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ABSTRACT: The classical Fisher-Cochran theorem is a fundamental result in many

areas of statistics as analysis of variance and hypothesis tests. In general this theorem is

proved with linear algebraic arguments. An elementary proof is present, based strongly

on geometrical concepts as linear subspaces and orthogonal projections, which may

improve our intuition about the result.
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1 Introduction

Sum of squares are very important in many branches of statistics as in least-
squares methods, analysis of variance, regression analysis, experimental design, etc.
It is usual in experimental context that many factors add up to cause random
error effects and it is desirable to quantify the contribution of each factor. Thus,
the general idea is to split the sum of squares into a number of particular sums of
squares, each corresponding to a different cause of variability. This procedure has its
probabilistic behavior described by a classical result, the Fisher-Cochran theorem,
whose demonstration, strongly based on linear algebra, may be found in textbooks,
as in Rao (2008), in a general situation or a demonstration sketch in Wichura (2006)
and Rencher and Shaalje (2008). This note intends to use the maximum of geometry
and a minimum of linear algebra to obtain a simple alternative proof. Geometry
always give us some intuition about the result and so we hope to be useful for the
students.
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The paper is organized as follows: section 2 with some basic linear algebra
results, section 3 with some basic probability theory results, section 4 with the
geometrical proof and section 5 with conclusions.

2 Some basic linear algebra results

Let us introduce the notation and definitions used for the linear algebra results.
The projection of a linear space Rn onto a subspace V ⊂ Rn, A : Rn →

V ⊂ Rn, is an idempotent linear transformation, that is, for any vector v ∈ Rn,
Av ∈ V and A (Av) = A2v = Av. That is, any v ∈ Rn is projected in V by the
transformation A and any vector in V is fixed by A.

Since A(v−Av) = Av−A2v = Av−Av = 0, the kernel of the transformation
may be expressed as KerA = {v − Av; v ∈ Rn} and the vector space Rn by the
direct sum Rn = V ⊕ KerA. If the subspace KerA is perpendicular to V , the
matrix A is said to be an orthogonal projection. The main result we need about
these projectors is:
Proposition: A projection matrix A : Rn → V ⊂ Rn is orthogonal if, and only if,
it is symmetric.
Proof :

Observe that for any pair (v,w) , v,w ∈ Rn, 〈Av,w〉 =
〈
v,ATw

〉
and if we have

〈Av,w〉 = 〈v,Aw〉 ∀v,w then AT = A.

(⇒) Suppose that the projection is orthogonal. Then, ∀v,w ∈ Rn:

(a) 0 = 〈Av − v,Aw〉 = 〈Av,Aw〉 − 〈v,Aw〉 ⇒ 〈Av,Aw〉 = 〈v,Aw〉 .

(b) 0 = 〈Aw − w,Av〉 = 〈Aw,Av〉 − 〈w,Av〉 ⇒ 〈Aw,Av〉 = 〈w,Av〉.

Thus, (a) and (b) imply that 〈v,Aw〉 = 〈w,Av〉 and therefore A is symmetric.
(⇐) Suppose now that matrix A is symmetric. Then,

〈v −Av,Aw〉 = 〈v,Aw〉 − 〈Av,Aw〉
= 〈v,Aw〉 −

〈
v,ATAw

〉
= 〈v,Aw〉 −

〈
v,A2w

〉
(A is symmetric)

= 〈v,Aw〉 − 〈v,Aw〉 = 0 (A is a projection)

Thus v − Av and Aw are orthogonal vectors, that is, KerA⊥V and therefore
A is orthogonal.

If A is a n×n matrix and y is a n×1 vector, then the product yTAy is known
as a quadratic form. Observe that A can always be supposed to be symmetric
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because, if it is not, it is possible to construct the same quadratic form with a
symmetric matrix (would you like to verify?). If one calls ai the i-th column of A,
then the quadratic form may be rewritten as yTAy =

〈
(y1,...,yn) ,

(
aT1 y,...,a

T
ny
)〉

=
n∑

i=1

yi a
T
i y. For theory of quadratic form and Gauss-Markov estimator see Eaton

(1970) and Haberman (1975).
Recall that the rank of a matrix is the dimension of its image subspace and is

given by the number of its linearly independent columns.

3 Some basic results on probability theory

Let us introduce the notation and definitions used for the Probability theory
results.

If X is a standard normal random variable, X ∼ Normal (0,1), and
X1, X2 ,...,Xn is a sequence on n independent copies of X then X2

1 + ... + X2
n has

chi-square density with n degrees of freedom, with notation
(
X2

1 + ...+X2
n

)
∼ χ2

n.
If yT = (y1,...,yn) is a vector of independent random variables, with yj ∼

Normal (0,1), j = 1, . . . ,n, then ‖y‖2 ∼ χ2
n.

Given a vector of constants aT = (a1,...,an), the linear combination aT y =

yTa = a1y1 + ...+ anyn is normal, with zero mean and variance ‖a‖2.
If b is another n× 1 vector of constants, then cov

(
aT y,bT y

)
= aT b. Finally, if

a and b are orthogonal, then aT y and bT y are independent (BAILEY, 2008).

4 The Fisher-Cochran theorem

This fundamental results is known since the 1920 (FISHER, 1973), and one of
it’s versions is:

Theorem: If y ∼ Normaln (0,I) and Ai (i = 1,...,k) are symmetric and

idempotent matrices with rank (Ai) = ri and
k∑

i=1

ri = n then the following

statements are equivalent:

a) AiAj = 0 (i 6= j).

b) The quadratic form yTAi y (i = 1,2,..,k) are independent random variables,
distributed as chi-square with ri degrees of freedom.

Proof:

a)⇒ b)
The matrices Ai (i = 1,...,k) are projections, the conditions AiAj = 0 (i 6= j)

imply that if Vi is the image of Ai then Vi and Vj orthogonal subspaces and as
k∑

i=1

ri = n, Rn is the direct sum Rn = A1 ⊕A2 ⊕ ...⊕Ak.
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The basic idea for the proof is to consider a orthogonal basis {v1,v2,...,vn}
adapted to this decomposition, that is, if vs ∈ Vj then or vs+1 ∈ Vj or vs+1 ∈ Vj+1.
Observe that Ai acts as identity over Vi, that is, if v ∈ Vi Aiv = v. In this
case, restrict to v ∈ Vi, vTAi v = vT v = ‖v‖2. In relation to this adapted basis,
any vector y may be decompose as yT v1 + yT v2 + ... + yT vn. Therefore Ai y, the
projection of vector y in Vi is given by Ai y =

∑
vs∈Vi

(
yT vs

)
vs . Such fact implies that

y =
k∑

i=1

Ai y and, therefore, we have the matrix decomposition I = A1+A2+...+Ak.

As consequence:

‖y‖2 = yT I y = yT (A1 +A2 + ...+Ak) y = yTA1 y + yTA2 y + ...+ yTAk y.

Let us analyze the distribution of each quadratic form yTAi y. Using the fact

that Ai y =
∑

vs∈Vi

(
yT vs

)
vs we have yTAi y =

∑
vs∈Vi

(
yT vs

) 2
. Now we can use the

results in section 3:
y ∼ Normaln (0,I) then yT vs ∼ Normal1 (0,1), and for s 6= m, yT vs and

yT vm are independent. Therefore
(
yT vs

)2
is chi-square distributed with one degree

of freedom and yTAi y =
∑

vs∈Vi

(
yT vs

) 2
is chi-square distributed with ri = dim (Vi)

degree of freedom.
Thus indeed, condition a) implies condition b) .
b)⇒ a)
In another words, we have to show that the subspaces Vi (i = 1,2,...,k) are

mutually orthogonal. Without loss of generality, we will proof that V1 and V2 are
orthogonal. Take a generic vector y ∈ V2 (Figure 1). By the orthogonal direct sum
Rn = V1 ⊕ V ⊥

1 , we have the orthogonal decomposition y = y1 + y⊥1 . We have to
proof that the component y1 = 0.

Note that,

yTA2 y = yT y = ‖y‖2 = ‖y1‖2 +
∥∥y⊥1 ∥∥2 = yT1 A1 y1 +

∥∥y⊥1 ∥∥2.
Taking the covariance between these quadratic forms independents

0 = cov
(
yTA2y, y

T
1 A1y1

)
= cov

(
yT1 A1y1, y

T
1 A1y1

)
+ cov

(∥∥y⊥1 ∥∥2, yT1 A1y1

)
.

But y1 and y⊥1 are orthogonal normal random vectors. Therefore they are

independent and so the quadratic forms
∥∥y⊥1 ∥∥2 and yT1 A1 y1 are independent, that

is, cov
(∥∥y⊥1 ∥∥2, yT1 A1y1

)
= 0 which implies that

cov
(
yT1 A1y1, y

T
1 A1y1

)
= var

(
yT1 A1y1

)
= var

(∥∥y⊥1 ∥∥2) = 0.

Therefore y1 = 0 which implies that V1 and V2 are mutually orthogonal.

Rev. Bras. Biom., Lavras, v.37, n.3, p.372-377, 2019 - doi: 10.28951/rbb.v37i3.405 375



Figure 1 - Orthogonality between V1 and V2.

5 Conclusion

It is possible, using orthogonal projection and subspaces, to give, avoiding
intense linear algebra, a simple and intuitive demonstration for the classical Fisher-
Cochran theorem. This approach may have some pedagogical value and certainly
can be extended for understand applications and further generalizations related
with sum of squares.

For a different approach to the Fisher-Cochran theorem we suggests the
references below.
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RESUMO: O teorema clássico de Fisher-Cochran é um resultado fundamental em muitas

áreas da estat́ıstica tais como análise de variância e testes de hipóteses. Em geral, este

teorema é provado com argumentos algébricos lineares. Neste artigo apresenta-se uma

prova elementar baseada fortemente em conceitos geométricos tais como subespaços

lineares e projeções ortogonais que podem melhorar nossa intuição sobre o resultado.

PALAVRAS-CHAVE: Distribuição do qui-quadrado; formas quadráticas; projeções

ortogonais.
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