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AUTOREGRESSIVE ANALYSIS OF VARIANCE FOR 

EXPERIMENTS WITH SPATIAL DEPENDENCE BETWEEN 

PLOTS: A SIMULATION STUDY 
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 ABSTRACT: The analysis of variance remains one of the most appreciated techniques of field 

experiment, even despite almost a hundred years of its first proposal. However, in many cases, its 

application can be several impaired due the fact of lack – or even forgotten - of assumptions. In 

several experiments, the researchers make use of blocks to control the local heterogeneity, 

nevertheless, in some cases, only this it cannot be enough, especially in experiments where the data 

have some kind of spatial dependence. Therefore, to increase the accuracy of comparisons between 

treatments, an alternative is to consider the study of the spatial dependence of the variables in the 

analysis. With the knowledge of the relative positions of the plots (referenced data), the spatial 

variability can be used as a positive factor, collaborating with the experimental results. To develop 

this study we used data generated by simulation. The data was generated according a Randomized 

Complete Block Design (RCBD), with eighteen and five treatments per block; and several 

scenarios of spatial dependence in the error. We compared the non-spatial analysis (which 

considers the errors independent) with spatial analysis (analysis of variance considering the 

autoregressive model - ANOVA-AR). The use of spatial statistical tools in the analysis of data 

increased the precision of the analysis, through the reduction of the Mean Squared Error. We also 

noticed a reduction of Mean Squared Block and Mean Squared Treatment. The greater reduction 

was notice in ANOVA-AR3 for great part of the simulated scenarios, mainly in those with strong 

spatial dependence. The experiments with a small number of treatments per block did not present 

a reduction of Mean Squared Error, however, the reduction of Mean Squared Block and Mean 

Squared Treatment, ally to the fact that data are spatial dependent justify the use of ANOVA-AR. 

 KEYWORDS: Autoregressive model, geostatistics, ANOVA-AR. 

1 Introduction 

The biggest challenge when conducting an experiment is to compare treatments with 

the greatest possible accuracy, to have security in the inferences to be made from the results. 

The accuracy of an experiment is directly connected to small changes in experimental 

units. These small changes can cause heterogeneity between plots, also known as random 

variation, environmental variation or simply experimental error (STORCK, 2000). 
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When the experimental error is too large, the statistical tests used to compare means 

of treatments may be influenced and some differences between treatment means can be 

undetected. Keeping this in view, the agricultural experimentation increasingly requires the 

use of more refined experimental techniques and data analysis. In this refinement are several 

factors involved, such as careful choice of design, installation locations of the experiments, 

number of repetitions, size and shape of the parcel and a perfect conducting experiment 

(BANZATTO e KRONKA, 2006). All of these factors influence directly or indirectly the 

experimental precision. 

One of the most used design are the Randomized Complete Block Design (RCDB). 

When the nuisance source of variability is known and controllable, a design technique 

called blocking can be used to systematically eliminate its effect on the statistical 

comparisons among treatments (MONTGOMERY, 2001).  

Nevertheless, in several experiments, this source of variability cannot be adequately 

controlled. This becomes clearer in experiments with some kind of spatial correlation, in 

which classical ANOVA could be ineffective or inaccurate. Gumpertz et al. (1997) suggest 

that for some experiments with randomized block design, analysis of variance that takes 

into account the spatial analysis can achieve a substantial gain in accuracy. Katsileros et al. 

(2015) said that whenever variability cannot be controlled by blocking, nearest neighbour 

methods could be helpful. 

With the computational development, some alternatives have become available to 

researchers, for example, the spatial analysis methods of experiments. The literature lists 

numerous methods proposed and adopted to model the spatial variation, such as fitting the 

nearest neighbour (BARTLETT, 1978; PAPADAKIS, 1937; WILKINSON et al., 1983; 

ZIMMERMAN; HARVILLE, 1991), least squares smoothing (GREEN et al., 1985; 

SMITH and CASLER, 2004; YANG et al., 2004), kriging (BRESLER et al., 1981; LOPEZ 

and ARRUE, 1995) and more recently, the use of spatial P-splines (RODRÍGUEZ-

ÁLVAREZ et al., 2018; VELAZCO et al., 2017). 

Of these methods, modelling the spatial structure through a separable autoregressive 

(AR1AR1) has become attractive and is commonly used in agricultural experimentation 

(BRAYSHER et al., 2001; CULLIS and GLEESON, 1991; GILMOUR et al., 1997; 

SCOLFORO et al., 2016; SINGH et al., 2003; YANG et al., 2004). 

Long (1996) describes an autoregressive analysis of variance that considers the 

proximity pattern (GUMPERTZ et al., 1997). This methodology takes into consideration 

not only the nearest neighbour, or the autocorrelation in row and column (AR1AR1), but 

neighbours who are within a certain radius of distance. 

Considering the methodology proposed by Long (1996), this study analysed (by 

simulation) 15.000 datasets generated according a RCBD. All the datasets have spatial 

dependence in the error following a nonlinear Gaussian Spatial model of correlation, with 

several levels of spatial dependence. The aim was to determine whether the autoregressive 

analysis of variance (ANOVA-AR) has higher accuracy than the classical analysis of 

variance when faced with spatially dependent data. These was done by comparison of Mean 

Squared Error, Mean Squared Block and Mean Squared Treatment and though the 

construction of Monte Carlo Confidence Intervals. 

 

 

 



246 Rev. Bras. Biom., Lavras, v.37, n.2, p.244-257, 2019 - doi: 10.28951/rbb.v37i2.388 

 

2 Material and methods 

The autoregressive analysis of variance (ANOVA-AR) was described by Long (1996). 

The basic idea consists of transform autocorrelated observations in uncorrelated 

observations. To do so, we begin with the choice of the proximity pattern defined by 

Gumpertz et al. (1997). More than one proximity pattern can be adopted. The proximity 

patterns of the first, second and third order will be represented by AR1, AR2, and AR3, 

respectively (Figure 1). 

 

 
 

Figure 1 - Proximity patterns, where  represents a reference parcel,  represents the neighboring 

plots considered in the comparison and  represents the remaining plots. 

 

To study the spatial pattern of the experiment, we adopt the model SAR (spatial 

autoregressive), which, according to Griffith (1988) can be defined by: 

 

Y WY X      (1) 

 

where Y is a vector n×1 of observed values,   is a spatial autoregressive parameter, W is 

a matrix n×n with weight assignments neighborhood space, X  is an incidence matrix n×p 

of fixed effects, 
 
is a vector 1p

 
of parameters,   is a vector 1n  of errors inherent to 

each observation. 

The matrix W is obtained by multiplying two other matrices D and C (W=D×C). The 

matrix C of dimension n×n  is binary and describes the neighborhood of the plots. To obtain 

the matrix C , first is necessary to define which proximity pattern will be choose. After that, 

each cell of the matrix will be completed by 0 or 1, indicating if the cell (plot) is neighbor 

or no of the adjacent cell. 

The matrix D is a diagonal matrix with elements 1/ki where ki is the sum of the values 

of matrix C rows, which allows the matrix W to have the sum of each line equal to 1. In 

other words, 𝜌𝑊𝑌  are the observed values weighted by the neighborhood and spatial 

correlation. 
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One of the forms to estimate the parameter   of the SAR model is the method of 

maximum likelihood (ML). The original solution of the ML estimation of a spatial 

autoregressive model, originally proposed by Ord (1975), consists in exploring the 

decomposition of the Jacobian I W  in terms of the eigenvalues 
i  (with i = 1, 2,…,N) 

of the matrix W, given by |𝐼 − 𝜌𝑊| = ∏ (1 − 𝜌𝑤𝑖)
𝑛
𝑖=1  (GRIFFITH;1988, 2005). 

With the estimated ̂ , we fit the autocorrelated observations in uncorrelated 

observations through  0
ˆ ˆ

adjY Y WY   
, where 

0  is the average of the observations. 

Obtained the vector 
adjY  (experimental observations weighted by neighborhood) 

we proceed with the construction of the ANOVA-AR. The procedure for their construction 

is similar to the classical ANOVA. 

Through analysis of the Mean Square Error (MSE) and Mean Square Parameter (MSP) 

versus 
adjMSE  and  

adjMSP  (Mean Square Error and Mean Square Parameter for vector 

adjY ) we check if the autoregressive approach contributed to the decrease of the experiment 

variability, that is, the goal is to verify that the values of MSE and MSP  are smaller than 

adjMSE  and 
adjMSP  

To implement the study, we used simulated datasets in two different configurations: 

 experiment i - a randomized complete block design (RCBD) with 18 

treatments and 6 blocks;  

 experiment ii - a randomized complete block design (RCBD) with 5 

treatments and 4 blocks. 

The two configurations were proposed to verify if the methodologies present the same 

results in experiments with a large number of treatments in each block and experiments 

with a small number of treatments in each block. The experiments were constructed 

considering a regular grid with plot size defined in 
21 .u m  

The fixed effects of treatment and block were chosen arbitrarily, without loss of 

generality, since the aim is not to verify whether or not treatment effect or block, but if the 

ANOVA-AR can increase the accuracy of the experiment. 

The statistical model for both situations is given by ,ij i j ijy t b e    where 
ijy    is 

the observation of the ith treatment in the jth repetition, being 1,2,...,i a and 1,2,...,j b

, with 18a   and 6b   in the configuration (i) and 5a  and 4b   in the configuration (ii);

   is an inherent constant to each observation;
it  it is the effect of the ith treatment;

jb  it is 

the effect of the jth block; 
ije  it is the experimental error associated to each observation. 

To validate the analysis of variance, the error must have mean zero and constant 

variance, so without loss of generality, the random errors were generated following a 

normal distribution with mean zero and variance 1. To add the spatial correlation in the 

error, a Geostatistical model was used. The covariance generated by the Gaussian nonlinear 

model (equation 2), through transformation      0C h C h  , was add to the error. So, 

the error became  0,N  .  
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According to Clark (1979) field experimental errors with spatial dependence tend to 

be Gaussian. Thus, we generated several configurations of dependent errors (choosing 

different range (a), sill (
0 1C C ) and nugget effect (

0C )). 

 

 
2

0 1

0 , 0

1 exp , 0

h

h h
C C h

a




    

    
    

 (2) 

 

The range is the distance that the samples are spatially correlated. The ratio between 

the nugget effect and the sill defines the level of spatial dependence of the data. The 

dependence can be characterized as strong, moderate or weak (CRESSIE and 

HARTFIELD, 1966; SEIDEL et al., 2016; SEIDEL and OLIVEIRA, 2014). More 

information of these geostatistical parameters can be found in Cressie (1993), Isaaks and 

Srivastava (1989), Govaerts (1997), Chilès and Delfiner (1999) and Journel (1978). 

The purpose of working with different configurations of dependent error was to verify 

the efficacy of autoregressive ANOVA when confronted with several levels of spatial 

dependence. 

Therefore, different ranges were generated for the experiment (i) and different degrees 

of spatial dependence. Experiment (ii) was constructed similarly. For better interpretation, 

we use the expression Gaus (nugget effect - sill - range). For example, Gaus (0-1-6) means 

that the error follows a Gaussian model with zero nugget effect, sill one and range six. All 

configurations simulated are shown in Table 1. 

We simulated 15.000 datasets (through Monte Carlo simulation), a total of 1000 

simulations for each configuration error (Table 1). For each dataset we apply the classical 

ANOVA and the ANOVA-AR with proximity patterns of first, second and third order. 

 

Table 1 – Simulation configuration 

Experiment i Experiment ii 

Name 
Nugget 

Effect 
Sill Range 

Level of 

spatial 

dependence 

Name 
Nugget 

Effect 
Sill Range 

Level of 

spatial 

dependence 

Gaus(0-1-6) 0 1 6 strong Gaus(0-1-2) 0 1 2 strong 

Gaus(0.75-1-6) 0.75 1 6 weak Gaus(0.75-1-2) 0.75 1 2 weak 
Gaus(0.25-1-6) 0.25 1 6 moderate Gaus(0.25-1-2) 0.25 1 2 moderate 

Gaus(0-1-4) 0 1 4 strong Gaus(0-1-1) 0 1 1 strong 

Gaus(0.75-1-4) 0.75 1 4 weak Gaus(0.75-1-1) 0.75 1 1 weak 
Gaus(0.25-1-4) 0.25 1 4 moderate Gaus(0.25-1-1) 0.25 1 1 moderate 

Gaus(0-1-2) 0 1 2 strong      

Gaus(0.75-1-2) 0.75 1 2 weak      

Gaus(0.25-1-2) 0.25 1 2 moderate      

 

For the comparison of results between the classical approach and the autoregressive 

approach we build a 95% Monte Carlo Confidence Interval (BUCKLAND, 1984) for the 

Mean Squared Block (MSB), Mean Squared Block Adjusted(
adjMSB ), Mean Squared Error 
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(MSE), Mean Squared Error Adjusted (
adjMSE ), Mean Squared Treatment (MST) and 

Mean Squared Treatment Adjusted(
adjMST ). 

All analysis were performed in R software (R CORE TEAM, 2018) 

3 Results and discussion 

Initially, we would like to show a practical example of the performance of ANOVA-

AR. Let us consider one simulation of the experiment i with a range of 6 (Gaus-0-1-6; data 

with strong spatial dependence). Table 2 shows a classical ANOVA. Using ANOVA-AR 

methodology, and considering a first order proximity pattern, we obtained Table 3. 

When we compare a classical ANOVA (Table 2) with ANOVA-AR (Table 3), we 

notice the reduction of SST. There are a decrease of 56% of MSE, which implies in more 

precision of ANOVA-AR in comparison with classical ANOVA. In addition, we have a 

decrease of MSB, showing a substantial gain in accuracy.  

In the other hand, we have an increase of MST, however, this, ally with decrease of 

MSE, produces a bigger value of FTrat , that can indicates a more powerful F test to detect 

the true differences between treatments. 

Another point that needs an observation is that not all discussion above, between 

classical ANOVA and ANOVA-AR, took at point, that if we use the classical ANOVA with 

spatial dependent data, we are ignoring the assumptions of the analysis of variance. 

 

Table 2 – Example of ANOVA for one simulation of experiment i (Gaus-0-1-6) 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 
0F  p-value 

Block 5 292.41 58.48 37.28 <0.001 

Treatment 17 688.11 40.77 25.80 <0.001 

Error 85 133.31 1.56   

Total 107 1113.83    

 

Table 3 - Example of ANOVA-AR1 for one simulation of experiment i (Gaus-0-1-6) 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 
0F  p-value 

Block 5 35.07 7.01 10.18 <0.001 

Treatment 17 858.79 50.16 72.84 <0.001 

Error 85 58.53 0.68   

Total 107 952.39    

 

After this brief exposure of a single simulation, our focus will be the complete 

simulation scenario. So, let us consider the experiment i with a range of 6 - Gaus-0-1-6 

(data with strong spatial dependence). Analysing the parameter MSE3 (Figure 2), we note 

that the confidence interval showed a lower magnitude for the ANOVAs-AR. The intervals 

are not symmetrical, since the concentration of 50% of the observations, defined as the 

                                                 
3 Just for simplify the text and the discussion, QME and QMEAdj (and all similars), will be treated just by QME. 
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median, is located in a small initial portion of each interval. Because there is overlap 

between the CIs, statistically, we can't say that they are unequal, however, as they were built 

from 1000 independent data sets, the interval suggest a reduction of the MSE as the 

increases of proximity pattern (AR1, AR2, AR3), resulting in increased accuracy of the 

experiment. 

 

 
Figure 2 - Confidence intervals for experiment i with range 6. 

 

When the MSE was confronted one-by-one between classical ANOVA and ANOVA-

AR (AR1, AR2, AR3), the reduction occurs in 96%, 98% and 100% of the experiments. 

Scolforo et al. (2016) noted the same reduction in a study of tree modeling as strategies for 

the management of Eremanthus erythropappus. The ANOVA-AR showed a reduction of 

MSE and it was capable to detect differences between treatments, which was unable to 

detect by classical ANOVA. 

For the parameter MST (Figure 2), we found intervals that are more symmetrical. A 

considerable difference between the intervals of ANOVA-AR3 for others can be verified 

indicating a possible reduction in the variability of the MST.  

The great advantage of the approach autoregressive is noted by examining the 

parameter MSB (Figure 2). The magnitude of the unsymmetrical intervals reduces mildly 

until ANOVA-AR2, however, a considerable reduction is seen in the ANOVA-AR3. This 

result corroborates Yang et al (2004) which asserts that the RCBD has a low efficiency in 

experiments containing a large number of treatments, showing that the analysis of variance 

autoregressive is able to around this problem by reducing the variability of the block factor. 

Yang and Juskiw (2011) say that in RCBD, proper blocking can reduce error by maximizing 

the difference between blocks and maintaining the plot-to-plot homogeneity within blocks, 
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but blocking is ineffective if heterogeneity between plots does not follow a definite pattern 

(e.g., spotty soil heterogeneity; unpredictable pest incidence after blocking). In addition, 

when block size is large (>8-12 plots per block), intra-block heterogeneity is inevitable. 

Thus, the efficiency of the RCBD is often poor in agronomy trials involving a large number 

of treatments. 

Scolforo et al (2016) showed a reduction of 90% of MSB, when compare classical 

ANOVA and ANOVA-AR.  

Using a Geostatistical approach, Nogueira et al. (2013, 2015) also concluded that the 

use of spatial analysis in field experiments with spatial dependence causes the reduction of 

the MSB. 

For data with moderate spatial dependence (Gaus-0.25-1-6) the behavior is similar to 

the intervals obtained in Gaus-0-1-6. The parameter MSE presents a similar amplitude for 

ANOVA and ANOVA-ARs, with a little reduction of median with the increase of proximity 

pattern. The parameters MSB and MST showed a similar behavior of the configuration 

Gaus-0-1-6. The data with weak spatial dependence (Gaus-0.75-1-6) exhibit behavior 

similar to Gaus-0-1-6 and Gaus-0.25-1-6, for parameters MSE and MST. In this 

configuration, however, we note the largest decrease in the variability of the parameter 

MSB, showing that the method was more sensitive to this configuration. The variability of 

the parameter MSB is low compared with Gaus-0-1-6 (intervals between 4.69 and 94.6) 

and Gaus-0.25-1-6 (intervals between 6.94 and 77.97), because of presents intervals 

between 8.09 and 65.05. The parameter MSB of the ANOVA-AR3 is not statistically equal 

to the others, because there are not overlapping intervals. 

The experiment i with a range of 4 u.m (Figure 3) and 2 u.m (Figure 4) have similar 

behavior to experiment i with a range 6 u.m (Figure 2). 
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Figure 3 - Confidence intervals for experiment i with range 4. 

 

 
Figure 4 - Confidence intervals for experiment i with range 2. 
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For the experiment ii (Figure 5 and 6), we notice a little increase of the MSE median. 

Initially this information indicate a loss of precision. However, it is important to note that 

the experiment ii has only 20 observations. The spatial analysis, including the Geostatistics 

tools presents some difficulties to deal with a small number of observations. 

Another point that must be considered is that even the ANOVA presenting a lower 

value of MSE in comparison with ANOVA-AR, it contravenes the assumptions of 

independent errors. Nogueira et al. (2013, 2015) using a Geostatistical approach of 

ANOVA obtained an increase of the MSE, that was justified with the increase of the power 

of F test, in that situation. 

The behavior of MST and MSB follow the same as presented in experiment i. We note 

a reduction of the median with the increase of proximity pattern. Also, we see a smaller 

confidence intervals amplitude, especially for the parameter MSB. 

The ANOVA-AR2 and ANOVA-AR3 weren't apply for this experiment (only 20 

observations), because the proximity pattern of 2nd and 3th order would cause an 

overlapping of the neighbors, that could mask the real effects of spatial dependence. 

 

 

 
Figure 5 - Confidence intervals for experiment ii with range 1. 
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Figure 6 - Confidence intervals for experiment ii with range 2. 

 

Conclusions 

For the experiment i, the autoregressive approach showed a reduction in variability of 

block and treatment factors. The decrease in MSE indicates that the autoregressive approach 

was more precise than the classical approach. 

For the experiment ii, the autoregressive approach did not show a reduction of MSE, 

however, the reduction of MSB and MST, ally to the fact that data are spatial dependent, 

justify the use of ANOVA-AR, instead classical ANOVA. 
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ROSSONI, D. F., LIMA, R. R. Análise de variância autoregressiva para experimentos com 

dependência espacial entre parcelas: um estudo de simulação. Rev. Bras. Biom. Lavras, v.37, n.2, 

p.244-257, 2019. 

 RESUMO: A análise de variância continua sendo uma das técnicas mais apreciadas na 

experimentação de campo, mesmo após quase cem anos de sua primeira proposta. No entanto, em 

muitos casos, sua aplicação pode ser prejudicada devido à falta - ou mesmo do esquecimento – 

dos pressupostos. Em vários experimentos, os pesquisadores fazem uso de blocos para controlar 

a heterogeneidade local, no entanto, em alguns casos, apenas isso pode ser insuficiente, 
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especialmente em experimentos onde os dados possuem algum tipo de dependência espacial. 

Assim, para aumentar a precisão das comparações entre tratamentos, uma alternativa é 

considerar na análise o estudo da dependência espacial das variáveis. Com o conhecimento das 

posições relativas das parcelas (dados referenciados), a variabilidade espacial pode ser utilizada 

como um fator positivo, colaborando com os resultados experimentais. Para desenvolver este 

estudo, foram usados dados gerados por simulação. Os dados foram gerados segundo um 

delineamento de blocos casualizados (DBC), com dezoito e cinco tratamentos por bloco; e vários 

cenários de dependência espacial no erro. Comparamos a análise não espacial (que considera os 

erros independentes) com a análise espacial (análise de variância considerando o modelo 

autoregressivo - ANOVA-AR). O uso de ferramentas estatísticas espaciais na análise de dados 

aumentou a precisão da análise, através da redução do Quadrado Médio do Erro. Observamos 

também uma redução do Quadrado Médio do Bloco e do Quadrado Médio do Tratamento. A 

maior redução foi observada na ANOVA-AR3 na maior parte dos cenários simulados, 

principalmente naqueles com forte dependência espacial. Os experimentos com um pequeno 

número de tratamentos por bloco não apresentaram redução do Quadrado Médio do Erro, no 

entanto, a redução do Quadrado Médio do Bloco e do Quadrado Médio do Tratamento, aliado ao 

fato dos dados possuírem dependência espacial, justificaram o uso da ANOVA-AR. 

 PALAVRAS-CHAVE: Modelo autoregressivo, geoestatística, ANOVA-AR 
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