PROPOSAL OF A RAO RIDGE TYPE ESTIMATOR
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» ABSTRACT: Based on a geometrical interpretation of Ridge estimators a new Rao Ridge
type estimator is proposed. Its advantage is to reach the optimum value for the shrinkage
parameter more quickly. The geometry, the predictive capacity, a computational

example, an application to real data and comparison with the usual Ridge estimator
are developed.
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1 Introdution

Ridge regression was proposed in a seminal paper by Hoerl and Kennard
(1970a). It is an option to circumvent the instability in regression estimators
obtained by least squares method in presence of multicolinearity. The Ridge
regression coefficients are estimated by a very simple formula ﬁ(k) = (X'X +
kI)='X'y, where k is a shrinkage parameter. The estimator is biased and its
mean squared error depends on the shrinkage coefficient and achieve a minimum
on a value k,p;. This value depends on populational parameters and a hard work
is required in order to obtain a good estimators. One advantage of the Ridge
regression method is the possibility to construct a two dimensional portrait of the
behavior of each estimator component, as k increases, by plotting the graphics of
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Ridge trace functions Bi(kj), 1 = 1,2,...,n. All these curves goes to zero, but near
the optimum value k,,; they are relatively stable. Therefore this can be used as
a graphical criterion to estimate the optimum value. The Ridge estimators was
generalized by Rao (1975), that suggested to use a positive definite matrix G in
place of the identity matrix, obtaining the estimator B(k) = (X'X + kG) "' X'y
(GRUBER, 1998, 2010). This generalization of Ridge estimator showed to be very
useful and, in particular, allowed an empirical Bayes approach. In this way, a priori
knowledge can be used to choose the matriz G. We will call these estimators as Rao
Ridge type estimators. The geometry of Rao Ridge type estimators are present in
Costa (2014).

In this work, a particular Rao Ridge type estimator, that is, a choice for the
matrix G, based on geometrical arguments, is proposed. The ideia is to choose a
matrix G in such way that the optimum value of the shrinkage factor in achieve
more quickly. Some of its properties are explicit and compared with the usual Ridge
estimator. As this estimator was derived by geometrical motivation we will rewrite
some facts about linear model theory in terms of geometrical concepts.

2 The linear model

Consider Y a n x 1 vector of values obtained from some random phenomena
with unknown mean vector p = E[Y]. By reasons related to these particular
random phenomena, one can conjecture that the unknown mean vector p belongs
to some known subspace W. That, in essence, characterizes the linear model. The
vector Y stands in the data space and since the dimension of data space is generally
higher than the dimension of W, it is plausible to use a lower than n number of
variables to describe the W subspace. Such procedure is called parameterization
and can be done in the following way: consider W to be the image of a linear
transformation X, defined in another vector space called parametric space. Then
W=Im(X). To avoid technical difficulties, the linear transformation X is considered
injective, that is, for each vector w in W there is a unique vector 3 in the parameter
space such that w=X/3. All of this can be described geometrically by Figure 1.

Model assumptions are clear: Y is a random vector in the data space, Y =
XB+e, E[Y]=X a vector in W, where 3 is an unknown vector in the parametric
space and € is the vector of errors. The greatest advantage of representing the
linear model by Figure 1 is the description of the estimation process. What is the
estimation process? A data vector y is observed and we have only to choose a vector
in W which we believe to be a good representative of E[Y]. If, eventually, y happens
to belong to the space W, the best choice is E[Y] = y. But, as the observed vector
y is affected by random errors, almost surely, it will not belong to the subspace W
and a natural procedure to choose the vector in W closest to y. Such estimation
procedure is called least squares method. If Py is the linear orthogonal projection
onto W, the chosen vector is Pw (y). The linear transformation X is injective, then
the only choice is Pw(y)=X3 . The linear transformation Py can be expressed
in matrixial form as Py = X (X’X)~!X’. This equation, in its algebraic form, is
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Figure 1 - Geometrical characterization of a linear model.

denominated normal equation and Z‘] is the least squares estimator of the parameter
vector (3.

3 The Rao ridge type estimators

This section is strongly based in Costa (2014). We consider a weighted distance
in parametric space defined by a positive definite matrix G. The norm is ||3||* =
B'GB and distance d(B3,,8,) = (8; — B2)'G(8; — B3). The sphere of radius r
centered in the origin in this new metric is given by 8'GB = r? and defines an
ellipsoid centered in the origin. As the usual Ridge estimators, we can derive the
Rao Ridge type estimators as a solution of a minimization problem involving that
weighted distance.

If we want an alternative to the ordinary least squares estimator ﬁ , a possibility
is to consider a sphere of radius r centered in the orthogonal projection of the
observed vector y in the subspace W. This procedure can be considered as a
constrained least squares, or in others words, a penalized least squares method.
The pre-image of this sphere in the parametric space is an ellipsoid centered in ,3:

ly = Pw()lI* = I1X8 — Pw (y)|I? (1)
= X8 - X8|
= (XB-XB)(XB - Xp)
=(B-B'X'X(B-B)

=7
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Now, the idea is to choose, among all 3’s in the ellipsoid, the one with minimum
weighted norm. Therefore, the Rao Ridge type estimator in the parametric space
is obtained as the solution of the minimization problem:

B(r) = min {8'GB}, (2)
subject to restriction (3 — B)’X’X(ﬂ — B) = r2,
— , -1,
Using Lagrange multiplier, we can get the explicit Sg (k) = (X X+ nkG) Xy,

where k is a more adequate parameter and is a function of 7.
This construction can be geometrically described by Figure 2.

%

>

Figure 2 - Geometrical interpretation of Rao Ridge type estimator.

3.1 The proposed Rao ridge type estimator

Maybe the simplest example of a Rao Ridge type estimator is obtained

by considering G = X’X. In this case, the estimator is Br(k) = (X'X +
1 1 .

EX'X)"1X'y = m(X'X)’lX’Y = mﬁ, that is, the estimator is a shrinkage

of the ordinary least squares estimator. In this case, there are two parallel ellipsoids

and the estimator is obtained by taking the point of tangency of these two ellipsoids,
as described in Figure 3. This estimator is known as Mayer-Wilke estimator
(MAYER and WILKE, 1973).

How to make a good choice for the matrix G? One the greatest problem in
Ridge estimation is to obtain the optimum value of k. One of the difficulties is that
the mean squared error function can be very flat near the minimum and therefore
any numerical procedure is very unstable. This is equivalent to say that the Ridge
trace functions goes to zero very slowly. As observed with Mayer-Wilke estimator,
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Figure 3 - Paralled ellipsoids and Mayer-Wilke estimator.

for parallel ellipsoid, the velocity goes to zero proportional to the inverse of the
shrinkage parameter. The idea is to use some kind of matrix G that increases that
velocity. The geometry suggests that the ellipsoid defined by G must be, in some
sense, orthogonal to the ellipsoid defined by X’X. To make this, we need another
ellipsoid with the same principal axes as the ellipsoid defined by X’X but with
eigenvalues with inverse values. In this case, major axis of the ellipsoid defined by
X'X corresponds the minor axis of the new ellipsoid (Figure 4). We will call these
ellipsoids as orthogonal.

By By
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\
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Figure 4 - Orthogonal ellipsoids.
The matrix with eigenvalues equal to the inverse of the eigenvalues of X’X

and the same principal axes is the inverse (X'X)~!. So we suggested to make
G = (X’X)~! and propose the following Rao Ridge type estimator:
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Brrop(k) = (X'X + nk(X'X) ") X'Y. (3)

Geometrically, the proposed estimator is describe in Figure 5.
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Figure 5 - Geometry of the proposed estimator.

The performance of the proposed estimator will be studied and compared with
the usual Ridge estimator.

3.2 The predictive performance of the proposed estimator

One of the most important features of an estimator is its predictive capability.
One way to try to access this property is to use the Allen’s Predictive error of squares
(PRESS), that is essentially ordinary cross validation. The process is describe as:
let X; be the matrix X with the ith line omitted and y; = (y1,...,%i,...,Yn) the
vector of data with ith data value omitted. Then the 8 (k), the Ridge estimate
of 3, is obtained as

BY (k) = (X!X; +nkI) ™" Xly;. (4)

The argument is that if k is a good choice for the Ridge parameter, then the
ith component {X ﬂ(i) (k)} ~should be a good predictor of y;. Therefore, the Allen’s

PRESS estimate of k is thé minimizer of

P =23 ([x89 (] -u)" )

=1

It is interesting to point out that, for the usual Ridge estimator (G = I), the
PRESS has a closed form given:
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P = TIB (k) (- )y, (6)

where B (k) is the diagonal matrix with jjth entry 1/(1 — a;; (k)), a;; (k) being the
jjth entry of A (k) = X(X'X + nkI)”'X (CHRISTENSEN, 2011).

Golub et al. (1979) defined an invariant version of the Allen’s PRESS, using
the very involving theory of circulant matrices (GELLER et al., 2017) and called
it generalized cross-validation method (GCV). The predictive error using GCV is
given by:

n 2
V(k): (I A )yH _ n Zl( un+nk) 2y

[%Tr (I*A(k))r le zp: Rtk 7= pr.

v=1

(7)

They proved that this generalization is a simple weighted version of P (k),
namely

v =230 ([x8 1] ) w ). (®)
where

1-— (0777 (k‘)

w“m:1f%ﬁA@y

9)
For the proposed estimator, the PRESS is obtained in a similar way as follow:

Bprop(k) = (X'X + k(X'X)"H) 7' Xy. (10)
Let X; and y; be as before, then

~1

/Bprop(k) = (X;XZ + k(Xz/X’L)_l)_lely (11)
The PRESS statistics is defined by

iz ([XBopt)] —w)" (12)

At this point, the authors want to point out that they couldn’t find in the
literature a closed formula for the PRESS and for GCV, in the case of Rao Ridge
type estimator.

In order to compare the proposed estimator and usual Ridge estimator,
a simulation with 8 predictors and 12 observations were used. To ensure
multicollinearity, we took two pairs of predictors highly correlated. One thousand
samples were generated and, for each sample and each of the 51 values of k, from
0.00 to 0.12, we computed the mean values of the errors, getting the mean curve of
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the prediction errors. For the usual Ridge estimator, the curves were obtained using
usual cross validation and generalized cross validation. For the proposed Rao Ridge
type estimator, error was computed using only usual cross validation. Results are

shown in Figure 6 and in Table 1.

©
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Figure 6 - Mean curves of the predictors errors.

Table 1 - Optimal value of £ and mean predictor errors of PRESS Ridge, PRESS

Rao and GCV Ridge

Estimator kopt  Prediction Error
PRESS Ridge | 0.04 9.16
PRESS Rao | 0.01 9.46

GCV Ridge | 0.03 8.18

The optimum shrinkage parameter is achieve at the minimum of the curves
in Figure 6. As expected, the proposed estimator reached the optimal value of %k
about 3 times faster than the usual Ridge. There is no significant difference among

the mean predictor errors.

3.3 A computational illustrative example

The example to be describe is as small as possible while still permitting to
evaluate the performance of the proposed estimator. This example was analyzed
in Marquardt (1970), to compare the usual Ridge estimator with others estimators
and it was also studied in the context of Rao Ridge type estimator in Costa (2014).
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Consider the linear Ridge regression Y = X3 + € with

2 42
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The eigenvalues of X’'X are 1.98 and 0.02, wich characterize almost
multicolinearity.

Supposed the real value of the parameter vector is 3 = ( g and o2 = 1.
6.34

The response vector obtained by simulation was y = | 3.94 |. With this vector,
5.96

the Ridge trace are obtained for usual Ridge estimator and for proposed estimator
(Figures 7 and 8).

10

beta(k)
o]
!
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Figure 7 - Ridge trace for usual Ridge estimator.

Using the graphical criteria to obtain the optimum value k., that occurs
when the Ridge trace present certain stability, we get k,px = 0.30 for the usual
Ridge estimator (FIGURE 7) and ko, = 0.05 for the proposed Ridge estimator
(FIGURE 8). This example shows, as expected, that the optimum value of the
parameter k occurs much more faster for the proposed estimator. With these £y,
it can be obtained, from the same Figures 7 and 8, the vectors estimates B (0.30)

and Bpmp (0.05). For comparison, the least square estimative BQ a 1s also presented.
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Figure 8 - Ridge trace for the proposed estimator.

By simulation of one thousand response vectors y, the Mean Squared Error
(MSE) was presented in the Table 2.

Table 2 - Mean Squared Error (MSE)

B MSE = Variance + Bias
Bau 50.50 =  50.50 + 0.00
5(0.30) 278 = 059 + 218
Bprop(0.05) 247 = 097  + 151

In the Table 2 is possible observe that the MSE for both estimators are closed,
as the Prediction Error, seen in the previous section.

3.4 The performance of proposed estimator on a set of real data

Hoerl and Kennard (1970b) analyzed a set of real data in Gorman and Toman
(1966), as a linear regression on ten factors, using the Ridge estimator. The sample
correlation matrix is:
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1.00

—0.04 1.00

0.51 0.00 1.00

0.12 -0.16 0.00 1.00

-0.71 0.06 —-0.59 —0.07 1.00

—-0.87 0.09 —-0.65 —-0.09 0.84 1.00

-0.09 024 -0.02 0.03 0.38 0.13 1.00

0.00 0.01 0.34 0.08 -0.36 —-0.20 -0.48 1.00

-0.09 0.09 —-0.08 0.02 —-0.14 0.04 0.07 -0.18 1.00
—-0.36 —-0.30 —-0.44 -0.09 0.54 0.45 0.40 —-0.46 0.05 1.00

X'Y =(-0.81 -0.10 -0.63 —0.10 0.56 0.81 0.04 0.06 0.16 0.45).
The eigenvalues de X’ X are

(3.69 153 1.29 1.05 097 0.66 0.35 0.21 0.13 0.07),

X'X =

and again we have almost multicolinearity. The total variance of the model is
33.8202. For the Ridge trace, the covariates were indexed as the numbers in their
respective column in the correlation matrix:

1.0
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Figure 9 - Ridge trace of the usual ridge estimator.

Analysing the Ridge trace curves for the both estimators, we conclude:

e The least squares estimatives seems to be overestimated because they decrease
rapidly in function of k. This behavior is more emphasized for factors 5 and
6.

e The factor 5, initially negative, rapidly becomes positive. This is coherent
with the fact that factor 5 has sample correlation 0.84 with factor 6 and
therefore we expected that they have the same behavior.
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Figure 10 - Ridge trace of proposed estimator.

e Factor 1 is underestimated maybe because the correlation with the others
factors.

e Factor 7 is overestimated.

e For the usual ridge estimator the system stabilized for k& in the interval
[0.20;0.30]. For the proposed estimator the system stabilized in the interval
[0.05;0.15].

Both estimators give the same conclusions, but these conclusions are much
ellipse more clear for the proposed estimator. As expected, the Ridge trace stabilized
more rapidly for the proposed estimator.

4 Conclusion

The proposed estimator that was based in geometrical ideas, seems to have
superior properties in relation to the usual Hoerl-Kennard Ridge estimator. One of
its promising advantage is to get stability more rapidly and therefore the optimum
value for the Ridge parameter k can be estimated more accurately.
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= RESUMO: Com base em uma interpretacdo geométrica dos estimadores de Ridge,
um novo estimador do tipo Rao Ridge é proposto. Sua vantagem é alcangar o valor
6timo para o parametro de encolhimento mais rapidamente. A geometria, a capacidade
preditiva, um exemplo computacional, uma aplicagdo a dados reais e uma comparagao
com o estimador Ridge usual sdo desenvolvidas.
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