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ABSTRACT: In this paper, we apply the generalized additive mixed models with the

use of the P-splines technique as mixed models, which will be adopted in a problem of

the agro-environmental area, in this case on the average levels of sugarcane production,

which is influenced by changes in climatic variables such as temperature and precipitation

which were measured over 10 years in each mesoregion of the state of Sao Paulo. The

reason for using this approach as a smoothing method is that the tendency of these

climate covariates is not known on its most, but it is known that they directly influence

the response variable. Besides allowing for the inclusion of fixed and random effects in

the models to be proposed, these models allow for the inclusion of an autoregressive

process AR(1) as a correlation structure in the residuals.
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1 Introduction

A common feature of real data is that they often have complexities in the linear
or nonlinear relationship between the response variables and their covariates, since
in most studies the behavior of predictors or covariates does not follow a certain
probabilistic pattern, but the linear regression models are used to model these types
of data.
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An alternative to the use of linear regression models is to use the additive
models, among them we have the generalized additive mixed models (GAMM)
proposed by Lin and Zhang (1999), as a class of models that are an extension
of generalized linear mixed models (GLMM) proposed by (BRESLOW and
CLAYTON, 1993) and the generalized additive models (GAM) proposed by Hastie
and Tibshirani (1990). This class of models uses additive nonparametric functions to
model the effect of covariates on the response variable as well as takes into between
observations account the effect of the presence of overdispersion and correlation, by
adding random effects to the linear predictor of the model (DURBÁN, 2014).

The objective of this paper was to study the average levels of sugarcane
production in tons/ha for each mesoregion in the state of Sao Paulo, Brazil, under
the influence of changes in the maximum temperature, minimum temperature and
precipitation, we proposed using GAMM with the P-splines methodology to asses
the effects of climatic variables on the performance of sugarcane production.

The advantage of using the P-splines is that they allow for a non-linear trend
of production over time, incorporating also the non-linear behavior of the effects of
each of the climatic variables (RONDINEL MENDOZA, 2017).

The remainder of this article is organized as follows. Section 2 presents a brief
introduction to the GAMM and a framework brief description of the estimation of
the smooth functions of the model using P-splines as mixed models. Section 3 shows
the materials and methods used. Section 4 presents an application of this approach
in the case study of sugarcane production and the respective results. Finally, in the
last section we present the conclusions.

2 Generalized additive mixed models

The generalized additive mixed models (GAMM) were proposed by Lin and
Zhang (1999), they estimated the nonparametric functions by using smoothing
splines and to jointly estimate the smoothing parameters and the variance
components, they used the marginal quasi-likelihood method. However, Chen
(2007) estimated nonparametric functions and covariance structures based on
penalized marginal likelihood, where he used the maximum likelihood estimation,
developing two algorithms the first based on the Newton-Raphson algorithm and
the second based on an extension of the Monte Carlo method. Wood (2006) and
Zuur et al. (2009) used the GAMMs with smooth functions in terms of tensor
products using the thin plate splines as bases of low range. GAMMs can be used
in studies with experimental designs whether they are nested or crossed, as well
as applied to spatial data, clustered data or hierarchical data. According to Lin
and Zhang (1999), the GAMM distinguishes itself from the GLMM, in which the
linear predictor is replaced by an additive predictor in the systematic component
of the model whose additive predictor involves a sum of smooth functions of the
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explanatory variables, defined by

ηi|α =

p∑
j=1

fj(xji) +

q∑
k=1

zikαk, with i = 1, . . . , n (1)

where fj(·) are the smooth functions of the covariates xj with the condition that

f
′′

j (·) is continuous, α = (α1, α2, . . . , αq)
′

is the vector of random effects that has
a multivariated normal distribution with q dimension expressed by α ∼ N(0,G) ,
the variance-covariance matrix defined by G = σ2

αIα and Z = (z1k, z2k, . . . , zik)
′

is the random effects design matrix of model. By expression (1), the GAMM for
exponential families is basically a hierarchical model, with the following probability
density function ,

f(y|η) = exp {y′η − 1′b(η) + 1′c(y)} , (2)

where η = (η1, η2, . . . , ηn)
′

is the vector of the systematic component, y =
(y1, y2, . . . , yn) is the vector of the observed responses conditionally independent
given the vector of random effects α with conditional mean E[yi|α] = µαi and
conditional variance V ar(yi | α) = φ(mi)

−1V (µαi ). Note that V (·) is the variance
function of the conditional mean, mi is a known prior weight and φ is the dispersion
parameter as in the case of the generalized linear model (MCCULLAGH AND
NELDER, 1989). It is observed that the conditional mean is linked to the additive
predictor, given by Equation (1), through the link function g(µαi ) = ηαi . The
function g(·) is a monotonically differentiable function.

The main objective of GAMM expressed in (1) is that additive smooth
functions are used to model the effects of covariates and the random effects are used
to model correlation between observations, because they have a flexible covariance
structure of random effects α.

Among some references where models such as GAMM special cases have been
used, Zeger and Diggle (1994) and Zhang et al. (1998) consider expression (1) as
a mixed semi-parametric model. The authors assumed a simple non-parametric
function as a function of time and of the longitudinal observations, assumed to be
normally distributed. Zuur et al. (2009) uses GAMM in spatial data and ecological
studies to model spatial correlation. Consider the following additive model

yi = f1(x1i) + f2(x2i) + . . .+Ziα+ εi, (3)

where yi is the response variable; fj(·) are the smooth functions of the covariates
xji; Zi is the matrix ith row of the random effects design matrix; α ∼ N(0,G) is
the vector of random effects coefficients with unknown positive definite covariance
matrix G, the vector of errors with ith element εi given by ε ∼ N(0,Λ), with
variance-covariance matrix Λ. To follow, the process of estimation of smooth
functions is shown considering as a one-dimensional case for the GAMM model.

Estimation of GAMM smooth functions: We consider the additive model
(3), which is composed of smooth one-dimensional functions f(x) for each covariate

Rev. Bras. Biom., Lavras, v.37, n.1, p.17-31, 2019 - doi: 10.28951/rbb.v37i1.339 19



xji. Each smooth function is defined as f(x) = Ba, where B is a B-spline basis
function and a a vector of B-spline regression coefficients. To estimate the smooth
one-dimensional function of model (3) we will use the representation of the P-splines
as mixed models. The P-splines were proposed by Eilers and Marx (1996), their
name is due to a simple combination of two ideas to fit the curve: regression on the
functions of B-splines basis and a penalty of differences on the regression coefficients
of B-splines proposed by De Boor (1978). Following the approach of Eilers and
Marx (1996), they used a penalty based on the “d-order differences” between the
adjacent coefficients of the B-splines basis. This type of penalty is more flexible
because it independs on the degree of the polynomial used to construct the B-splines
basis. This penalty is a good discrete approximation of the second derivative of the
integrable square of a function (EILERS and MARX, 1996). Therefore, the penalty
is the main part of the estimation of the smooth function; meaning that smoothing of
the function is adjusted by changing the weights of the coefficients of the regression.

According to Lee and Durbán (2011), considering a one-dimensional function:
f(x) = Ba, the P-spline representation approach is used as a mixed model; that is,
reparametrization is required for the smooth function in two parts: the first part
to be treated as a fixed effect and the other to be treated as a random effect. In
general, this can be obtained using the singular value decomposition of the penalty
matrix, P = UΣU ′, where U is an orthogonal matrix whose columns are the
eigenvalues of P , and Σ is a diagonal matrix with the corresponding eigenvalues
arranged in descending order on the main diagonal. Σ̃c−d denotes the sub matrix
of positive eigenvalues of Σ, where c is the number of columns of the B-splines basis
and d is the order of the penalty. Therefore, the new matrix and the new vector of
coefficients are

X = BU0 and (4)

Z = BU+ (5)

where, U0 is the sub matrix of null eigenvalues of the singular value decomposition of
the penalty matrix, and U+ is the sub matrix that contains the positive eigenvalues

of Σ̃c−d. With new coefficients

β = U ′0a and

α = U ′+a .

A mixed model representation of a smooth function in terms of a linear predictor
and a random effects distribution, is given by

Xβ +Zα, where α ∼ N

(
0,

Σ̃−1

λ

)
, (6)

with β and λ fixed parameters to be estimated using REML.
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3 Material and methods

3.1 Material

The data used in this study were collected from various available statistical
sources. Information on the collection of sugarcane production data in tons/ha were
obtained from the Municipal Agricultural Production yearbook of the Brazilian
Institute of Statistical Geography (IBGE, 2017), data that corresponds to the
mesoregion of the state of Sao Paulo from the year 2006 to 2015. Information
on meteorological data such as precipitation, maximum temperature and minimum
temperature were obtained from meteorological stations of the National Institute
of Meteorology (INMET, 2017) located in the state of Sao Paulo, the Integrated
Center for Agrometeorological Information (CIIAGRO, 2017), as well as the
meteorological station “Professor Dr. Jesús Marden dos Santos” of the Superior
School of Agriculture “Luiz de Queiroz - University of Sao Paulo ”(ESALQ,
2017). According to the Municipal Agricultural Production, the mesoregions where
sugarcane production occurs and which are part of the state of Sao Paulo are:
Araçatuba, Araraquara, Assis, Bauru, Campinas, Itapetininga, Litoral Sul Paulista,
Marco Metropolitana Paulista, Marilia, Piracicaba, Presidente Prudente, Ribeirão
Preto, São José do Rio Preto and Vale do Paráıba Paulista.

3.2 Methods

The aim of this study was to model the sugarcane production of each
mesoregion and asses the effects of the average levels of temperature (◦C) and
precipitation (mm) recorded annually from 2006 to 2015. The main focus was to
explore the behavior of annual effects the change in temperature and precipitation
and how they influenced the sugarcane production in each mesoregion of the state
of Sao Paulo, applying GAMM with the use of the P-splines technique for each of
the climatic variables and year.

As there are multiple observations of each of the mesoregions, the observations
within the same mesoregion are more similar than the observations of different
mesoregions. However, there is no interest in the effect of the mesoregions, but
this variable will be considered as a grouping factor since it allows for a possible
correlation between the observations. The general model described to be considered
is expressed by

Yieldij = β0 + β1 × yearij + β2 ×maximum temperatureij +

β3 ×minimum temperatureij + β4 × precipitationij + εij , (7)

where: Yieldij is the jth observation in the ith mesoregion. The variables
yearij , maximum temperatureij , minimum temperatureij and precipitationij are
continuous, β0, β1, β2, β3 and β4 are the regression parameters; and the errors εij
follow a normal distribution with mean 0 and variance σ2

ε , with i = 1, . . . , 14
mesoregions and j = 1, . . . , 10 observations corresponding to each covariate.
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Fitting (7), Figure 1 shows the dispersion plots of the observations of the
variables yield, precipitation, maximum temperature, minimum temperature and
year. The histograms of each of these variables are also presented, which show that
each of them presents the behavior of some asymmetric distribution. The behavior
of the yield variable as a function of the other covariables shows that there is a
possibility of a variability between these observations, some kind of smoothing can
be used to take into account the variability of the data and the behavior of the
curve.
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Figure 1 - Dispersion plots of the variables yield, precipitation, maximum
temperature, minimum temperature and year.

We fitted model (7) to the data and inspected the half-normal plot with a
simulated envelope (ATKINSON, 1985) for the deviance residuals (Figure 2). It
indicated a possible lack-of-fit of the model due to the presence of correlation
between the observations that was not incorporated, which indicates the need to fit
differents models that accommodate these features.

Figure 3 shows the behavior of sugarcane production in each mesoregion in
a period of 10 years (2006 to 2015), identified with the following codes for each
mesoregion: X1 - São José do Rio Preto, X2 - Ribeirão Preto, X3 - Araçatuba, X4 -
Bauru, X5 - Araraquara, X6 - Piracicaba, X7 - Campinas, X8 - Presidente Prudente,
X9 - Marilia, X10 - Assis, X11 - Itapetininga, X12 - Macro Metropolitana Paulista,
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Figure 2 - Half-normal plot with simulated envelope for the residuals of model (7).
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Figure 3 - Graph of the behavior of sugarcane production by mesoregion in a period
of 10 years (2006 - 2015).
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X13 - Litoral Sul Paulista and X14 - Vale do Paráıba Paulista. We see that the
exchange rate of production in each mesoregion shows a great variation between
the intercept and slope of the lines that were fitted. This would lead us to consider
mixed models with random intercepts for each curve and random slopes with respect
to time, in this case considering the covariate year. This will allow us that the curves
do not only move in the vertical direction, but that they also oscillate.

Based on this previous analysis of the data and the ignorance of the behavior
of each of the covariates that influence the yield variable, the generalized additive
mixed model with P-splines was used. The purpose of using this approach is that
the possible existence of heteroskedasticity is often not taken into account and one
of the possible causes is that the true relationship between the response variable and
the covariates is non-linear, as observed in the previous exploratory data analyses.

Therefore, to solve this problem we perform a smoothing on each covariate of
the model. The proposed additive model to be used is of the form,

Yieldij = β0 + f(yearij) + f(maximum temperatureij) + f(minimum temperatureij) +

f(precipitationij) + ai1 + ai2yearij + εij , (8)

where f(·) is the unknown smooth function for each climate covariate and for year,
which shows the trend of the behavior of these variables for the yield of sugarcane. f(·)
is estimated by means of P-splines using the representation as mixed models with the
purpose of unifying the structure of the model; ai1 is the random intercept that measures
the variability between mesoregions following a Normal distribution with mean 0 and
variance σ2

mesoregion; ai2 is the random slope for each curve in relation to the covariate

year and follows a Normal distribution with mean 0 and variance σ2
year, and the errors εij

follow a Normal distribution with mean 0 and variance σ2
ε , with design matrixes of fixed

and random effects respectively,

X =


1 year11 maximum temp11 minimum temp11 precipitation11

1 year12 maximum temp12 minimum temp12 precipitation12

...
...

...
...

...
1 year1410 maximum temp1410 minimum temp1410 precipitation1410


and

Z =
[
Zyear : Zmaximum temp : Zminimum temp : Zprecipitation : Za

]
,

with random effects vetor

α ∼ N

 0,


Iσ2

year 0 0 0 0
0 Iσ2

maximum temp 0 0 0
0 0 Iσ2

minimum temp 0 0
0 0 0 Iσ2

precipitation 0
0 0 0 0 Iσ2

mesoregion




Considering some notations in the defined matrices: maximum temp is maximum
temperature and minimum temp is minimum temperature. The production response
variable has Gaussian distribution that belongs to the exponential family of distributions,

24 Rev. Bras. Biom., Lavras, v.37, n.1, p.17-31, 2019 - doi: 10.28951/rbb.v37i1.339



with function of identity binding and always taking into account that for each covariant
to be smoothed, we use P-splines representation as mixed models with function of base
polynomial third-degree B-splines, and a second order discrete penalty. In this approach,
the autoregressive process is considered in the correlation structure of the errors that is,
assuming stationarity, the correlation between residuals εi and εi′ depends only on the
difference between the time points i and i′, according to Pinheiros and Bates (2000). A
possible correlation structure for the residuals is the autoregressive process of order 1,
AR(1). According to Zuur et al. (2009), this structure considers that the error at time i
depends on the error of time i− 1 and a small error ei; that is

εi = ρεi−1 + ei, (9)

Therefore, the parameter ρ is unknown and needs to be estimated from the observations.
Taking into account the correlation structure of the errors, we estimate the curves by
smoothing each of the covariates. In each of the smooth functions of model (8) P-splines
were used, since with this representation it is possible to estimate to function of each of
the covariates and flexibilizes the structure of the errors simultaneously. However, if we do
not use the representation of P-splines as mixed models, it would be difficult to estimate
these effects.

To fit this type of models, the gamm function of the mgcv package in R (WOOD,
2017) was used. The estimates of the parameters of fixed effects and variance components
were be obtained using the REML method, included within the lme function.

4 Results

In this section we describe the results of the proposed approach for this case study.
We considered a smoothing function for each of the climatic variables as well as the time
variable year within the additive model. The advantage of using these smooth functions
is that they allow for a non linear behavior of yield over time as well as the non-linear
behavior of the effects of each of the climatic variables. In addition, in this approach
we considered the existence of the correlation using the autoregressive order process as
expressed in (9).

The Figure 4 shows the trend of the covariate year in two situations: 1) Without
considering a correlation structure in the residuals, which causes two effects: an extremely
smooth curve that is a straight line (Figure 4a), with the help of a correlogram (Figure
4b), the residuals are highly correlated, that is, a clear violation of the assumption of
independence of errors. 2) We use an autocorrelation structure in the model AR(1) in the
residuals and we can see that in the Figure 4(c), that the behavior of the covariate year is
more flexible and presents a smooth curve with 3.55 degrees of effective freedom, however
we can see in the Figure 4(d) using a correlogram with autoregressive structure AR(1),
still presents evidence of temporal correlation in the residuals. It can also be seen that
in Figure 4(c) the shape of the smoother indicates that sugarcane production grew until
2010 and from that year onwards it was stable until 2015.

Table 1 shows the criteria for selecting models fitted: a model without considering
a correlation structure in the errors and other two models using autoregressive structure
AR(1) and AR(2), considering a smooth function for the covariate year. The model choice
was made using selection criteria AIC and BIC. According to the two criteria used, the
chosen model is the model which considers an autoregressive process AR(1).

Rev. Bras. Biom., Lavras, v.37, n.1, p.17-31, 2019 - doi: 10.28951/rbb.v37i1.339 25



(a) (b)

2006 2008 2010 2012 2014

−
2

e
+

0
7

2
e

+
0

7
6

e
+

0
7

Year

s
(Y

e
a

r,
1

)

0 5 10 15 20

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Lag

A
C

F
(c) (d)

2006 2008 2010 2012 2014

−
1

e
+

0
7

−
5

e
+

0
6

0
e

+
0

0
5

e
+

0
6

Year

s
(Y

e
a

r,
3

.5
5

)

0 5 10 15 20

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Lag

F
C

A

Figure 4 - Forms of the smoothing functions estimated for year with their respective
autocorrelation functions.

Table 1 - Criteria for selecting models considering the autoregressive correlation
structure in the errors for the covariate Year

Model AIC BIC
No correlation 5213.269 5225.035
AR(1) 4662.327 4677.036
AR(2) 4664.420 4682.070
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The Figure 5 was obtained with the fitted model of the Equation (8) to validate
the normality of the residuals and the homogeneity of variances. The plot (a) of Figure
5 shows evidence of the behavior of residuals following normal distribution. However, the
plot (b) shows the standardized residuals versus fitted values and indicates evidence of
the presence of heterogeneity of the variance, possibly due to the presence of the temporal
correlation in the residuals.
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Figure 5 - Graphical validation of the model in Equation (8): (a) Normal Q-Q plot.
(b) Standardized residuals versus fitted values.

Based on the choice of the GAMM model considering temporal correlation structure
with autoregressive AR(1) process in the residuals, the individual covariates were included
in the model.

Table 2 shows the estimated smooth functions of each covariate, with their respective
effective degrees of freedom (e.d.f), smoothing parameter λ, corresponding F-tests and
associated p-values. We observer that the variables of interest were highly significant for
the production of sugarcane. In relation to the component of the standard deviation of the
random intercept, its estimated value was 1718.599; that means, the variability existing
between mesoregions.

Figure 6 shows the estimated of smooth functions for each climate covariate on
sugarcane production for GAMM and clearly shows evidence of the effect of each of
these covariates following a non-linear pattern. In each plot of the Figure 6, the
horizontal axis shows the values of minimum temperature, maximum temperature and
precipitation and in the vertical axis, the contribution of function for the fitted values of

Table 2 - Estimation of the smooth function for each covariate in GAMM
Smooth function e.d.f λ F p-value
s(Maximum temperature) 4.709 1.226891 16.81 2.25e-12
s(Minimum temperature) 4.266 1.809065 9.27 1.61e-06
s(Precipitation) 4.887 0.746584 17.4 2.62e-12
s(Year) 3.555 1317.997 9.884 1.51e-06
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this sugarcane production. As the effect of minimum temperature, maximum temperature
and precipitation is not linear, such estimated smooth functions are significant on 4.27,
4.71, and 4.89 effective degrees of freedom respectively (a straight line would have only one
effective degree of freedom). In Figure 6(a) we observer that the smoother for minimum
temperature presents two periods in which the production of sugarcane had a higher
production. In Figure 6(b) the estimated smooth function of the temperature variable
suggests that there sugarcane production had a higher productivity as the temperature
was higher and in Figure 6(c) the rainfall variable shows a very high production when the
precipitation values are low.
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Figure 6 - Estimated smoothing functions for minimum temperature, maximum and
precipitation, the solid line is the estimated smooth function and the
dotted lines are the 95% confidence.

Based on all the results obtained, Figure 7 was obtained, which shows a comparison
between the predicted values of the model (denoted by the curve) versus the real data
(points) for the production of sugarcane throughout the 10 years. Observing this figure, we
conclude that the mesoregions Araçatuba, Araraquara, Assis, Bauru, Marilia, Piracicaba,
Presidente Prudente, Ribeirão Preto and São José do Rio Preto are those that show
significant evidence of higher sugarcane production over 10 years.
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Figure 7 - Predicted values for sugarcane production over 10 years.

Conclusions

In this application, the GAMM with P-splines approach was used to relate sugarcane
production variable as a function of time and climatic variables, considering these as
unknown functions to be estimated, considering the random effects as independent,
also it was used an temporal correlation structure with autoregressive AR(1) process
in the residuals (GAMM allows to include these types of correlation in the residuals),
this structure improves the adjustment of the curves for climatic variables as for the
response variable. For the study case of this present work, the response followed a Normal
distribution with identity linking function.

Finally, most studies that relate sugarcane production to their climatic variables
use simple linear models or mixed models without taking into account the behavior of
covariates, which often leads to erroneous conclusions, however using GAMM with the use
of the P-splines technique shows excellent results since this approach takes into account
the behavior of each of the covariates and how they influence the response variable.

Acknowledgments

We would like to thank CAPES Program for financial support during the
development of this work and reviewers and editors for their suggestions.

Rev. Bras. Biom., Lavras, v.37, n.1, p.17-31, 2019 - doi: 10.28951/rbb.v37i1.339 29



RONDINEL MENDOZA, N. V.; PIEDADE, S. M. S. Modelos mistos aditivos
generalizados com P-splines aplicados na produção de cana-de-açúcar no estado de São
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RESUMO: Neste trabalho, aplicamos os modelos mistos aditivos generalizados usando a
metodologia dos P-splines como modelos mistos, que será adotado em um problema da
área agroambiental, neste caso sobre os ńıveis médios de produção de cana-de-açúcar,
que são influenciados por mudanças nas variáveis climáticas, como temperatura e
precipitação que foram medidas ao longo de 10 anos em cada mesorregião do estado de
São Paulo. O motivo para usar essa abordagem como um método de suavização é que
a tendência dessas covariáveis climáticas não é conhecida na maior parte, mas é sabido
que elas influenciam diretamente na variável resposta. Além de permitir a inclusão
de efeitos fixos e aleatórios nos modelos a serem propostos, esses modelos permitem
tambén a inclusão de um processo autorregressivo AR(1) como estrutura de correlação
nos reśıduos.

PALAVRAS-CHAVE: P-splines; B-splines; modelos mistos aditivos generalizados;
proceso autorregresivo AR(1).
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LEE, D. J.; DURBÁN, M. P-spline ANOVA-type interaction models for spatio-temporal
smoothing. Statistical Modelling, v.11, p.49-69, 2011.

LIN, X.; ZHANG, D. Inference in generalized additive mixed models by using smoothing
splines. Journal of the Royal Statistical Society. Series B, v.2, p.381-400. 1999.

McCULLAGH, P.; NELDER, J. A. Generalized linear models. 2.ed. London: Chapman
and Hall-CRC Monographs on Statistics and Applied Probability 37, 1989. 511p.

PINHEIRO, J. C.; BATES, D. M. Mixed-effects models in S and S-PLUS. 1.ed. New york:
Springer-Statistics and computing 1. 2000. 527p.

RONDINEL MENDOZA, N. V. Estruturas unidimensionais e bidimensionais utilizando
P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-
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