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 ABSTRACT: To obtain the estimate of random variance in complete and fractional factorial 

experiments with two levels per factor evaluated without repetition, Hamada and Balakrishnan 

(1998) provide a list of several methods. Thus, based on this review, the objective of the present 

study was to compare the estimates of standard deviations with only influences of random causes 

according to four methods: de Lenth (1989), Juan and Pena (1992), Dong (1993) and without any 

restriction on data, here called total standard deviation. For this, a normal random variable with 

10.000 values was simulated, whose simulation was repeated 16 times. Subsequently, they were 

replaced in each of the 16 data sets, 0%, 1%, 2%, 3% and 4% of the random values by outliers in 

order to break the simulated variable randomness. Based on the estimate of the mean absolute 

percentage error (MAPE) obtained in relation to the parametric random standard deviation, it was 

concluded, through regression analysis, that it increased due to the increase in the percentage of 

substitution of random values for outliers, with the exception of that obtained according to the 

method of Juan and Pena (1992). Even so, for data sets with up to 3.68% outliers, the best 

methods for estimating the random standard deviation (random) were those of Lenth (1989) and 

Dong (1993), as they provided the lowest estimates MAPE. Above this percentage and up to 4% 

of outliers, the method of Juan and Pena (1992) proved to be better. However, as the highest 

MAPE estimate provided by the three estimation methods was very low (4.00%), and yet, as the 

differences observed between them were practically negligible, it was concluded that the three 

methods provided good estimates of random and that, consequently, can be recommended to 

estimate the mean square of the residue in complete and fractional factorial experiments with two 

levels per factor and with individual observations per treatment. On the other hand, the total 

standard deviation method was unable to avoid the effect of non-randomness on the estimate of 

the random. 

 KEYWORDS: Residue, random variance; outliers. 

1 Introduction 

When complete and fractional factorial experiments with two levels per factor are 

planned without repetition, the main effects and those of interactions of different orders 
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can be tested if their estimates are considered as values of a normal random variable. In 

such cases, the variance analysis has, when all effects are considered in the model, zero 

degree of freedom for the residue. Therefore, it is not possible to obtain the mean squared 

residues (MSR).  

In a review work, Hamada and Balakrishnan (1998) presented a summary of 24 

methods proposed between 1959 and 1996 to estimate the random standard deviation 

(random), that is, a standard deviation that behaves as the square root of MSR, in complete 

and fractional factorial experiments with two levels per factor and with individual 

observations per treatment. In addition, interpretations were also presented about them 

through a study by data simulation. Subsequently, Ye et al. (2001) proposed a 

modification in one of these methods, in the case of Lenth (1989), because they consider it 

as simple and efficient.  

The main and precursor idea for the emergence of all 24 methods of estimation of 

random  was based on the occurrence  of zero degree of freedom for the residue due  to the 

absence of repetition of factorial experiment treatments, and, consequently, the 

impossibility of its attainment through this basic principle. 

In the area of statistical process control, Mahmoud et al. (2010), Saleh et al. (2015) 

and Soube et al. (2020) also presented new methodologies for estimating the random 

variability of the process through the construction of control charts. 

Those of Lenth (1989), Juan and Pena (1992) and Dong (1993) were selected of the 

methods reviewed by Hamada and Balakrishnan (1998), in order to verify their 

efficiencies when estimating, also, the random, but from a non-variable obtained from data 

sets with individual observations and without considering experimental designs.  As the 

method of Lengh (1989) has been very disseminated in the analysis of factorial 

experiment without repetitions and in statistical software, the purpose was to use similar 

and newer methods. Despite the previous review about the subject, a detailed conclusion 

has not yet been observed, nor according to the imposition tested in the present work. 

2 Purposes 

The purpose of this work was to compare the quality estimate of the random  by the 

methods of Lenth (1989), Juan and Pena (1992), Dong (1993) and without any restrictions 

to the data, here called total standard deviation, of a non-random variable imposed by the 

presence of outliers. Consequently, the purpose was to recommend at least one of them to 

obtain MSR estimate in complete and fractional factorial  experiments with two levels per 

factor and with individual observations per treatment. 

3 Methods of estimation 

3.1 Lenth 

Lenth (1989) presented a relatively simple methodology, which consists of obtaining 

an estimate Lenth of the random, defined as pseudo-standard error (PSE): 

 

𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑃𝑆𝐸 = 1.5 × 𝑀𝑑|𝑒𝑗|, para j = 1, 2, ..., m  n. (1) 
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In order to obtain PSE, first the following quantity is obtained: 

 

𝑠0 = 1.5 × 𝑀𝑑|𝑒𝑖|, para i = 1, 2, ..., n. (2) 

 

As it is possible to observe, the difference between the equations of PSE and of the 

s0 is only in the calculation of the median (Md), being: 

 

|𝑒𝑗| = |𝑒𝑖|2.5𝑠0, (3) 

 

where |𝑒𝑗| – vector that contains only the m absolute estimates of the effects to be used in 

the calculation of the PSE and |𝑒𝑖| = vector that contains all n absolute estimates of the 

effects to be tested.  

In other words, in the equation of the PSE, the median will be lower or, at most, 

equal to that used in the s0, as it removes the most expressive and possibly non-random 

absolute effects. For this reason, PSE is used as the estimate of the random. 

As can be seen, PSE is obtained based only and absolute estimates of effects that are 

less than 2.5s0. This means, therefore, that, at most, n absolute estimates are used to obtain 

them. According to Lenth (1989), PSE is consistent with random only when there are no 

significant effects, that is, when H0i: ei = 0 hypothesis is not rejected. Otherwise, it 

overestimates it. 

3.2 Juan and Pena 

Juan and Pena (1992) proposed an alternative method to that of Lenth (1989), in 

which, initially, the median of all n estimates of absolute effects, called MAD0 is 

calculated. After, another MAD0 is calculated as the median of the estimates of absolute 

effects less than wMAD0, according to a constant w  2. The process of calculating the 

MAD0 and obtaining estimates of absolute effects less than wMAD0 continues until the 

MAD0 value does not change. Finally, the last MAD0 value is defined by IMAD0. 

 

𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑠𝐼𝑀𝐴𝐷 =
𝐼𝑀𝐴𝐷0

𝑎𝑤
, (4) 

 

where aw – correction factor. 

In order to have a better estimate, Juan and Pena (1992) recommended w = 3.5 e        

aw = 0.6578. 

3.3 Dong method 

Dong (1993), in competition with the method of Lenth (1989), proposes the 

following estimate of the random: 
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𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑠𝐷𝑜𝑛𝑔 = √
∑ 𝑒𝑗

2𝑚
𝑗=1

𝑚
 (5) 

where |𝑒𝑗| = (|𝑒𝑖|2.5𝑠0) – vector that contains only m absolute estimates of the effects to 

be used in calculation of the  sDong (j = 1, 2, ..., m  n); 𝑠0 = 1.5 × 𝑀𝑑|𝑒𝑖|; |�̂�𝑖| - vector 

that contains all n e absolute estimates of the effects to be tested (i = 1, 2, ..., n) and Md - 

median. 

3.4 Normal probability plots of effects  

For the construction of the normal probability ploto f the effects, consider the 

estimates of the effects 𝑒1, 𝑒2, ..., 𝑒𝑛 arranged in ascending order; for each estimate  𝑒𝑖, 

there is an accumulated distribution function F(𝑒𝑖) (theoretical). Consequently, there is a 

corresponding zi value of the standardized normal distribution, given by; 

 

𝑧𝑖 =
𝑒𝑖−0

𝑠𝑟𝑎𝑛𝑑𝑜𝑚
, (6) 

 

where F(𝑒𝑖) = 𝐹(𝑧𝑖) = 𝑃(𝑍 ≤ 𝑧𝑖) = 𝛷(𝑧𝑖), 𝑝𝑎𝑟𝑎 𝑖 = 1,2, … , 𝑛. 
In this case, the median position method can be used to calculate the cumulative 

distribution function S(𝑒𝑖) (empirical), as follows: 

 

𝑆(𝑒𝑖) =
𝑖−0,3

𝑛+0,4
. (7) 

 

The 𝑧𝑖
′
value associated to 𝑆(𝑒𝑖) is obtained by: 

 

𝑧𝑖
′ = 𝛷−1[𝑆(𝑒𝑖)], (8) 

 

where (𝑒𝑖)  𝑆(𝑧𝑖
′) = 𝑃(𝑍 ≤ 𝑧𝑖

′) = 𝛷(𝑧𝑖
′), 𝑝𝑎𝑟𝑎𝑖 = 1,2, … , 𝑛.  

In this way, the normal probability plot of the effects can be constructed by 

representing, on the x axis, the estimates 𝑒𝑖′s and, on the y axis, the linearized 

accumulated probabilities or the values (scores) of Z. If the plotted points (𝑧𝑖
′
 vs. 𝑒𝑖) in 

the graph are located approximately along a straight line (𝑧𝑖 vs. 𝑒𝑖), the graph will 

indicate that the estimates of the effects are likely to be values of a normal random 

variable with zero average; systematic deviations from it indicate estimates other than 

zero. 

The rejection of H0i: ei = 0 occurs when you have |𝑒𝑖 |  ME (margin of error), at the 

level of significance α, where: 
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𝑀𝐸 = 𝑡𝛼 2⁄ ,𝑛 3⁄ × 𝑠𝑟𝑎𝑛𝑑𝑜𝑚. (9) 

 

where t/2,n/3 - student's t-distribution value with n/3 degrees of freedom that leaves a /2 

probability at the tail end to the right.  

4 Methods 

4.1 Data simulation 

In order to compare the four methods of estimation of the random, a normal random 

variable was Y (μ = 87.5; 2 = 8.125) with 10000 values was chosen arbitrarily and 

simulated, whose stimulation was repeated 16 times, being: random = 2.85. Subsequently, 

in each of the 16 data sets 100 (1%), 200 (2%), 300 (3%) and 400 (4%) random values of 

Y were replaced by the same and respective quantities of outliers, with the aim of 

breaking their randomness. In addition, the 16 data sets with 10000 simulated random 

values were maintained. 

The outliers were added unilaterally to the right, considering them as all those 

greater that: 

 

𝑞31.5𝑎𝑖𝑞 , (10) 

 

where q3 - quartile 3 and aiq - interquartile range. 

In order to obtain them, a new simulation was performed under normal distribution 

with μ = 87.5 + 6 = 104.6 and 2 = 8.125 of 400 values. And after the confirmation of 

being outliers, the first 100, 200, 300 and 400 replaced the last 100, 200, 300 and 400, 

respectively, in the original data sets. 

Therefore, a total of 80 data sets were generated with five percentage were 

generated, in total, 80 data sets with five percentages of substituting random values for 

outliers: 0%, 1%, 2%, 3% and 4%. 

For the verification of the normality of Y, the Kolmogorov-Smirnov test was applied 

at 5% significance, with the aim of confirming normal randomness in data sets without 

outliers and, non-randomly, in those with substitutions of random values for outliers. The 

choice of the Kolmogorov-Smirnov test was due to the sample containing an excessive 

number of 10000 values. 

4.2 Estimation methods 

The estimate of the random was done by four methods in each of the 80 data sets, 

separately, that is, in 16 data sets with different percentages of substitution of random 

values for outliers. 
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4.2.1 Lenth 

According to the method of Lenth (1989), the estimate of the random of the 

variable Y was obtained by: 

 

𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑃𝐸𝑃 = 1.5 × 𝑀𝑑|𝑦𝑗 − �̅�| (11) 

 

where |𝑦𝑗 − �̅�| = (|𝑦𝑖 − �̅�|2.5𝑠0); 𝑠0 = 1.5 × 𝑀𝑑|𝑦𝑖 − �̅�|; |𝑦𝑖 − �̅�| is vector that contains 

all the absolute deviations of the values in relation to the average of the variable Y (i = 1, 

2, ..., 10,000) and Md - median. 

4.2.2 Juan and Pena 

The method of Juan and Pena (1992) provided the following estimate of the random 

variable Y: 

 

𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑠𝐼𝑀𝐴𝐷 =
𝐼𝑀𝐴𝐷0

0.6578
. (12) 

 

In order to obtain it, the first step was to calculate MAD0 as the median of the 

10,000 absolute deviations of the Y values in relation to their mean. After, another 

MAD0 was calculated as the median of the absolute deviations less than 3.5 × MAD0. 

And so, successively, until obtaining the value of IMAD0, in other words, the value of  

MAD0 that has not changed. 

4.2.3 Dong  

According to the method of Dong (1993), the estimate of the random of the variable 

Y was given by: 

 

𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑠𝐷𝑜𝑛𝑔 = √
∑ (𝑦𝑗 − �̅�)

2𝑚
𝑗=1

𝑚
 

(13) 

 

where |𝑦𝑗 − �̅�| = (|𝑦𝑖 − �̅�|2.5𝑠0); 𝑠0 = 1.5 × 𝑀𝑑|𝑦𝑖 − �̅�|; |𝑦𝑖 − �̅�| is vector that contains 

all the absolute deviations of the values in relation to the variable mean Y (i = 1, 2, ..., 

10.000 e j = 1, 2, ..., m  10.000) e Md - median. 

4.2.4 Total standard deviation 

The fourth method, called the total standard deviation, provided the following 

estimate of the random of variable Y: 
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𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑠𝑇 = √
∑ (𝑦𝑖 − �̅�)210.000

𝑖=1

10.000 − 1
 (14) 

 

This method was used only to serve as a reference for the control of non-

randomness by the other three previous methods, since it will only be efficient when all 

values are random from the same probability distribution. 

4.3 Normal probability plot 

Based on the best or one of the best methods of estimation of the random, normal 

probability plots were constructed for the data sets with 1%, 2%, 3% and 4% of the 

random values replaced by outliers. 

In order to construct the normal probility plot of deviations of the Y values from 

their mean (i = 1, 2, ..., 10.000), the theoretical and empirical cumulative distribution 

functions were considered, as follows: 

 

𝐹(𝑦𝑖 − �̅�) = 𝛷(𝑧𝑖) (15) 

𝑆(𝑦𝑖 − �̅�) =
𝑖 − 0,3

𝑛 + 0,4
= 𝛷(𝑧𝑖

′) (16) 

 

The deviations (𝑦𝑖 − �̅�) were represented on the x axis and the scores (𝑧𝑖 e 𝑧𝑖
′
) on 

the y axis, being: 

 

𝑧𝑖 =
𝑦𝑖 − �̅�

𝑠𝑟𝑎𝑛𝑑𝑜𝑚

= 𝛷−1[𝐹(𝑦𝑖 − �̅�)] (17) 

𝑧𝑖
′ = 𝛷−1[𝑆(𝑦𝑖 − �̅�)] (18) 

where 
∑ 𝑦𝑖

10.000
𝑖=1

10.000
. 

Thereby, if the points plotted on the graph are located approximately along a straight 

line, the graph will have indicated that the deviations were probably values of a normal 

random variable with zero mean, that is, 𝑦𝑖 − �̅� = 0; the systematic deviations from it will 

have indicated deviations other than zero, in other words,  𝑦𝑖 − �̅� ≠ 0. 

4.4 Statistical analysis 

In order to evaluate the quality of the estimate random, the mean absolute percentage 

error (MAPE) were estimated according to the four methods studied and five percentages 

of replacement of the random values by outliers as 
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𝑀𝐴𝑃𝐸 =
1

16
∑ |

𝜎𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑠𝑟

𝜎𝑟𝑎𝑛𝑑𝑜𝑚
|

16

𝑟=1

× 100 =
1

16
∑ |

2.85 − 𝑠𝑟

2.85
|

16

𝑟=1

× 100. (19) 

 

The MAPE values shot the absolute differences between the random standard 

deviations estimated by the four methods and the random. For a good method of 

estimation, it is expected that all 16 differences are equal to zero. 

According to the obtained MAPE values in each of the four methods of estimation 

separately, linear regression analysis was performed as a function of the percentages of 

substitution of random values for outliers, whose regression coefficients were tested, 

separately, by Student t test at 5% significance, after performing the regression analysis of 

variance. The largest regression model adopted was given by: 

 

𝑒𝑝𝑘 = 𝛽0 + 𝛽1𝑝𝑘 + 𝛽2𝑝𝑘
2 + 𝜀𝑘, (20) 

 

where k  1, 2, 3, 4 e 5; epk – observed value of the MAPE at level k; pk – percentage of 

substitution of random values by outliers at level k (0, 1, 2, 3 e 4); 0 – constant of 

regression; 1 e 2 – regression coefficients and k – regression error associated with the 

observed value epk, being that   N (0; 𝑖
2

). 

In order to evaluate the quality of the estimate of the random, the MAPE regression 

analysis was used as a function of the percentages of substitution of random values for 

outliers, this is because the MAPE (dependent variable Y) measures, in percentage and 

absolute, the error estimate. The percentages of outliers represent quantitative levels of 

the independent variable X. Consequently, the absence of the effect of X on Y or, 

otherwise, the lower this effect, the better the efficiency of the estimation method. 

All statistical analyzes were performed using R (R CORE TEAM, 2020). 

5 Results and Discussion 

According to the Kolmogorov-Smirnov test, it was confirmed that normal 

randomness occurred (P  0.05) only in the 16 data sets without outliers. In the other sets 

with 1%, 2%, 3% and 4% substitution of random values for outliers, it was concluded that 

the variables did not behave (P  0.05) in a random way. This implied that in these 64 

data sets with outliers, the total standard deviation was not constituted only by the random 

fraction and that, consequently, the methods of Lenth (1989), Juan and Pena (1992) and 

Dong (1993) should estimate smaller standard deviations, as they try to separate and 

include only the random part of this data. 

In fact, despite the increase in the percentage of substitution of random values for 

outliers, it provided an increase (P  0.05) in the MAPE, according to the estimation 

methods of Lenth (1989), Dong (1993) and the deviation- standard, it was practically 

mitigated by the first two. In addition, the increase in this percentage did not change (P  
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0.05) the estimate of the random by the method of Juan and Pena (1992). Thus, the 

following regression models are adjusted, for 0  pk  4 (Figures 1 and 2): 

𝑒�̂�𝑘 = 1.2673 − 0.4134∗𝑝𝑘 + 0.2770∗𝑝𝑘
2 (𝑅2 = 0.82), for the method of Lenth (1989);  

𝑒�́�𝑘 = 3.47, for the method of Juan and Pena (1992); 

𝑒�̂�𝑘 = 1.4011 − 0.4291∗𝑝𝑘 + 0.2674∗𝑝𝑘
2 (𝑅2 = 0.77), for the method of Dong (1993); 

and 

𝑒�̂�𝑘 = 1.1373 + 18.8409∗𝑝𝑘 − 0.8868∗𝑝𝑘
2 (𝑅2 = 0.93), for the total standard deviation.  

*: significant by Student’s t test (P  0.05). 

 

 

Figure 1- MAPE estimates provided by the methods of Lenth (1989), Juan e Pena (1992) and, Dong 

(1993). 

 

 

Figure 2 - MAPE estimates provided by the total standard deviation method. 
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As already mentioned, the total standard deviation method was the only one that 

failed to avoid the effect caused by the percentages of substituting random values for 

outliers. Consequently, it was unable to avoid the effect of non-randomness, being 

indicated, therefore, only when all the variables evaluated are considered random. 

According to their results, MAPE estimates have increased a lot, that is, from 0.74% 

(without the presence of outliers) to 62.59% (4% of outliers), approximately. 

Lawson (2008) reports that discrepant values can be the main impediment to 

invalidating the variability estimate. Thus, the use of a method that minimizes the effect 

of the non-randomness of the data set will provide a more correct estimate of the random. 

This means, therefore, that in the presence of outliers, the total standard deviation method 

should be avoided. 

The methods of Lenth (1989) and Dong (1993), on the other hand, proved to be the 

same and very sensitive in detecting the presence of outliers and, consequently, in 

estimating more adequately the random, up to approximately 3.68% of them. Without the 

presence of outliers, the average MAPE estimate provided by the two methods was 

1.34%. And for 4% of outliers, from 4.00%. 

On the other hand, the method of Juan and Pena (1992), although not influenced by 

the percentage of substitution of random values for outliers, it provided an estimate of 

MAPE slightly higher and equal to 3.47%. For this reason, it was also very sensitive in 

detecting the presence of outliers and appeared to be relatively better than the two 

previous methods, only when 3.68% to 4% of outliers occurred in the data set. 

However, in practical terms, the differences between the estimates of random 

observed between the methods of Lenth (1989), Juan and Pena (1992) and Dong (1993) 

with up to 4% outliers, were considered irrelevant, given the highest MAPE estimate 

caused by them was approximately 4.00%. 

Consequently, the results obtained in the present work guarantee, as a good 

recommendation, the three methods reported, historically and in short, by Hamada and 

Balakrishnan (1998). 

Based on the estimate of random by the method of Lenth (1989), normal probability 

plots were constructed for data sets with 1%, 2%, 3% and 4% of the random values 

replaced by outliers, which revealed the presence, most of the outliers distanced from the 

straight line (Figure 3). 
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Figure 3 - Normal probability plots of deviations of Y values from their average, for data sets with 

1% (a), 2% (b), 3% (c) and 4% (d) replacement of random values by outliers. 

 

Conclusions 

The methods of Juan and Pena (1992) and Dong (1993), although newer, were not 

more efficient than the method of Lenth (1989). 

The methods of Lenth (1989), Juan and Pena (1992) and Dong (1993) show the 

same and adequate efficiency in estimating the random standard deviation of a non-

random variable as a function of the presence of outliers. 

The methods of Lenth (1989), Juan and Pena (1992) and Dong (1993) are recommended 

to provide the estimate of the mean square of the residue in complete and fractional 

factorial experiments with two levels per factor and with individual observations per 

treatment. 
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 RESUMO: Para obter a estimativa da variância aleatória em experimentos fatoriais completos e 

fracionados com dois níveis por fator avaliados sem repetições, Hamada e Balakrishnan (1998) 

fornecem uma lista de vários métodos. Assim, com base nessa revisão, o objetivo do presente 

trabalho consistiu em comparar as estimativas dos desvios-padrão com apenas influências das 

causas aleatórias de acordo com quatro métodos: de Lenth (1989), de Juan e Pena (1992), de 

Dong (1993) e sem nenhuma restrição aos dados, aqui denominado de desvio-padrão total. Para 

isso, foi simulada uma variável aleatória normal com 10.000 valores, cuja simulação foi 

repetida 16 vezes. Posteriormente, foram substituídos em cada um dos 16 conjuntos de dados, 

0%, 1%, 2%, 3% e 4% dos valores aleatórios por outliers com o objetivo de quebrar a 

aleatoriedade da variável simulada. Com base na estimativa do erro percentual médio absoluto 

(EPMA) obtida em relação ao desvio-padrão aleatório paramétrico, concluiu-se, por meio da 

análise de regressão, que ela aumentou em função do aumento do percentual de substituição dos 

valores aleatórios por outliers, com exceção à obtida de acordo com o método de Juan e Pena 

(1992). Mesmo assim, para conjuntos de dados com até 3,68% de outliers, os melhores métodos 

de estimação do desvio-padrão aleatório (aleatório) foram os de Lenth (1989) e de Dong (1993), 

por terem fornecido as menores estimativas do EPMA. Acima desse percentual e até 4% de 

outliers, o método de Juan e Pena (1992) mostrou-se ser melhor. No entanto, como a maior 

estimativa do EPMA proporcionada pelos três métodos de estimação foi muito baixa (4,00%), e 

ainda, como as diferenças observadas entre eles foram, praticamente, desprezíveis, concluiu-se 

que os três métodos forneceram boas estimativas do aleatório e que, consequentemente, podem 

ser recomendados para estimar o quadrado médio do resíduo em experimentos fatoriais 

completos e fracionados com dois níveis por fator e com observações individuais por 

tratamento. Por outro lado, o método do desvio-padrão total não conseguiu evitar o efeito da 

não aleatoriedade sobre a estimativa do aleatório. 

 PALAVRAS-CHAVE: Resíduo, Variância aleatória, outliers. 
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