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� ABSTRACT: In this paper we discuss some aspects of 	 55)125/1(  fractional factorial designs and 

show how to analyze a simulated data set. We present the analysis of variance, the estimated 

coefficients of the regression model, the determination of maximum response and the economical 

analysis. We also discuss how to allocate the 25 treatments of 	 35)5/1(  fractional factorials in 

completely randomized, incomplete block or incomplete latin square designs and the 25 

treatments of 	 45)25/1(  fractional factorials in incomplete block design. We present the R 

program to perform the analysis in the Appendix. 
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1 Introduction 

In the past, it was common to study the influence of a particular factor on a 
phenomenon, using several dosages of the factor, while keeping the remaining factors that 
were supposed to have influence on the phenomenon at the same level. Fisher (1935) 
introduced the concept of factorial experiments for which the treatments are all 
combinations of the levels of all factors and, generally, the number of treatments is equal 
to the product of the numbers of levels of the factors in the experiment. Yates (1937) 
presented a comprehensive review of the simpler factorial designs and a description of the 
appropriate methods of analysis. 

Initially, factorials included two or three factors with only two dosages each. When 
the numbers of the factors under investigation were four or more, the fractional factorial 

designs were proposed to reduce the number of treatments. Considering a full 52  
factorial, for example, 32 treatments are generated. To produce a 52)2/1(  fractional 
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factorial with 16 treatments the highest interaction ABCDE was supposed null, for which 
the main effects and all the interactions but ABCDE are estimated, perfectly. 

Later, the factorial designs were extended to more complicated ones with increasing 

number of treatments, such as 33 , 34 , 2×3×4, 25 , etc., aiming to better estimate the shape 
of the response surface, by including linear and quadratic effects and interactions between 
two, three factors, etc.  If the factors have three or more levels the fractional factorial 
designs can be used to fit response surface models (Box and Draper, 1987; Khuri and 
Cornell, 1996; Myers, Montgomery, Anderson-Cook, 2009). The shape of the response 
surface is very important for fertilizer experiments to determine the maximum response 
and to obtain the economical analysis to maximize profit. 

In general, there is a great deal of  redundancy in factorial experiments, in that high-
order  interactions are likely to be negligible and some variables may not affect the 
response at all (Box, Hunter and Hunter 2005, Brien, 2010a, b, Montgomery, 2012). 
Solutions to overcome these problems are the use of incomplete block designs and 
fractional factorial designs. Conagin and Jorge (1977, 1982a) proposed a 35)5/1(  

fractional factorial to be used in fertilizer experiments with one application in Caetano et 
al (2013). Andrade and Noletto (1986) and Conagin and Jorge (1982b) presented 34)2/1(  

and 44)4/1(  fractional factorials to be used in experiments to study the fertility of 

“cerrado” soils. Primavesi et al (2004) used the 34)2/1(  fractional factorial in one 

experiment with oats. Conagin et al. (2014) discussed some aspects of 5k−(k−2) fractional 
factorial designs, where k is the number of factors, with only 25 treatments involving two 
to six quantitative factors, with the purpose of using them on experiments on poor soil 
areas like those of “cerrado” or “savanna”. 

In this paper, we review some aspects of 	 55)125/1(  fractional factorial designs and 

show how to analyze a simulated data set following this design. We present the analysis 
of variance, the estimated coefficients of the regression model, the determination of 
maximum response and the economical analysis. We also discuss how to allocate the 25 
treatments of 	 35)5/1(  fractional factorials in completely randomized, incomplete block or 

latin square designs and the 25 treatments of 	 45)25/1(  fractional factorials in completely 

randomized and incomplete block designs. We present the R program to perform the 
analysis in the Appendix. 

2 Methodology 

The method suggested by Cochran and Cox (1957), Davies (1950) and John (1971) 
produces 55)125/1(  fractional factorial designs by superimposing three of the four 

orthogonal 5x5 latin squares with the addition of two adequate columns of treatments (the 
5x5 combinations of levels of factors A and B). These four orthogonal 5x5 latin square 
types (I, II, III and IV) are presented in Fisher and Yates (1938). The four basic types of 
the fractional factorial	 55)125/1( , corresponding to the fractions ��, ���, ��� and ��� of 

the interaction �x�, having as central point (3,3,3,3,3), are presented in Table 2 of 
Conagin et al. (2014), following Wu and Yamada (2000), and reproduced in Appendix A 
of this paper (Table 1A). It is not difficult to show that it is an orthogonal array.  



Rev. Bras. Biom., São Paulo, v.33, n.4, p.471-483, 2015 473 
 

To analyze the data from a fractional factorial design we consider the classical linear 
model  

� = 
� + 
, 
where � is the 1×n vector of observations, 
 is the pn ×  design matrix, � is the 1×p  

parameter vector and 
 is 1×n  the error vector, normally distributed with mean � and 
variance-covariance matrix ���, 
~N(�, ���). The vector of estimated parameters is 
given by 

�� = (
′
)��
′� 

with E��	� � = � and Var��	� � = 	��(
′
)��. The analysis of variance can be done in the 
usual way (Steel and Torrie, 1981, Draper and Smith, 1966, Montgomery, 2012) using 
statistical packages such as R (R Core Team, 2015) and SAS (SAS Institute, Cary NC, 
2015), for example. After estimating the vector of parameters, �, we get the predicted 
values � = 	
��. 

For a quantitative factor in a five-level design, for example, the quadratic regression 

model without interaction for 	 55)125/1(  fractional factorials, using orthogonal 

polynomials can be expressed as 

!("#) = $% + $��&��# +⋯+ $�(&�(# + $��&��# +⋯+ $�(&�(# 			() = 1,… ,25), 
where $% is the intercept, $�.  and $�., / = 1,… ,5, are, respectively, the linear and 
quadratic parameters for the kth factor, &�.#  and &�.#  are, respectively, the values of the 

linear and quadratic polynomials, xP =1  and 
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coded values 5,4,3,2,1=X , 1=q , the distance between adjacent coded levels, X

, the mean of the values of X  and n , the number of levels of X . Then the values 
assumed by &� and &� are (−2,−1, 0, 1, 2) and (2, −1,−2,−1, 2), , respectively, for each 

)5,4,3,2,1(=X . The estimated values of the polynomial regression are given by  
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and for linear and quadratic regressions, using orthogonal polynomials, are calculated by 
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To illustrate how to perform the analysis, we simulated a data set for corn yield 
using as treatments a type-III 	 55)125/1( 	fractional factorial (see Table 1A, in the 

Appendix A reproduced from Conagin et al, 2014), in a completely randomized design, 
with a quadratic linear predictor with the features, based on practical results of previous 
experiments, presented in Table 1 and Table 2. It was assumed that, without any fertilizer, 
the yield was around 3000kg/ha, for a population of 50000 plants per hectare. So, for 
example, to generate the value for treatment 6, that is, 24514, we got		 
67 = 		3000 + 450 + 600 + 600 + 210 + 450 + 300 + 270 + 0 + 90 + 160 = 	6130, 

and y7 = μ7 + e7, where e7 was simulated from a N(0, σ�) and σ�	 was obtained by 

σ� = 0.05 ∑ CDEFDGH
�( . 

Table 1 - Dosage (I) levels of the factors and their effects on the yield for data simulation 

Factors  Dosages   

Nitrogen (N)  30 45 6 75 9  kg/ha 

Phosphorus (P2O5)  30 45 6 75 9  kg/ha 

Potassium (K2O)  30 40 5 60 7  kg/ha 

Limestone (Ca)  1. 1. 2 2. 3  t/ha 

Population of plants (Pop)  50 55 6 65 7  thousand plants/ha 

 

Table 2 - Effects of the dosages on the yield 

Factors 
Linear  Quadratic 

1 2 3 4 5  1 2 3 4 5 

N 300 450 600 750 900  60 300 600 300 0 

P2O5 240 360 480 600 720  60 270 540 270 0 

K2O 120 240 360 480 600  50 180 380 160 0 

Ca 210 330 450 570 690  90 210 390 210 0 

Pop 0 150 300 450 600  0 160 350 160 0 

 
The corresponding coded dosages J were obtained by using (I − 15)/15 for N and 

P2O5, (I − 20)/10 for K2O, (I − 0.5)/0.5 for limestone and (I − 45)/5 for population 



Rev. Bras. Biom., São Paulo, v.33, n.4, p.471-483, 2015 475 
 

of plants. The corn yield can be seen in the R (R Core Team, 2015) program presented in 
the Appendix. 

Regarding the convenience of including or not the two-factor interactions in the 
model, it is possible to demonstrate that the effect of the linear x linear interaction of 
every two factors is not orthogonal to the other effects. This becomes clear by looking at 
the calculation of the contrast (N4 – N2) (P4 – P2) + (N5 – N1) (P5 –P1) or [44443 + 
22223 – 42452 – 24514] + [55553 + 11113 – 51421 – 15245] in which the last three 
numbers represent the levels of K, Ca and Population. This contrast, besides estimating 
the interaction NLPL, include differences in dosages of potassium, limestone and 
population that are confounded with the true values of the interactions. Additionally, it 
uses 10 degrees of freedom, leaving only four degrees of freedom for the error. This 
would contribute for decreasing the efficiency of the tests for the regression coefficients. 
So the interaction was not included in the model, what is a reasonable assumption for poor 
soils (Conagin et al., 2014). 

For this type of experiment in general, the experimenter is interested in determining 
the dosages that give the maximum production, that is, to find the levels J� , J�, J�, J�, J( 
that optimize the predicted response. This point (called stationary point), if it exists, will 
be the set of J�, J� , J�, J�, J( for which the partial derivatives  LMN/LJ� = LMN/LJ� =
LMN/LJ� = LMN/LJ� = LMN/LJ( = 0 and represent a point of maximum response if the 
matrix of second partial derivatives is negative definite (Montgomery, 2012). For the 
discussed example,  

MN# = $O% + $O��&��# +⋯+ $O�(&�(# + $O��&��# +⋯+ $O�(&�(# 			() = 1,… ,25)  

with  &� = J − 3 and &� = J� − 	6J + 7, where X )5,4,3,2,1(=  is the coded dosage 

level. Then, the stationary point J�, J�, J�, J�, J( will be obtained by 

  
PQN
PR.

=	$O�. + $O�.(2	J. − 6) 	⇒		J. = 7T�EU�T�HU
�T�EU

, (/ = 1,… ,5). 

Additionally, 
PEQN
PRUE

= 2$O�. and  
PEQN

PRUPRUV
= 0 and as the matrix of second partial 

derivatives is a diagonal matrix in this case, it will be negative definite if all the elements 
of the diagonal are negative, that is if all $O�. are negative. 

Besides finding the maximum response, the experimenter could be interested in 
finding the point J�, J�, J�, J� , J( that gives the maximum profit for the farmer, that is, 
optimize the profit function. The profit function is defined as the difference between the 
revenue function and the cost function. Assuming that the unitary price of the product is 
WQ and that the unitary cost of the dosage I. of the factor is  WXU , the profit function (!), 
without considering fixed costs, is 

! = MWQ −YI.

(

.Z�
WXU 

Then,  
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P[
PR. = [$O�. + $O�.(2	J. − 6)]WQ −	^XU^RU 	WXU ⇒		J. =

_`U
_aU	b`Uc(7T

�EU�T�HU)bd
�T�EUbd , (/ = 1,… ,5) 

and again the matrix of second partial derivatives is a diagonal matrix that will be 
negative definite if all the elements of the diagonal are negative, that is if all $O�. are 
negative. 

3 Results and discussion 

The results for the analysis of variance for the simulated data, using orthogonal 
polynomials, are presented in Table 3 and show, at 10% level, evidence of significance for 
all linear and quadratic effects. 

Table 3 - Analysis of variance for the generated data using the values from Table 1 

Source DF S.S. M.S. F Pr > F 

N (Linear) 1 827927 827927 11.01 0.0051 
P (Linear) 1 909361 909361 12.09 0.0037 

K (Linear) 1 851512 851512 11.32 0.0046 

Ca (Linear) 1 1177192 1177192 15.65 0.0014 

Pop (Linear) 1 901019 901019 11.98 0.0038 

N (Quadratic) 1 749651 749651 9.97 0.0070 

P (Quadratic) 1 1471460 1471460 19.57 0.0006 

K (Quadratic) 1 235596 235596 3.13 0.0985 

Ca (Quadratic) 1 255130 255130 3.39 0.0868 

Pop (Quadratic) 1 420593 420593 5.59 0.0330 

Error 14 1052771 75198   

 
The multiple regression expressed, as a function of polynomial coefficients, is 

MN# = 6064.24 + 128.68&��# + 134.86&��# + 130.50&��# + 153.44&��# +
134.24&�(# − 103.49&��# − 144.99&��# − 58.01&��# − 60.37&��# −77.51&�(# 			() = 1,… ,25), 

(1) 

which for &� = J − 3 and &� = J� − 	6J + 7, where )5,4,3,2,1(=X  is the coded 

dosage level, becomes 

MN# = 908.48 + 749.59J�# + 1004.77J�# + 478.59J�# + 515.67J�# +
599.33J(# − 103.49J�#� − 144.99J�#� − 58.01J�#� − 60.37J�#� −

77.51J(#� 			() = 1,… ,25), 
(2) 
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and, for example, the predicted values that include the center of the design are given by 
MN����� = 4391, MN����� = 6039,  MN����� = 6953, MN����� = 7134 and  MN((((� =
6581kg/ha. 

Then, the stationary point for equation (1) is J�f = 3.62, J�f = 3.46, J�f = 4.12, 
J�f = 4.27 and J(f = 3.86 with a predicted maximum response of  MNf = 	7,253.35 
kg/ha. The corresponding natural dosage values are I�f = 69.3kg of N/ha, I�f =
67.0kg of P2O5/ha, I�f = 61.2kg of K2O/ha, I�f = 2.6ton of limestone/ha and I(f =
64.3 thousand plants/ha. 

Now, assuming that the prices are: WQ = $0.55/kg of corn, WXH = $4.90/kg N 
(ammonia sulphate, 20%), for is WXE = $4.80/kg P2O5 (single superphosphate, 18%), 
WXh = $2.70/kg K2O (potassium chloride, 55%), WXi = $0.20/kg calcium (dolomite 
limestone) and WXF = $7.00/thousand seeds, the stationary point for the profit equation is 
J�[ = 2.98, J�[ = 3.01, J�[ = 3.70, J�[ = 4.27 and J([ = 3.46 with a predicted 
economical response of  MN[ = 	7,157.21 kg/ha. The corresponding natural dosage values 
are I�[ = 59.6kg of N/ha, I�[ = 60.2kg of P2O5/ha, I�[ = 57.0kg of K2O/ha, I�[ =
2.6ton of limestone/ha and I([ = 62.3 thousand plants/ha. The profit, without 
considering the fixed costs, is then calculated by 

 
! = 7,157.21(0.55) − 59.6(4.90) − 60.2(4.80) − 57.0(2.70) − 2.6(0.20)

− 62.3(7.00),  

 
which gives a net gain of $2,764.83. 

Additional Considerations 

In this paper, it was assumed that the 25 treatments of the 	 55)125/1( 	fractional 

factorial design were allocated following a completely randomized design. We now 
discuss how to allocate the treatments according to randomized incomplete block or 
incomplete latin square designs. 

We begin by considering the 	 35)5/1(  fractional factorial design. The resulting 25 

treatments can be obtained by superimposing three orthogonal 5x5 latin squares or by 
using a selected design (I, II, II or IV) of Table 2 of Conagin et al. (2014) by elimination 
of two digits.  These treatments can be allocated in a completely randomized design. 
Instead, if four orthogonal 5x5 latin  squares are superimposed or Table 2 of Conagin et 
al. (2014) is used, the first three digits can be used to form the 25 treatments and the 
fourth digit can be used as the number of the incomplete block with five treatments each. 
If the first three digits are used for composing the treatment, the fourth digit as row 
number and the fifth as column number, the 25 treatments can be allocated in an 
incomplete latin square design. 

In a similar way, the 25 treatments for a 	 45)25/1(  fractional factorial design can be 

obtained from Table 2 of Conagin et al. (2014), by using four digits of the numbers, for a 
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completely randomized design or additionally by using the fifth digit the 25 treatments 
can be allocated in an incomplete block design with five treatments each.  

 

CONAGIN, A.; BARBIN, D.; DEMÉTRIO, C. G. B.; MORAL, R. A. Analisando 
fatoriais fracionados 55)125/1(  e algumas considerações. Rev. Bras. Biom., São Paulo, 

v.33, n.4, p.471-483, 2015.  

� RESUMO: Neste artigo, discutem-se alguns aspectos do fatorial fracionado 	 55)125/1(  e mostra-

se como analisar um conjunto de dados simulados. Apresentam-se a análise de variância, os 
coeficientes estimados do modelo de regressão, a determinação da dose de máxima resposta e a 
dose econômica. Discute-se, também, como alocar os 25 tratamentos de fatoriais fracionados 

35)5/1( , usando-se os delineamentos completamente casualizado, casualizado em blocos 

incompletos e quadrado latino incompleto e os 25 tratamentos de fatoriais fracionados 45)25/1( , 

usando-se os delineamentos completamente casualizado e casualizado em blocos incompletos. 
Apresenta-se no Apêndice o programa R para a análise. 

� PALAVRAS-CHAVES: Experimentos fatoriais; interações de alta ordem; confundimento; 
simulação.  
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Appendix A 

Table 1A. Four 55-3 fractional factorial design obtained by the generated level sequences 
(j�, j�, j(, j�, j�), (j�, j�, j7, j�, j�), (j�, j(, j7, j�, j�) and 
(j�, j(, j7, j�, j�)	from Table 1 of Conagin et al. (2014) 

I 

11113 22223 33333 44443 55553 

23414 34524 45134 51244 12354 

35215 41325 52435 13545 24155 

42511 53121 14231 25341 31451 

54312 15422 21532 32142 43252 

II 

11113 22223 33333 44443 55553 

23511 34121 45231 51341 12451 

35412 41522 52132 13242 24352 

42314 53424 14534 25144 31254 

54215 15325 21435 32545 43155 

III 

11113 22223 33333 44443 55553 

24514 35124 41234 52344 13454 

32415 43525 54135 15245 21355 

45311 51421 12531 23141 34251 

53212 14322 25432 31542 42152 

IV 

11113 22223 33333 44443 55553 

34515 45125 51235 12345 23455 

52414 13524 24134 35244 41354 

25312 31422 42532 53142 14252 

43211 54321 15431 21541 32151 

Fonte: Conagin et al. (2014) 
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Appendix B 
 
R Program for the analysis of the simulated data  
 
## 1. Input data 

### 1.1. Response 

Y <- 

c(4298,5992,6791,7252,6688,6419,5729,6603,6300,6441,6186,668

4, 

6341,5955,5679,5474,5164,5357,5736,6491,5847,6168,5944,6118,

5949) 

### 1.2. Regressors 

N <- c(1,2,3,4,5,2,3,4,5,1,3,4,5,1,2,4,5,1,2,3,5,1,2,3,4) 

P <- c(1,2,3,4,5,4,5,1,2,3,2,3,4,5,1,5,1,2,3,4,3,4,5,1,2) 

K <- c(1,2,3,4,5,5,1,2,3,4,4,5,1,2,3,3,4,5,1,2,2,3,4,5,1) 

Ca <- rep(1:5, times=5) 

Pop <- rep(c(3,4,5,1,2), each=5) 

N2 <- N^2; P2 <- P^2; K2 <- K^2; Ca2 <- Ca^2; Pop2 <- Pop^2 

## 2. Analysis 

### 2.1. Computing orthogonal polynomials 

linear <- function(x) x - 3 

quadratic <- function(x) (x - 3)^2 - sum((x - 3)^2)/25 

N11 <- linear(N) 

P11 <- linear(P) 

K11 <- linear(K) 

Ca11 <- linear(Ca) 

Pop11 <- linear(Pop) 

N12 <- quadratic(N) 

P12 <- quadratic(P) 

K12 <- quadratic(K) 

Ca12 <- quadratic(Ca) 

Pop12 <- quadratic(Pop) 

 

### 2.2. Total sum of squares 

anova(lm(Y ~ 1)) 

 

### 2.3. Obtaining analysis of variance table (Table 2 of 

the paper) 

corn.fit1 <- lm(Y ~ N11 + P11 + K11 + Ca11 + Pop11 + N12 + 

P12 + K12 + Ca12 + Pop12) 

anova(corn.fit1) 

 

### 2.4. Original dosage levels 

Nd <- N*15 + 15; Pd <- P*15 + 15; Kd <- K*10 + 20 

Cad <- Ca*0.5 + 0.5; Popd <- Pop*5 + 45 

Nd2 <- Nd^2; Pd2 <- Pd^2; Kd2 <- Kd^2 
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Cad2 <- Cad^2; Popd2 <- Popd^2 

 

### 2.5. Obtaining coefficients for Eq. (1) 

(cf <- coef(corn.fit1)) 

 

### 2.6. Obtaining coefficients for Equation (2) 

corn.fit2 <- lm(Y ~ N + P + K + Ca + Pop + N2 + P2 + K2 + 

Ca2 + Pop2) 

(cf2 <- coef(corn.fit2)) 

 

### 2.7. Predicted values 

fitted(corn.fit2) 

 

### 2.8. Stationary points for Eq. (1) and corresponding 

dosage levels 

maximum <- function(coefs) { 

  c.lin <- coefs[1] 

  c.quad <- coefs[2] 

  Max <- (6*c.quad - c.lin)/(2*c.quad) 

  return(Max)} 

## coded dosages 

(X1 <- maximum(cf[c(2,7)])); (X2 <- maximum(cf[c(3,8)])); 

(X3 <- maximum(cf[c(4,9)])) 

(X4 <- maximum(cf[c(5,10)])); (X5 <- maximum(cf[c(6,11)])) 

## original scale dosages 

(D1 <- X1*15 + 15); (D2 <- X2*15 + 15); (D3 <- X3*10 + 20) 

(D4 <- X4*0.5 + 0.5); (D5 <- X5*5 + 45) 

 

#### 2.8.1. Maximum response 

X <- c(1, X1, X2, X3, X4, X5, X1^2, X2^2, X3^2, X4^2, X5^2) 

(yM <- sum(cf2*X)) 

 

### 2.9. Profit (E) function 

p <- c(4.9,4.8,2.7,0.2,7,0.55) # prices for N, P, K, Ca, Pop 

and y 

 

#### 2.9.1. Stationary points and dosage levels for profit 

function 

maximum.E <- function(price.D, coefs, q) { 

  price.y <- p[6] 

  c.lin <- coefs[1] 

  c.quad <- coefs[2] 

  Max <- (q*price.D + (6*c.quad - 

c.lin)*price.y)/(2*c.quad*price.y) 

return(Max)} 

## coded dosages 

(X1E <- maximum.E(p[1], cf[c(2,7)], 15)) 
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(X2E <- maximum.E(p[2], cf[c(3,8)], 15)) 

(X3E <- maximum.E(p[3], cf[c(4,9)], 10)) 

(X4E <- maximum.E(p[4], cf[c(5,10)], 0.5)) 

(X5E <- maximum.E(p[5], cf[c(6,11)], 5)) 

## original scale dosages 

(D1E <- X1E*15 + 15); (D2E <- X2E*15 + 15); (D3E <- X3E*10 + 

20) 

(D4E <- X4E*0.5 + 0.5); (D5E <- X5E*5 + 45) 

 

#### 2.9.2. Predicted economical response 

XE <- c(1, X1E, X2E, X3E, X4E, X5E, X1E^2, X2E^2, X3E^2, 

X4E^2, X5E^2) 

(yE <- sum(cf2*XE)) 

 

#### 2.9.3. Expected profit 

XP <- c(-D1E, -D2E, -D3E, -D4E, -D5E, yE) 

(yP <- sum(X 

 

 


