of 

psychometric theories that allow work with nonnormal distributions (SAMEJIMA, 2000; 

BAZÁN et al., 2006) and research about the influence of the nonnormality over the 

parameter recovery (KIRISCI et al., 2001; REISE and YU, 1990; VAN DER OORD et al., 

2003), there is little research about the effect of the nonnormality on the DIF detection 

procedures.  

Bearing in mind the above, the main goal of the present study is to determine whether 

the capability of the QGMH(1) and QGMH(2)  statistics for DIF detection is affected by the shape 

of the  distribution and, in the case of QGMH(2),  for the choice of scores assigned to the 

ordinal variable. With this objective a test was constructed to replicate educational tests that 

contain both dichotomous and polytomous items.  

2 Generalized Mantel-Haenszel statistics 

Type Below, we briefly present the generalized Mantel-Haenszel statistics used in this 

study. The interested reader can find more comprehensive information on these statistics in 

Fidalgo (2005) and Fidalgo and Madeira (2008). Landis et al. (1978) proposed a generalized 

MH statistic for the analysis of Q: R × C contingency tables. The data structure for this 

general contingency table is shown in Table 1. 

Table 1 - Data structure in the hth stratum 

_____________________________________________________ 

 

Factor                          Response Variable Categories  

levels              1 2  j  C Total 

__________________________________________________________ 

1  nh11 nh12  nh1j  nh1C Nh1 

2  nh21 nh22  nh2j  nh2C Nh2 

        


 


   


   


   
  

i  nhi1 nhi2  nhij  nhiC Nhi 

        


 


   


   


   
  

R  nhR1 nhR2  nhRj  nhRC NhR 

      

Total             Nh·1      Nh·2        ·                         Nh·j      ·                 Nh·C            Nh 

__________________________________________________________ 

 

The standard generalized Mantel-Haenszel is defined by Landis et al. (1978) as: 
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where nh, mh , Vh and Ah are, respectively, the vector of observed frequencies, the vector 

of expected frequencies, the covariances matrix, and a matrix of linear functions defined in 

accordance with the alternative hypotheses (H1) of interest. The null hypotheses of no-

association will be tested against different H1: a) general association (both variables are 

nominal), b) mean score differences (factor is nominal and response ordinal); and c) linear 

correlation (both variables are ordinal). From Table 1, these vectors and matrices are 

defined as: 

nh = (nh11, nh21, …, nhRC)'    (CR x 1), 

)( **   hhhh N ppm
      (CR x 1), 

)}()){(1/( ''2

 
 hhphhphhh hh

NN ppDppDV
   (CR x CR), 

where ph* and  ph* are, respectively, (R × 1) and (C × 1) vectors with the marginal row 

proportions (phi = Nhi/ Nh·· ) and the marginal column proportions (phj = Nhj/ Nh·· ),  

denoting the Kronecker product multiplication, Dph* is a (C × C) diagonal matrix with 

elements of the vector ph*on its main diagonal, and Dph* is an (R × R) diagonal matrix  with 

elements of the vector ph* on its main diagonal. 

In this study we will use the generalized MH statistics employed to test the general 

association (QGMH(1) ) and the mean score difference hypotheses (QGMH(2) ). To obtain them 

we should resolve the equation 1 using different matrices Ah ( hhh RCA  ). Briefly, 

these are.  

- QGMH(1) or the Generalized Nominal MH statistic (GNMH).  Here, Rh = [IR-1, -JR-1] 

and Ch = [IC-1, -JC-1], where IR-1 is an (R-1 x R-1) identity matrix, and JR-1 is an (R-1 x 1) 

vector of ones. Thus, the dimension of Rh will be (R-1 x R). Similarly, IC-1 is an (C-1 x C-

1) identity matrix, and JC-1 is a (C-1 x 1) vector of ones. Under H0, QGMH(1) follows 

approximately a chi-squared distribution with degrees of freedom (df) = (R-1)(C-1). When 

R = C = 2, QGMH(1) is identical to the 
2

MH  statistic, except for the lack of the continuity 

correction. For the special case of 2 factor levels, QGMH(1) is identical to the generalized 

Mantel-Haenszel test (GMH) proposed by Mantel and Haenszel (1959). 

- QGMH(2) or the Generalized Ordinal MH statistic (GOMH). Here Rh is the same as 

that used in the previous case and Ch = (ch1, … ,chC) being a (1 × C) vector, where chj is an 

appropriate score reflecting the ordinal nature of the jth category of response for the hth 

stratum. Under H0, QGMH(2) has approximately a chi-squared distribution with df = (R-1).  

For the special case of 2 factor levels, QGMH(2) is identical to the extended MH test proposed 

by Mantel (1963). 

Calculation of the QGMH(2) statistic requires selecting the scores (Ch) that will be 

applied to the response variable to compute the row mean scores 

)]/([
1





 hi

C

j

hijhjhi Nncy  used for comparing the factors across strata. In the DIF 

literature, integer scores are the most common choice (ANKENMANN et al., 1999; WANG 

and SU, 2004; ZWICK and THAYER, 1996), although selection of the values of Ch admits 

different possibilities as, for example, rank scores. 
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Table 2 - Frequency tables with the responses given by focal and reference groups to a 4-

point item with DIF in the highest category 
_____________________________________________________ 

                                                          Response item categories 

Ability                            _________________________________ 

Level            Group                  1            2           3            4              

____________________________________________________ 

h=1 

  Reference 12 2 0 0 

                   Focal  11 2 0 0 

Total   25 4 0 0 

                        Log-rank     0.190 -0.629 -1.129 -2.129 

                  

h=2 

                 Reference  38  14 2  0 

                 Focal  29 12 0  0 

 Total   67 26 2 0 

                   Log-rank     0.304 -0.594 -1.428 -2.428 

h=3 

                 Reference 3 5 34 8 2 

                 Focal  37 54 13 0 

 Total   72 88 21 2 

                      Log-rank      0.607 -0.186 -1.099 -2.099 

h=4 

                   Reference 18 61 32 7 

                   Focal  18 56 50 4 

 Total   36 117 82  11 

                       Log-rank      0.854 0.297 -0.585 -1.585 

h=5 

                   Reference 5 30 80 14 

                   Focal  4 26 75 7 

 Total   9 56 155 21 

                       Log-rank      0.963 0.721 -0.159 -1.159 

h=6 

                   Reference 0 3 30 38 

                   Focal  0 7 43 31 

 Total   0 10 73 69 

                   Log-rank      1.000 0.934 0.420 -0.508 

h=7             

                  Reference 0 0 5 30 

                  Focal  0 0 5 16 

 Total   0 0 10 46 

                       Log-rank      1.000 1.000 0.821 -0.179 

_______________________________________________________ 
Note: Log-rank scores are computed using Equation 2. To avoid zero denominators in Equation 3, in stratums 
where that can occur, a value of 0.5 was added to each column marginal frequency. In the first stratum, as there 

are observed ties, the corresponding log-rank scores for breaking ties are: 0.190, -0.629, -1.629 and -1.629. 
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In the present simulation study, we will employ integer and log-rank scores. From the 

general contingency table shown in Table 1, we obtain log-rank scores using the equation: 
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(2) 

 

To avoid zero denominators in Equation 2, in stratums where that can occur, a value 

of 0.5 was added to each column marginal frequency. In the present study, log-rank scores 

were calculated in two different ways. In the first of these, ties were broken assigning to 

ties the average of the values for the corresponding log-rank scores (KOCH at al., 1985). 

This strategy results in a conservative influence on test statistic. For this reason, in the 

second way, ties were not broken. In order to show how the log-rank scores were computed, 

Table 2 shows the frequencies tables with the responses given to a 4-point item that presents 

a shift-high DIF pattern and the corresponding log-rank scores. These responses were 

simulated using the partial credit model (PCM) (MASTERS, 1982) described below. 

3 Simulation study 

3.1 Data generation 

Item parameters. An artificial test was constructed having 20 dichotomous items and 

seven polytomous items with four ordinal response categories. The item parameter values 

were selected so as to be representative of items found in applied testing setting, and were 

the same as those used by Chang et al. (1996). The generating parameters of the reference 

group are presented in the Table 3. The modelling of a mixed format test (20 dichotomous 

items and 4 polytomous items in the matching test) was intended to resemble the currently 

common practice of combining multiple-choice and constructed-response items in a single 

test administration. This type of tests have been used in other simulation studies, for 

example, see Ankenmann at al. (1999); Su and Wang (2005) and Zwick et al., 1993). 
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Table 3 - Item parameters. The last three items are the studied items (items 25, 26 and 27) 

______________________________ 

    Dichotomous item parameters 

______________________________ 

Item                a          b          c 

______________________________ 

 

1  0.741 -2.25 0.15  

2  0.861 -2.00 0.15  

3  1.162 -1.75 0.15  

4  0.638 -1.50 0.15  

5  1.000 -1.25 0.15  

6  1.000 -1.00 0.15  

7  1.162 -0.75 0.15  

8  0.638 -0.50 0.15  

9  0.741 -0.25 0.15  

10  0.861 0.00 0.15  

11  1.000 0.00 0.15  

12  0.741 0.25 0.15  

13  1.162 0.50 0.15  

14  0.638 0.75 0.15  

15  0.861 1.00 0.15  

16  0.638 1.25 0.15  

17  0.741 1.50 0.15  

18  1.162 1.75 0.15  

19  1.000 2.00 0.15  

20  0.861 2.25 0.15 

_____________________________ 

     Polytomous item parameters 

_____________________________ 

 Item               bi1           bi2            bi3 

_____________________________ 

21  -0.91 -0.93  1.29  

22  -1.34  1.72  3.40  

23  -1.76  0.09  0.19  

24  -2.20 -1.33 -0.48  

25  -0.91  0.98  0.21  

26  -2.25 -1.80  1.66  

27  -0.54 -2.11  0.74  

_____________________________ 

 

 To form DIF items, the bik parameters of the 25-, 26- and 27-items in Table 3 were 

changed for the focal group according to the following equations: 

bikF  = bikR  + s,  k  = 1, 2, 3 (constant DIF pattern) 

bikF  = bikR + s,  k  = 3 (shift high DIF pattern) 
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where s is equal to 0.20 and 0.40 under the constant and the shift high DIF pattern, 

respectively. 

 parameter. Normal, positively skewed and platykurtic  distributions shapes were 

used to generate the data. Under all the distribution shapes, the ability of the reference group 

was a univariate distribution with mean 0 and standard deviation 1. Moreover, two focal 

groups were simulated: the first had the same ability distribution as the reference group, 

and the second had a mean one standard deviation below the reference group mean. 

Fleishman’s (1978) power function Y = a + b  + c Z 2 + d Z3  was used to generate the 

skewed deviate, were Y is the positively skewed deviate, Z is a standard normal variable, 

and the rest of the constants were equal to a =0.1736, b =1.1125, c = 0.1736, and d = -

0.0503. To generate the platykurtic distribution, the constant values in the Fleishman’s 

power function were set to a = 0.0, b = 1.2210, c = 0.0, and d = -0.0802. Identical values 

have been used by Kirisci at al. (2001). 

It should be noted that we obtain strict skewed (skewness = 0.0, kurtosis = 0.0) and 

platikurtic distributions (skewness = 0.0, kurtosis = -1.0) using the Fleishman’s power 

function only when Z is a normal variable with mean 0 and standard deviation 1. This is the 

case for the reference group, and the focal group with the same ability distribution as the 

reference group. In the other focal group, we used in the power function a normal variable 

with mean -1 and standard deviation 1. Therefore, in this case, we will obtain non-normal 

distributions with different values of skewness and kurtosis. Figure 1 show the general 

shapes of the   distributions used based on 500 θ values. 

 

 
Figure 1a - Shapes of the θ distributions used to generate the data set (Normal). 
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Figure 1b - Shapes of the θ distributions used to generate the data set (platykurtic). 

 

 

 
Figure 1c - Shapes of the θ distributions used to generate the data set (Positively skewed). 

 

 Models. Datasets were generated for the 20 dichotomous items from a three-

parameter logistic IRT model (3PLM) and from the partial credit model (PCM) 

(MASTERS, 1982) for the 4-point polytomous items. In the 3PLM, the probability of a 

correct response on item i, for an examinee with latent trait , is defined by 
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where ai is the item discrimination parameter, bi is the item difficulty parameter, ci is a 

pseudo guessing parameter, and D is a scaling factor equal to 1.7.  

The polytomous items were generated using the PCM. As it is known, in this model, 

the probability of scoring x on item i with K categories (from k =1 to K), given , is defined 

by  
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where bik is the kth item difficulty parameter. By definition   0
1

1


k

ikb . 

Sample size. We selected the group size pairs based on their proximity to real data. 

The larger sample size (500/500 examinees in the reference/focal groups) is consistent with 

those found in practice and has been used in numerous simulation studies (PENFIELD and 

ALGINA (2003); SU and WANG (2005); WANG and SU (2004b); ZWICK et al., 1993). 

Smaller sample size (500/250) is found in many precalibration stage DIF studies. 

3.2 Form of calculating the generalized MH statistics 

The MH statistics compare two or more groups conditional on a measure of ability 

evaluated by the test (the matching variable). The majority of the applications use the total 

score in the test as an estimation of ability. In such cases, in order to avoid contamination 

of the matching variable by the items with DIF, it is essential to apply this methodology in 

two stages (HOLLAND and THAYER, 1985, FIDALGO et al., 2000; WANG and SU, 

2004a, 2004b). With the aim of comparing the manipulated variables in an optimum 

situation, we calculated the generalized MH statistics using for calculation of total test score 

only the non-DIF items (Items 1 to 24; see Table 2). The item under analysis was always 

included in the matching variable. Furthermore, the software developed to calculate the 

generalized MH statistics was programmed to automatically exclude those levels of the 

matching variable in which there was only an examinee (Nh··=1). Intervals of one unit in the 

scale of scores were employed for matching examinees. 
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3.3 Design 

The following factors were manipulated to study the effect on Type I error rate and 

power of the DIF-detection statistics:  distribution shape (normal, positively skewed, and 

platykurtic),   distribution difference between the reference and the focal group (equal and 

unequal), sample size (500/ 500 and 500/250 examinees in the reference/focal group), and 

DIF conditions (No DIF, constant and shift-high DIF patterns).  

For each of the 3 ( distribution shape) × 2 ( distribution difference between groups) 

× 2 (Sample size) × 3 (DIF conditions) = 72 cells of the design, 1,000 data sets were 

generated using the GAUSS program (Aptech Systems, 1993, V.3.1.4). In total, 72 × 1,000 

= 72,000 different tests were analysed with the QGMH(1) and QGMH(2) statistics (employing 

integer and log-rank scores) using a modification of the GMDIF program (FIDALGO, 

2011). 

4 Results 

Type I error rates were computed as average number of rejections of the studied items 

generated under H0 (Non-DIF) over the 1,000 replications. The Bradley (1978) liberal 

criterion was used in this study to assess the robustness of the MH statistics. A test fulfils 

his liberal criterion at α = 0.05 if the Type I error rate is between 0.025 and 0.075 (0.5α ≤n≤ 

1.5α). The proportion of correctly-identified each DIF item in 1,000 data sets was used as 

a power estimate. The average Type I error rate and power of the generalized MH statistics 

under each  distribution shape are given in Table 4 (normal), Table 5 (platykurtic), and 

Table 6 (positively skewed). 

In the case of QGMH(2), the estimations obtained averaging log-rank scores for tied 

observations are shown in square braked. As it can be seen in Table 4 thought 6, applying 

log-rank scores as if there were no ties give a more sensitive result than averaging log-rank 

for ties. Therefore, from now on all mention of the power and Type I error rate will refer to 

the result of log-rank scores computed without breaking ties. 

In our study all three MH statistics yielded Type I error rates for the null- case that 

fulfilled Bradley's liberal robustness criterion under all the simulated conditions. 

As expected, sample size had a great effect on power. The power of all the MH 

statistics for detecting DIF is very low under the smallest sample size, ranging from .26 to 

0.42 (constant DIF) and 0.11 to 0.32 (shift-high DIF), across all  distribution shapes and 

between groups ability distributions. In the largest sample size (500/500) the power found 

ranged from 0.37 to 0.57 (constant DIF) and 0.17 to 0.44 (shift-high DIF), across all the 

conditions (see Table 4, 5 and 6). 

An analysis of tables 3 through 5 reveals that the impact of the  distribution shape on 

the power of QGMH(1) and QGMH(2) is small. Normal and platykurtic distributions have 

very similar results. On the other hand, the positively skewed distribution shows a small 

increased in power in relation to the other distributions only when the DIF pattern was shift-

high. This increase ranged from 2% to 8%. This result is explained for the higher number 

of examinees in the response category where the DIF is present because of the skewed 

distribution of  compared with the normal and platykurtic distributions (see Figure 1). 
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Table 4 - Average type I error rate and power for the studied items under the normal ability 

distribution conditions. The estimations in square brackets were obtained 

averaging log-rank scores for tied observations 

__________________________________________________________________ 

                                                                            Generalized MH statistics 

                                          Between groups            __________________________ 

Sample size   DIF condition   Ability distribution  QGMH(1)  QGMH(2)-integer  QGMH(2)-Logrank 

__________________________________________________________________ 

   500/ 500     No DIF         Equal                     .047 .055 .053 [.052]  

                                           Unequal                 .051 .055 .057 [.054]  

                    Constant         Equal                     .40 .57 .55   [.53]  

             Unequal .  38   .54  .52   [.49]   

                      High            Equal              .42 .32 .40   [.38]  

                                          Unequal                   .24  .17  .23   [.22]  

 

    500/ 250     No DIF        Equal                     .049 .051 .047  [.050] 

                                           Unequal                 .049 .041 .043  [.044] 

                    Constant         Equal                     .27 .41 .39    [.36] 

                                           Unequal                 .28  .41  .39    [.36] 

                    High               Equal                     .29 .21 .27    [.26]  

                                           Unequal                 .16  .12  .14    [.13]  

________________________________________________________________ 

 

Table 5 - Average type I error rate and power for the studied items under the platykurtic 

ability distribution conditions. The estimations in square brackets were obtained 

averaging log-rank scores for tied observations 

__________________________________________________________________ 

                                                                    Generalized MH statistics 

                                                Between groups            _________________________ 

Sample size  DIF condition   Ability distribution  QGMH(1)  QGMH(2)-integer  QGMH(2)-Logrank 

____________________________________________________________________ 

   500/ 500        No DIF       Equal             .051 .047 .051 [.052] 

                                            Unequal                .042 .043 .046 [.042] 

                     Constant         Equal                  .40 .57 .55   [.52] 

                                           Unequal                 .38  .55  .53   [.50] 

                    High                Equal                  .44 .31 .39   [.39] 

                                           Unequal                  .25  .17  .21   [.19] 

 

    500/ 250       No DIF        Equal            .051 .050 .053 [.051] 

                                             Unequal               .050 .052 .053 [.049] 

                         Constant      Equal                  .28 .42 .39   [.36] 

                                             Unequal               .26  .42  .39   [.37] 

                          High           Equal                  .28 .22 .28   [.26] 

                                             Unequal               .15  .11 .13   [.13] 

___________________________________________________________________ 
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Table 6 - Average type I error rate and power for the studied items under the skewed ability 

distribution conditions. The estimations in square brackets were obtained 

averaging log-rank scores for tied observations 

____________________________________________________________________ 

                                                                    Generalized MH statistics 

                                               Between groups            _________________________  

Sample size   DIF condition   Ability distribution   QGMH(1)  QGMH(2)-integer  QGMH(2)-Logrank   

____________________________________________________________________ 

   500/ 500      No DIF       Equal              .047 .046 .048  [.051] 

                                          Unequal                  .050 .051 .050  [.054] 

                     Constant       Equal                     .39 .54 .52    [.50] 

                                          Unequal                  .37  .53  .51    [.48] 

                       High             Equal                     .46 .38 .47    [.46] 

                                          Unequal                  .31  .23  .28    [.27] 

 

    500/ 250       No DIF      Equal                 .048 .052 .056 [.051] 

                                           Unequal                .055 .043 .046 [.041] 

                       Constant      Equal                     .27 .40 .39   [.36] 

                                          Unequal                  .27  .40  .38   [.36] 

                        High          Equal                     .32 .27 .32   [.30] 

                                          Unequal                  .21  .15  .19   [.18] 

___________________________________________________________________ 

 

The results about the DIF patterns corroborate what has been found in the literature 

comparing QGMH(1) and QGMH(2)-integer: a) QGMH(1) had much more power for 

detecting the shift-high DIF than QGMH(2), and b) QGMH(2) is more powerful than 

QGMH(1) for detecting the constant DIF. It should be noted, however, that the difference 

between QGMH(1) and QGMH(2) for detecting the shift-high DIF was drastically reduced 

when QGMH(2) was computed using log-rank scores. This finding support the results of 

Fidalgo and Madeira (2008) 

Finally, in general, all the statistics yielded more power under the equal ability 

distribution conditions than under the unequal conditions.  Moreover, as it can be seen in 

Tables 4 through 6, that this difference was considerably higher under the shift-high DIF 

pattern (always over the 9% across all the simulated conditions and statistics) than under 

the constant pattern. 

Conclusions 

The main topics investigated by the present research was: (a) how the  distribution 

shapes affects the performance of both QGMH(1) and QGMH(2) statistics; and (b) the effect of 

log-rank score assigned to the response variable on the QGMH(2) statistic. Other variables 

manipulated in the simulation study were the effect of the different   distribution between 

groups and the sample size. 

One very clear finding is that the statistics applied [QGMH(1), QGMH(2)-INTEGER , QGMH(2)-

LOG-RANK] yielded controlled Type I error rates for the null case, fulfilling Bradley's liberal 

robustness criterion under all the simulated conditions.  
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A second finding is that the  distribution shapes have a small impact on the 

performance of the generalized MH statistics used for DIF detection. In this respect the DIF 

pattern was the most important factor in order to predict the performance of QGMH(1) and 

QGMH(2). As pointed out in Fidalgo and Madeira (2008), QGMH(2) increases the statistical 

power with respect to QGMH(1) for detecting that the mean responses differ across the factor 

levels, whereas QGMH(1) offers the possibility of detecting more complex patterns of 

association than QGMH(2). Thus, it is small wonder that the QGMH(2) statistic yields higher 

power than QGMH(1) under the constant DIF pattern whereas QGMH(1) yields higher power 

that QGMH(2) for detecting the shift-high DIF.  

A third finding is that, as expected, all the MH statistics, on increasing the sample size, 

increased their power under all the simulated conditions. On the other hand, the between 

groups ability distribution had a differential effect depending on the pattern of DIF. In all 

cases, detection rates decreased when the ability distributions were unequal. However, 

when the DIF was shift-high, there was a drastic difference in power between the equal and 

unequal ability distribution conditions. 

Finally, from a practical point of view, the most relevant finding is that, as it was 

hypothesized, the type of score used to compute QGMH(2) influences its capability for 

detecting DIF. It should be stressed that the question here is not to choose a score that 

faithfully describe the “true” distances between ordered categories, but finding a score that 

allow us to detect the association pattern of interest. Specifically, we have obtained that, 

when the pattern of DIF is constant, used integer or log-rank scores yield very similar 

results. However, when the pattern of DIF is shift-high, using log-rank scores offer higher 

power than the usual integer scores.  Moreover, given that the performances of QGMH(2)-LOG-

RANK and  QGMH(1) are very similar under the shift-high DIF pattern and QGMH(2)-LOG-RANK  his 

fairly superior to QGMH(1) for detecting the constant DIF,  QGMH(2) )-LOG-RANK  is recommended 

if a single method is to be used for detecting the DIF patterns simulated. Unfortunately, in 

real tests we cannot know, in advance, what type of DIF the items have, and since QGMH(1) 

is capable to detect more complex pattern of association than QGMH(2), QGMH(1) can be a more 

realistic option (FIDALGO and BARTRAM, 2010; FIDALGO and SCALON, 2012). 
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FIDALGO, A. M., COBIAN, M. L. Q. Efeito da forma de distribuição de capacidade nas estatísticas 

generalizadas de mantel-haenszel utilizadas para detecção de DIF. Rev. Bras. Biom. Lavras, v.36, n.2, 

p.438-452, 2018. 

 RESUMO: O objetivo principal deste estudo de simulação foi explorar o efeito da forma da 

distribuição   na estatística generalizada nominal e ordinal de Mantel-Haenszel usada para 

detectar DIF em itens politômicos. As variáveis analisadas foram: forma da distribuição do traço 

() (normal, enviesada e platicúrtica), diferença na distribuição   entre a referência e o grupo 

focal (igual e desigual), tamanho da amostra (500/500 e 500/250 examinadores no grupo 

referência / focal), e condições DIF (configurações Sem DIF, DIF constante e DIF alto). A 

estatística ordinal de Mantel-Haenszel foi calculada usando-se os escores de inteiros e log-rank. 

Os resultados mostram: a) um pequeno impacto da forma de distribuição de   no desempenho de 
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todas as estatísticas e b) as vantagens de empregar pontuações de log-rank, especialmente quando 

os itens mostram um padrão de DIF com deslocamento elevado. 

 PALAVRAS-CHAVE: Funcionamento diferencial do item, distribuições não normais, modelo de 

crédito parcial, pontuações log-rank, itens politômicos. 
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