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ABSTRACT: Originally designed as a way to reflect past performance, chess ratings are
now widely used to reflect players strength with many important aspects in tournament
scheduling, advertising and premium shares. The ELO system has been officially adopted
by World Chess Federation (FIDE). We used Bayesian analysis of actual data from elite
chess players to fit parametric statistical models that could subsidize proposals for rating
system improvement. Although most of the considered options are not new, since based
on well known preference models, the use of a weighed likelihood function to emulate
dynamic rating systems via Bayesian inference is novel. We compared descriptive ability
using marginal likelihood based information criteria. Akaike information criterion was
used to compare predictions. Many of the considered options improve on Elo ratings
and there is strong evidence that dynamic models considering both white advantage and
propensity to draws would result in more accurate systems.
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1 Introduction

Chess is one of the most popular games in the world, being practiced by
millions of people (formally or informally). There is a lot of literature on chess,
thousands of books and magazines, websites and data banks to retrieve games
played from 15 century on and many sources of information on tournaments and
players history. Early introduction of rating systems to estimate players’ relative
strengths played an important role in chess popularity. World Chess Federation
(FIDE) and many national federations, like United States Chess Federation (USCF),
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keep track of players ratings resulting in very important information not only for fair
pairing systems and tournament scheduling but also for marketing and sponsorship
purposes.

The system used by FIDE was developed by the Hungarian-American physicist
Arpad Elo, and it assumes that ratings of players are random variables and
expected result is a function of rating differences. Elo has developed updating
formulae using Gaussian distribution with a convenient standard deviation (and
logistic approximation). Chess community follow official ratings and chess related
professionals use them to describe past performance and to make predictions.
From a statistical viewpoint, Elo’s system is a particular case of preference
models for paired comparisons (BRADLEY and TERRY,1952). One of the
main generalizations of those models are contemplating ties probabilities as in
(DAVIDSON, 1969) with an extra ”tie propensity” parameter.

It is very easy to include in those models a general or player specific parameter
to describe the ”home advantage” of the player conducting white pieces. It is also
possible to tune rating variances or player activity by using alternative formulae
for the expected result. However, most of the comparisons for real data sets using
modifications of ELO system are derived from practical realizations or computing
convenience (GLICKMAN and JONES, 1999; SISMANIS, 2010; KAGGLE, 2020).

Criticism of FIDE ratings are based on well documented effects, like the larger
tendency to draws in elite chess players, the advantage of playing white and the
variability in players activity. This has been adressed by many authors and some
very effective alternative systems have been worked out. ”Glicko” system deal with
heteregeneous variances on rating parameters in a Bradley-Terry type of model
(GLICKMAN, 1999). A fully Bayesian approach using concepts from Glicko system
is implemented in ”TrueSkill” system by Microsoft Research (HERBRICH et al.
2,007). Using more frequent evaluation periods and tuning factors for beginners
and experts has also been used and in fact have changed FIDE ratings calculations
(FIDE, 2020a; USCF, 2020).

In what follows, we analysed actual data from elite chess players. Our objective
is to find parametric statistical models that could subsidize proposals for changes in
the FIDE system. Options considered are based on fitting modifications of Bradley-
Terry (1952) and Davidson (1969) preference models for such unbalanced source of
data. Comparison with ”true” dynamic models in the literature was not considered
in this context since it would be unpractical as they depend on a wider choice of
prior distributions and tuning parameters as frequency of updates and shrinkage
factors. Our choice instead was to emulate dynamic rating systems to make a fair
comparison of different proposals. We carried out Bayesian inference using weighed
likelihood functions and proper prior distributions that where elicited, and then
turned vague using arbitrary higher variance.
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2 Material and methods

2.1 Data

From an initial set of 28, 042 official games in which both players had FIDE
rating > 2, 500 (Grandmaster level), played from January 2010 to November 2012,
we selected the ones from players that would play Grand Prix series 2013 (46
players). This resulted in a Training set with 6, 807 games that will be used to
fit all considered models.

Testing sets used data from 2013 (Grand Prix, Candidates Tournament, World
Cup and other major tournaments) to compare prediction abilities of the models.
This was done in two different ways:

a) Using games in which both players had their rating parameters previously
estimated in the training set, resulting in 411 games played by 36 players
(Testing set A);

b) Using games in which at least one of the players had their rating parameters
estimated in the training set, resulting in 732 games. For those games,
37 players had rating parameters estimated in the training set and for the
remaining 51 we used current FIDE ratings (Testing set B).

Observable data included game date, players identification conducting white
and black pieces (tournament design) and game results recorded as 0, 0.5 or 1,
respectively, for a defeat, draw or win for white pieces. Game dates were used in
time-dependent likelihood functions that emulate rating dynamics.

Table 3 in supplementary material has names, country of origin, and FIDE
ratings (as in December 2012) of all considered elite players. A complete description
(full games, biography, etc) can be found in (CHESSBASE, 2020; CHESSGAMES,
2020; CHESSRESULTS, 2020; FIDE, 2020b).

2.2 Rating models

ELO system, the proposal from BRADLEY and TERRY (1952) and derived
models (hereinafter called BT) have a direct relation. So, let γi be the rating
parameter in BT and Ri its translation in the ELO system scale. Let yij = 1 be
the observed result for a win of player i over player j, yij = 0.5 for a draw and yij = 0
for a loss of player i. ELO (1978) formulated his model for differences of player’s
ratings, each normally distributed with standard deviation 200. The author then
proceeded approximating the expectancy of player i score against player j in the
Gaussian distribution with mean zero and standard deviation

√
2× 2002 ≈ 282.8

by the inverse logistic function using normalizing factor 400 as follows:

E[y = 1|Ri, Rj ] =
1

1 + 10
Dij
400

. (1)
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In which Dij = Rj − Ri. Note that original model has no draw probability
and this result is counted as half win for each player. Thus,

Ri =
400

ln10
γi. (2)

This is the same as a preference probability for i over j in BT. For easy
reading among chess players and arbiters, we present rating estimates corrected to
FIDE-ELO’s scale, like above.

Modifying the model to include a single parameter for all players that
represents a common advantage of playing white will result in the following change
in the linear predictor: D∗ij = Rj − Ri − δ. Similarly, it is possible to make a new
linear predictor D∗∗ij = Rj + δj −Ri − δi, allowing for different advantages of being
white for each player.

Under this specification, likelihood function for BT is written as:

LBT =

n∏
k=1

π
yijk
ikjk

(1− πijk)
(1−yijk), (3)

where πijk is the expected result in favor of white player to win the game and yijk
is the result from kth game between players i (as white) versus j (as black).

The proposal from Davidson (1969) and derived models are hereinafter called
DV. They differ from BT by having three preference classes, directly modeling the
probability of draw. Considering it is not very direct to re-scale parameters of those
models to meet FIDE-ELO ratings, we kept them in the original scale.

Below are described models with a common white advantage parameter δ.
Original model only has one parameter λ related to the drawing propensity. In
what follows, this model can be yielded back making δ = 0. To have models with
specific white advantage parameters for each player we simply replace δ by δi and
δj .

πij = P (i win j) =
eγi+δ

eγj + eγi+δ + eλ+
γi+γj+δ

2

,

πij0 = Pr(i draw j) =
eλ+

γi+γj+δ

2

eγj + eγi+δ + eλ+
γi+γj+δ

2

,

πji = P (i loose j) =
eγj

eγj + eγi+δ + eλ+
γi+γj+δ

2

.

(4)

For DV is possible to rewrite the likelihood function as:

LDV =

n∏
k=1

(
π
I{yijk=1}

ijk π
I{yijk=0,5}

ijk0 π
I{yijk=0}

jik

)
, (5)
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where I{.} is an indicator variable for game result.
Gaussian prior distributions were used for ratings and white advantages. Their

averages were elicited, but with high variances, to allow for easy learning from
data. For BT models, µ hyperparameter was the quantile of FIDE-ELO for the
100th best player and σ was twice the one used for ELO system. This preserves a
proper prior distribution with little information on ratings. For δ, we used a small
but positive average as expected from chess literature, reflecting about 7% increase
in the winning probability for white, with a large standard deviation to allow for
negative values. This also reflected in a proper prior with little information. Specific
distributions chosen for BT are: Ri ∼ N(µ = 2705, σ = 400), δi ∼ N(µ = 50, σ =
40) and δ ∼ N(µ = 50, σ = 40).

For DV models those hyperparameters were just re-scaled, and λ has also a
small but positive value (reflecting common knowledge that draws are more frequent
in games between elite players) with large standard deviation allowing proper priors
with little information. For DVs we chose following prior distributions: γi ∼ N(µ =
15, σ = 400), δi ∼ N(µ = 1, σ = 10), δ ∼ N(µ = 1, σ = 10) and λ ∼ N(µ = 1, σ =
5).

Joint posterior distributions for each model are products of Gaussian priors and
Bernoulli (BT) or multinomial (DV) likelihoods. The full conditional distributions
can be simplified as follows:

BT: Distribution of rating for the ith player (Ri∗) given all other player’s ratings
(R−i∗) and player-specific white advantage parameters δ:

P (Ri∗ | R−i∗ , δ,y) ∝ LBT × e
−(Ri∗−2705)2

320000 (6)

Distribution of the white advantage parameter for the ith player δi given all
other player’s (δi) and all player’s ratings (R):

P (δi∗ | R, δ−i∗ ,y) ∝ LBT × e
−(δi∗−50)2

3200 (7)

In the same fashion, we present full conditional distributions for DV as
follows:

DV: Distribution of rating for the ith player (γi∗) given all other player’s ratings
(gamma−i∗), player-specific white advantage parameters δ and drawing
propensity parameter (λ):

P (γi, | γ−i, δ, λ,y) ∝ LDV × e
−(γi−15)2

32000 (8)

Distribution of white advantage parameters δi for the ith given all other
player’s (δ−i∗), player’s ratings (γ) and drawing propensity parameter (λ):

P (δi∗ | γ, δ−i∗ , λ,y) ∝ LDV × e
−(δi−1)2

200 (9)
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Distribution of drawing propensity parameter (λ) given player’s ratings
(gamma) and white advantage parameters δ:

P (λ | γ, δ,y) ∝ LDV × e
−(λ−1)2

50 (10)

2.3 Sampling from the joint posterior distribution

All inference on the descriptive properties of the models was carried out
on samples from joint marginal distribution for all parameters given training
data. Samples from predictive distributions for each model were also drawn.
This made possible to evaluate model performance in the Testing sets. Markov
Chain Monte-Carlo methods were used to sample the joint posterior distributions.
Sampling from posterior distributions was done using Metropolis-Hastings methods
(HASTINGS,1970) with adaptive candidate generating functions embedded within
Gibbs Sampling algorithm (GILKS et al., 1995).

Normal distributions were used to generate candidate points. Hyperparam-
eters from those distributions were updated after a window of 1, 000 samples. In
what follows, we present marginal summaries from the posterior distributions for
each model and it’s parameters.

For each parameter 3 parallel chains with 130, 000 iterations were drawn. We
burnt the first 50, 000 samples and later used a 20 iterations jump, yielding final
sample size of 4, 000(×3).

Algorithms were implemented in R (R CORE TEAM R, 2020) and sampling
diagnostics were done using (RAFTERY and LEWIS, 1992), (GELMAN and
RUBIN, 1992) and (BROOKS and GELMAN, 1998) criteria implemented on coda
package (PLUMMER et al. 2006).

2.4 Weighed Likelihood to emulate dynamic models

A time related variable ω was created according to Sismanis (2010) to weigh
the likelihood function in a way that old games has less importance than new games.

ωt =
1√

t−tmin
tmax−tmin

, (11)

in which tmin and tmax are, respectively, the time of a game being analyzed and
the time considered as reference to make inference in the Training set.

Using ω in the likelihood function makes for a proxy of true dynamic
models. Other ways to implement dynamic models would require to carry out
the estimation computing posterior averages (or modes) periodically or making a
fully parameterized model in which ratings have a parameter for each time. Those
models would be too much of a computational burden to the purpose of this paper
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whose main objective is to elucidate the effect of having such a correction on rating
models. So we just have implemented time weighing leaving actual dynamic models
for future research. However, we will refer to models with ω weighing the likelihood
as ”dynamic models”, in contrast to ”static models” with ω = 1. Some results are
presented for all 12 models (6 static and 6 dynamic), while others are just presented
for the best version of BT or DV.

2.5 Decision on best models

Decision on best models, both from description and for prediction was based on
direct estimates of AIC (AKAIKE,1974) or its Monte Carlo approximation AICM
(RAFTERY and NEWTON,2007). For prediction models in each scenario we used
two different ideas on how to handle incomplete data:

a) The joint predictive distributions for possible game result from Testing sets
A and B were worked out. This yielded probability estimates of p(y∗|y, θ), in
which y∗ is the new result actually observed in testing sets;

b) Based on p(y∗|y, θ) we evaluated information or distance criteria to realized y∗

in each given model. Those results are numerical approximations of predictive
AIC, AICM and DeFinetti distance measures, in each case.

For predictions using Testing set B, for each player that had not been
monitored, we used ELO rating as given by FIDE in the game day (eventually
rescaled to contemplate model specification in DV). As for δ parameter, the
following proposals were used:

i δi = 0, representing no advantage of conducting white;

ii δi = µδ, or the posterior marginal average for the advantage of playing as
white, found for the model with a single δ;

iii δi = −δj , assuming the estimate for players j could be considered as reverse
effect in his opponent.

Each result was compared to a correspondent reference model using educated
guesses (or naive estimation of probabilities). Assumptions for each of those
references are:

I a win, a draw or a loss are equiprobable, meaning basic 50%− 50% to BT or
1
3 ,

1
3 and 1

3 to DV;

II summaries of historic results for wins, draws and losses from white players’
perspective. This ”proportional” model can be used to check DV.

III the same as previous case, but considering a draw as half a loose and half a
win to check BT, as it is basically a rescaled ELO.
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As a special case to check BT, we used probabilities derived from FIDE ratings
as given in the game day. This represents a true dynamic model that is expected
to outperform its static counterpart. To make fair predictions, however, we used
FIDE ratings from December 2012 for Testing sets A and B.

3 Results and discussion

Samples from joint posterior distribution had good statistical properties and
could be treated as independent. Examples are depict in trace plots from Figures 1
(Michael Adams, BT) and 2 (Shakhriar Mamediarov, DV). That made simpler to
evaluate all post hoc statistics or depict plots from marginal posterior distributions.
Prior information was not relevant to inference as can be seen in the densities
presented in Figures 3 and 4 for respective players and models.
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Figure 1 - Trace plot for samples in posterior distribution for Michael Adams’ rating and
a comon white advantage parameter. BT model with weighed likelihood (ω).
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Figure 2 - Trace plot for samples in posterior distribution for Shakhriar Mamediarov’s
ratings, with common white advantage and drawing propensity parameter.
DV model with weighed likelihood (ω).
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Figure 3 - Posterior density for Michael Adams’ rating (grey), and respective prior density
(black). BT model with a common white advantage parameter (δ) and weighed
likelihood (ω).
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Figure 4 - Posterior density for Shakhriar Mamediarov’s parameters (grey), and
respective prior densities (black). DV model with a common white advantage
parameter (δ) and weighed likelihood (ω).

3.1 Posterior analysis

In Table 1 we present estimates of AIC from different models fitted to Training
set and evaluated in Testing sets. Such estimates can be used for model comparison
by themselves or compared to static references and FIDE-ELO official ratings used
as dynamic reference.

As we can see all the proposed models outperform equivalent reference model.
Regarding BT, the best choice for both static and dynamic models was to use
a single parameter to the advantage of playing white. Posterior average for the
marginal distribution for this parameter in static model was δ̂ = 41.7 with a 95%
HPD given by [33.5 ; 50.6]. In the dynamic model it was estimated as δ̂ = 43.7,
with HPD given by [37.1 ; 50.1]. This is roughly equivalent to say that a player
has a 41.7 increase in its ELO rating if it is assigned to play as white (using static
model), or a 43.7 increase in the dynamic model.

As an example of the static model use, in a game between players A, Ri =
2, 686 and B, Rj = 2, 715, first player would have a 6% increase in its expected
winning probability by playing white, or equivalently, a 2, 727.7 strength. The
same example in the dynamic model would result in a 2, 729.7 strength and 6.3%
increase in the winning chance for A.

In Figure 5 we have shown that ELO ratings are equivalent to BT models
and underestimate probabilities of white victory. BT models with a common white
advantage parameter has shown better fit to actual data. ELO ratings specially
underestimate white advantage with high rating differences (∆R < −200 or ∆R >
200).
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Table 1 - AIC estimates (the smaller the better) for proposed and reference models. Static
models has ωt = 1 and dynamic models has unknown ωt. In boldface are
highlighted smaller values (best models) for each section.

Models Parameters AIC

Bradley-Terry ωt = 1 θ = Ri 8936.4
θ = Ri, δ 8847.2
θ = Ri, δi 8878.6
Equiprobable 9438.5
Proportional with no draws 9474.8
Proportional 11483.2
FIDE-ELO 8947.4

ωt θ = Ri 15841.8
θ = Ri, δ 8847.2
θ = Ri, δi 15644.9
Equiprobable 16788.8
Proportional with no draws 16835.3
Proportional 20458.2
ELO 15901.6

Davidson ωt = 1 θ = γi, λ 12686.9
θ = γi, δ, λ 12477.3
θ = γi, δi, λ 12425.2
Equiprobable 14956.5
Proportional 13573.1

ωt θ = γi, λ 23510.3
θ = γi, δ, λ 21961.1
θ = γi, δi, λ 21887.3
Equiprobable 26610.4
Proportional 24129.0
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All models derived from Davidson basic version were better than respective
reference models. Best model has both players white advantage parameters
and a single drawing parameter, that was estimated as λ = 1, 098 with
HPD95% : [1, 04 ; 1, 15] for the static model and as λ = 1, 106 with
HPD95% : [1, 06 ; 1, 14] for the model with weighed likelihood.

Those estimates are indicative of a prevalent drawing tendency in games played
at this level. Comparing these with rating estimates that one can find in Figure 6,
estimated by the best models (static and dynamic versions) is a good indicative of
the extent those players are prone to draw.

For instance, take the probabilities for expected outcomes of current world
champion Magnus Carlsen (with highest rating γ ≈ 18 or ELO ≈ 3120) playing his
predecessor Ruslan Ponomariov (with rating estimated as γ ≈ 16 or ELO ≈ 2780).
Ignoring white advantage, the expected result would be approximately 70%. But a
win for white would be just as likely as a draw, with around 46.8% probability.

Consider now two much weaker players with the same rating difference, lets
say, γ1 = 12 (ELO ≈ 2084) and γ2 = 10 (ELO ≈ 1787). Even if rating differences in
ELO scale are smaller, due to the proportionality factor, winning chances for white
are higher. In this case, expected result would be about 78.8% with a winning
probability of 66.5% for the first player. This is in strong agreement of what is
observed in practice.

White advantage parameter estimates by the two best versions of DV are
depicted in Figure 7. In here, we found a considerable disagreement between both
models. For the static model, estimates seems to imply that there is a small group
of players that considerably benefit from playing white. For most of the other
players, credibility intervals include (δ = 0). It is worth noting that just Ponomariov
and Andreikin apparently do not perform better than expected as white. It is
possible that due to weaker opposition their results can be biased, but the result
for Mamediarov, Bacrot, Caruana, Shirov and Kramnik are very consistent with
practical observation. As a matter of fact, Topalov’s estimate having such a large
credibility interval (including δ = 0 as likely) is slightly unexpected, but may reflect
his diminished activity in the period.

The estimates from dynamic model, on the other hand, has shown a larger
group of players that benefit clearly from playing white, being Ponomariov the lone
exception and Topalov the most prone to win as white. Again, based on reports
from numerous tournaments and psychological attributes fellow players assign to
ex-world champions, it is a likely result.

Posterior distributions were far off the prior averages. This is clear sign
of likelihood dominance over prior information,

3.2 Predictive analysis

Testing set A

In this section we evaluated prediction for new games involving players that
have parameters estimated in Training set. Table 2 brings AIC estimates for each
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Figure 6 - Ratings in best DV models (γi, δi and λ) showing higher power for dynamic
version. Posterior averages and 95% HPD credibility intervals for player’s
rating parameters γi. Horizontal line indicates average of the group. On top
is the static and on bottom the dynamic version of the model.
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Figure 7 - White advantage in best DV models (γi, δi and λ) showing higher power for
dynamic version. Posterior averages and 95% HPD credibility intervals for
player’s white advantage parameters δi. Horizontal line indicates average of
the group. On top is the static and on bottom the dynamic version of the
model.
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model applied to both Testing sets. For testing set A, In all considered cases BT
dynamic versions outperform the respective static version. One BT and two DV
models beat their respective references. In both cases, best model was the dynamic
version with a time-weighed likelihood, and a common white advantage parameter.

Note that ELO ratings are truly dynamic in its implementation and outperform
other references. This result agrees with recent findings in Delloite Challenges using
BT dynamic models (Sismanis, 2010). This is a strong hint that true dynamic
models (ratings evaluated continuously) would be better proxies to chess strength
than current system.

Testing set B

In Testing set B there are games in which at least one of the players have
parameters estimated in Training set (”first player”). To evaluate predictions it
was necessary to input values for ”new players” that where not in the Training
set. We used FIDE-ELO ratings declared for the game day and three options for
individual δj parameters, namely:

• δj = 0: using no advantage for the new player;

• δj = −δi: using minus the advantage estimated for the ”first player”;

• δj = µδ: using the average of the advantages estimated for all the players.

Using both BT and DV models, the best prediction comes from the ones
with a common parameter for white advantage. Those are also the only models
that outperform all the references in all the criteria. This is an indication that if,
for any reason, individual parameters delta are badly estimated (or estimates are
unavailable) we should use a simpler model with a common parameter δ for better
prediction.

The good features of the ELO dynamic strategy can be improved easily with
a single parameter for white advantage. This could be evaluated for different basis
and purposes, for instance, based on games played in a given year, tournament or
league.

The use of white advantage parameters enhances the fit in all versions. For past
performance, using BT we should keep a single parameter (δ) for white advantage,
but using DV, individual parameters for each player (δi) is the best choice.

Fully parameterized DV may enlighten an interaction of individual white
advantage and the well known effect of increasing drawing probability (λ) with
the average strength of the players. Those models are more difficult to fit, but
could help to better describe past performance and also subsidize more accurate
predictive systems.

We successfully implemented Bayesian inference for all considered models using
R (R CORE TEAM, 2020). Efficiency of the algorithms was not of great concern
as we are not advocating direct use of the models to a new rating system. However,
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Table 2 - AIC estimates for proposed and reference models in Testing sets A and B. We
used boldface to disclose smaller values in each model type. Static models has
ωt = 1 and dynamic versions varying ωt.

Model Parameters Testing Sets
A B

θ = Ri 576.99 1008.11
θ = Ri, δ 570.63 998.69

ωt = 1 δi = 0 θ = Ri, δi 1005.90
δi = µδs θ = Ri, δi 576.33 1009.61
δi = −δf θ = Ri, δi 1028.30

θ = Ri 573.73 1005.06
BT θ = Ri, δ 567.30 995.10

ωt δi = 0 θ = Ri, δi 997.16
δi = µδs θ = Ri, δi 571.76 1000.46
δi = −δj θ = Ri, δi 1012.79

Equiprobable 573.76 1016.76
Proportional, no ties 577.63 1015.09
Proportional 712.37 1179.19
ELO 570.46 1031.60

θ = γi, λ 810.64 1542.32
θ = γi, δ, λ 795.42 1527.77

ωt = 1 δi = 0 θ = γi, δi, λ 1592.32
δi = µδs θ = γi, δi, λ 809.39 1598.47
δi = −δj θ = γi, δi, λ 1637.11

θ = γi, λ 808.17 1548.47
DV θ = γi, δ, λ 792.83 1536.01

ωt δi = 0 θ = γi, δi, λ 1583.53
δi = µδs θ = γi, δi, λ 803.94 1590.32
δi = −δj θ = γi, δi, λ 1671.00

Equiprobable 907.27 1621.36
Proportional 793.66 1537.39
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the analysis presented in here reinforces the idea that FIDE-ELO system should be
revised. Dynamic models using parameters for white advantage and for drawing
probabilities would be a good basis for an alternative system.

4 Conclusion

Comparing past results and predictions, we could show that the use of weighed
likelihood functions is helpful to verify the advantages of dynamic models.

A new system with a single white advantage parameter (δ) could be used to
improve ELO. Both BT or DV could be used as a basis for such system. The
former is closer to current FIDE ratings, but the later has best predictive potential.
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RESUMO: Originalmente planejados para descrever o desempenho pregresso, os sistemas

de ratings do xadrez agora são amplamente usados para refletir a força relativa dos

jogadores, com muitos aspectos importantes na programação de torneios, publicidade

e premiações. O sistema ELO foi adotado oficialmente pela Federação Mundial de

Xadrez (FIDE). Implementamos a análise bayesiana de resultados de jogos da elite do

xadrez mundial para ajustar modelos estat́ısticos paramétricos que poderiam subsidiar

propostas de melhorias no sistema. Embora a maioria das opções consideradas não seja

nova, mas baseadas em modelos bem conhecidos de preferência, o uso de verossimilhança

ponderada para emular sistemas dinâmicos na maneira que implementamos a inferência

bayesiana é novo. Nós comparamos a capacidade descritiva usando critérios de

informação baseados na verossimilhança marginal. O critério de informação de Akaike

foi utilizado para comparar as predições. Muitas das opções consideradas melhoram o

sistema ELO e há fortes evidências de que modelos dinâmicos, considerando tanto a

vantagem das brancas quanto a propensão a empates podem resultar em sistemas mais

acurados.

PALAVRAS-CHAVE: Inferência bayesiana; avaliação de desempenho; modelos de

preferência; esportes.
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SUPPLEMENTARY MATERIAL

Web page: The full description one of the models can be found in
https://danilomachadopires.github.io/index

R-code: R-code for all models is also provided in this web page

Data sets: Four data sets will be provided in the web page as R objects (.rda files)
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Table 3 - Players names, country of origin and FIDE ratings as in December 2012.
Last columns indicate which dataset has the player’s games: TR=Training
set (6, 807 games), A=Testing set A (411 games) and B=Testing set B
(732 games).

Name Country Rating TR A B Name Country Rating TR A B

1 Carlsen, Magnus NOR 2848 x x x 49 Almasi, Zoltan HUN 2689 x
2 Aronian, Levon ARM 2815 x x x 50 Grachev, Boris RUS 2688 x
3 Kramnik, Vladimir RUS 2795 x x x 51 Movsesian, Sergei ARM 2688 x
4 Radjabov, Teimour AZE 2793 x x x 52 Rublevsky, Sergei RUS 2688 x
5 Caruana, Fabiano ITA 2782 x x x 53 Eljanov, Pavel UKR 2687 x
6 Anand, Viswanathan IND 2775 x x x 54 So, Wesley PHI 2682 x
7 Karjakin, Sergey RUS 2775 x x x 55 Bologan, Viktor MDA 2681 x
8 Topalov, Veselin BUL 2771 x x x 56 Fridman, Daniel GER 2667 x
9 Ivanchuk, Vassily UKR 2766 x x x 57 Sargissian, Gabrie ARM 2666 x
10 Grischuk, Alexander RUS 2764 x x x 58 Potkin, Vladimir RUS 2665 x
11 Mamedyarov, Shakhriyar AZE 2764 x x x 59 Granda Zuniga, Julio E PER 2664 x
12 Kamsky, Gata USA 2762 x x x 60 Georgiev, Kiril BUL 2660 x
13 Nakamura, Hikaru USA 2760 x x x 61 Onischuk, Alexander USA 2660 x
14 Gelfand, Boris ISR 2751 x x x 62 Safarli, Eltaj AZE 2660 x
15 Morozevich, Alexander RUS 2748 x x x 63 Khenkin, Igor GER 2659 x
16 Svidler, Peter RUS 2747 x x x 64 Khairullin, Ildar RUS 2658 x
17 Jakovenko, Dmitry RUS 2741 x x x 65 Khismatullin, Denis RUS 2658 x
18 Wang, Hao CHN 2737 x x x 66 Zvjaginsev, Vadim RUS 2658 x
19 Wojtaszek, Radoslaw POL 2734 x 67 Kurnosov, Igor RUS 2657 x
20 Dominguez Perez, Leinier CUB 2734 x x x 68 Dreev, Aleksey RUS 2654 x
21 Leko, Peter HUN 2732 x x x 69 Kobalia, Mikhail RUS 2652 x
22 Ponomariov, Ruslan UKR 2732 x x x 70 Smirin, Ilia ISR 2652 x
23 Tomashevsky, Evgeny RUS 2725 x x x 71 Tkachiev, Vladislav FRA 2649 x
24 Andreikin, Dmitry RUS 2723 x x x 72 Dubov, Daniil RUS 2638 x
25 Areshchenko, Alexander UKR 2720 x 73 Mamedov, Rauf AZE 2637 x
26 Giri, Anish NED 2720 x x x 74 Najer, Evgeniy RUS 2633 x
27 Vachier-Lagrave, Maxime FRA 2711 x x x 75 Popov, Ivan RUS 2632 x
28 Adams, Michael ENG 2710 x x x 76 Guseinov, Gadir AZE 2631 x
29 Navara, David CZE 2710 x 77 Nguyen, Ngoc Truong Son VIE 2625 x
30 Moiseenko, Alexander UKR 2710 x x x 78 Meier, Georg GER 2610 x
31 Malakhov, Vladimir RUS 2709 x 79 Ponkratov, Pavel RUS 2605 x
32 Cheparinov, Ivan BUL 2709 x 80 Mecking, Henrique BRA 2604 x
33 Shirov, Alexei LAT 2708 x 81 Rakhmanov, Aleksandr RUS 2602 x
34 Naiditsch, Arkadij GER 2708 x x 82 Frolyanov, Dmitry RUS 2570 x
35 Nepomniachtchi, Ian RUS 2707 x x x 83 Ghaem Maghami, Ehsan IRI 2554 x
36 Le, Quang Liem VIE 2705 x x x 84 Vasquez Schroeder, Rodrigo CHI 2542 x
37 Riazantsev, Alexander RUS 2705 x x x 85 Salem, A.R. Saleh UAE 2531 x
38 Akopian, Vladimir ARM 2704 x 86 Artemiev, Vladislav RUS 2524 x
39 Bacrot, Etienne FRA 2703 x x x 87 Gundavaa, Bayarsaikhan MGL 2516 x
40 Ding, Liren CHN 2702 x x x 88 Pridorozhni, Aleksei RUS 2512 x
41 Korobov, Anton UKR 2702 x x x 89 Rodriguez Vila, Andres URU 2508 x
42 Fressinet, Laurent FRA 2700 x 90 AL-Sayed, Mohammed QAT 2507 x
43 Kasimdzhanov, Rustam UZB 2696 x 91 Gordievsky, Dmitry RUS 2474 x
44 Wang, Yue CHN 2696 x x x 92 Potapov, Pavel RUS 2460 x
45 Vallejo Pons, Francisco ESP 2694 x x x 93 Cherniaev, Alexander RUS 2447 x
46 Vitiugov, Nikita RUS 2694 x x x 94 Nadanian, Ashot ARM 2428 x
47 Inarkiev, Ernesto RUS 2693 x 95 Pasiev, Rakhim RUS 2384 x
48 Alekseev, Evgeny RUS 2691 x 96 Sibriaev, Aleksandr RUS 2239 x
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Table 4 - Rating estimates for the best BT and DV models for each of the 46
considered players. FIDE-ELO ratings for 2012 (December), and 2014
(May). Rs and Rd are rating estimates for static and dynamic BT
models, γ are rating estimates for static and dynamic DV models, δ are
white advantages estimates for static and dynamic DV models, γ(ELO)
e δ(ELO) are estimates transformed to ELO’s scale.

Names ELO ratings BT DV ωt = 1 DV ωt
2012 2014 Rs Rd γ γ(ELO) δ δ(ELO) γ γ(ELO) δ δ(ELO)

1 Adams, Michael 2710 2750 2729.1 2741.5 16.69 2899.3 0.47 80.88 16.91 2938.3 0.77 134.17
2 Alekseev, Evgeny 2691 2673 2680.3 2688.2 15.94 2768.4 0.17 28.83 16.02 2782.3 0.09 16.21
3 Almasi, Zoltan 2689 2693 2714.8 2720.8 16.46 2860.1 0.51 88.36 16.53 2871.5 0.55 95.71
4 Anand, Viswanathan 2775 2785 2818.2 2820.3 17.72 3077.6 0.02 3.39 17.74 3081.9 0.26 45.64
5 Andreikin, Dmitry 2723 2722 2716 2711.6 16.46 2859.9 -0.03 -5.81 16.41 2850.5 -0.02 -3.89
6 Areshchenko, Alexander 2720 2701 2701.5 2692 16.35 2841 0.35 61.33 16.23 2819.8 0.23 39.36
7 Aronian, Levon 2815 2815 2816.8 2812.5 17.76 3085.1 0.34 58.51 17.67 3069.5 0.52 90.89
8 Bacrot, Etienne 2703 2721 2707.5 2706.4 16.33 2836.2 0.8 139.31 16.36 2841.2 0.88 153.55
9 Carlsen, Magnus 2848 2882 2844.8 2846 18.12 3148.1 0.44 76.79 18.12 3148 0.3 51.6
10 Caruana, Fabiano 2782 2783 2740.4 2726.9 16.78 2914.1 0.62 107.21 16.61 2885.7 0.7 120.81
11 Ding, Liren 2702 2714 2686.7 2678.5 16.07 2791.4 0.34 59.49 15.97 2774.3 0.35 60.78
12 Dominguez Perez, Leinier 2734 2768 2720.8 2728.1 16.37 2844.2 0.55 95.93 16.46 2858.7 0.49 85.42
13 Eljanov, Pavel 2687 2732 2706.2 2718.9 16.25 2823 0.51 88.44 16.43 2854.3 0.22 38.3
14 Gelfand, Boris 2751 2753 2760.9 2751 16.92 2938.8 0.28 48.77 16.74 2908 0.37 64.36
15 Giri, Anish 2720 2746 2711.7 2710.1 16.41 2850 0.07 12.44 16.39 2847.1 0.02 3.47
16 Grischuk, Alexander 2764 2792 2780.6 2786 17.17 2982.3 0.38 65.32 17.23 2992.4 0.37 64.47
17 Ivanchuk, Vassily 2766 2753 2773.4 2771 17.12 2973.7 0.34 59.27 17.08 2966.6 0.36 62.56
18 Jakovenko, Dmitry 2741 2730 2734.6 2739.4 16.62 2887.5 0.42 73.42 16.69 2899.9 0.35 60.56
19 Kamsky, Gata 2762 2713 2776.1 2768.3 17.24 2994.5 0.46 80.05 17.15 2979.6 0.35 60.09
20 Karjakin, Sergey 2775 2770 2793.9 2796 17.39 3021.4 0.27 47.43 17.42 3026.5 0.22 38.82
21 Korobov, Anton 2702 2696 2701.1 2695.3 16.4 2848.9 0.57 99.42 16.39 2847.4 0.58 101.1
22 Kramnik, Vladimir 2795 2783 2809.5 2815.3 17.65 3066.3 0.59 102.97 17.73 3079.7 0.44 76.05
23 Leko, Peter 2732 2737 2733.4 2732.6 16.61 2885.8 0.55 96 16.77 2872.8 0.67 116.87
24 Le, QuangLiem 2705 2712 2725.2 2741.2 16.54 2873.6 0.17 28.76 16.54 2913.8 0.43 75.19
25 Malakhov, Vladimir 2709 2694 2704.5 2717 16.22 2817.8 0.38 66.59 16.42 2852.6 0.55 95.95
26 Mamedyarov, Shakhriyar 2764 2760 2765.8 2782.9 17 2953.2 0.84 145.7 17.22 2991.2 0.84 145.68
27 Moiseenko, Alexander 2710 2707 2683.9 2667.8 16.03 2784.8 0.57 98.66 15.84 2752.2 0.6 104.09
28 Morozevich, Alexander 2748 2719 2756 2718.9 16.95 2944.3 0.4 69.93 16.43 2853.7 0.4 68.97
29 Naiditsch, Arkadij 2708 2700 2686.3 2685.3 16.06 2790 0.46 80.26 16.03 2785.5 0.48 83.56
30 Nakamura, Hikaru 2760 2772 2789 2797.7 17.38 3019.2 0.35 60.45 17.5 3040.4 0.32 55.76
31 Navara, David 2710 2708 2702.2 2692.8 16.21 2816.2 0.33 57.49 16.09 2795.4 0.29 50.18
32 Nepomniachtchi, Ian 2707 2735 2720.3 2726.9 16.46 2858.9 0.17 29.39 16.58 2880.5 0.17 30.25
33 Ponomariov, Ruslan 2732 2723 2739.7 2743.5 16.62 2887.6 -0.06 -10.57 16.68 2897.8 -0.05 -8.97
34 Radjabov, Teimour 2793 2713 2785.4 2785.6 17.23 2993.2 0.12 20.87 17.2 2987.7 0.14 24.78
35 Riazantsev, Alexander 2705 2692 2699.1 2697.7 16.29 2829.4 0.15 25.31 16.29 2829.9 0.18 31.41
36 Shirov, Alexei 2708 2703 2729.4 2748.7 16.63 2889.6 0.61 105.45 16.88 2931.9 0.64 110.65
37 So, Wesley 2682 2731 2671.8 2674.6 15.89 2759.6 0.34 59.79 15.91 2763 0.18 32.05
38 Svidler, Peter 2747 2753 2762.3 2753.4 17 2953.3 0.18 31.5 16.87 2930 0.22 38.38
39 Tomashevsky, Evgeny 2725 2695 2725.5 2722.5 16.52 2869.2 0.56 96.61 16.48 2862.4 0.66 113.99
40 Topalov, Veselin 2771 2772 2730.5 2750.4 16.52 2869.9 0.58 101.18 16.76 2911.9 0.93 162.08
41 Vachier-Lagrave, Maxime 2711 2758 2712.1 2713.3 16.36 2842.8 0.37 63.85 16.38 2846.1 0.45 77.59
42 Vallejo Pons, Francisco 2694 2700 2686.8 2686.6 16.04 2786.3 0.49 85.02 16.02 2783.2 0.4 69.5
43 Vitiugov, Nikita 2694 2742 2708.5 2722.7 16.33 2837.6 0.47 81.58 16.54 2872.9 0.37 64.48
44 Wang, Hao 2737 2734 2746.4 2747 16.83 2924.5 0.39 67.78 16.87 2929.8 0.42 72.5
45 Wang, Yue 2696 2713 2707.9 2711.4 16.28 2827.3 0.42 72.76 16.31 2832.6 0.27 46.82
46 Wojtaszek, Radoslaw 2734 2724 2732.3 2731.2 16.64 2890.5 0.24 40.89 16.66 2894.8 0.26 45.06
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