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ABSTRACT: In this article, we present the Sacramento distribution of two parameters.

This model competes effectively with the distributions used in the fault data analysis

because it has a non-monotonous hazard function that can shape many forms of hazard.

Some mathematical properties of the new distribution are also presented, including

hazard function, survival, general formula for moments. The maximum likelihood

method is used to estimate the model parameters. We obtain the expected information

matrix and discuss inference methods. Finally, two real data sets are analyzed and

comparisons are made between the new distribution with the Burr XII, Burr III and

Beta Prime distributions to show the flexibility and potential of the new distribution.
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1 Introduction

Generalized distribution models have become very popular and have been
widely used in the last decades to model varied databases such as reliability,
engineering, biological, among other applications. In general, a known theoretical
distribution is used to generalize another distribution and through it this resulting
new model gains more parameters. As is the case of generalized beta distributions.
This distribution class gained popularity following the works of Eugene et al. (2002)
and Jones (2004).
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The advantage of these new models is that they model data better, but
calculations for estimates, moments, etc., are not trivial in many cases. However,
long before these new classes of distributions emerged, some articles studied
properties and theories of the cumulative distribution function and thus proposed
new distributions. For example, Burr (1942) created the Burr system of cumulative
distributions (cdf) proposing twelve different forms of distribution functions. From
this, several studies as Burr and Cislak (1968), Burr (1973), Rodriguez (1977),
Tadikamalla (1980), Wingo (1993), Zimmer et al. (1998), Mousa and Jaheen (2002),
Shao et al. (2004), Raqab and Kundu (2006), Gunasekera (2018) that explored some
of these twelve forms. The Burr distribution has been used in physical applications,
reliability, survival analysis, quality control, forest stands.

Thus, as in the work proposed by Burr and Cislak (1968), we introduce
an analytical formulation that allowed to define a new cumulative distribution
function (cdf). Based on the cdf, we proposed the probability density function
named Sacramento (SACR) distribution, with two parameters. To evaluate the
performance of the Sacramento distribution, we performed experiments on real
database. The results the new distribution when compared to some distributions,
used in modeling survival data, presented satisfactory results. Seem to be an
important distribution used in this type of analysis.

In addition to proposing the SACR distribution, we present some important
aspects of this distribution. Those aspects are presented in this article that has
the following structure: Section 1 the introduction. Section 2 we define the SACR
distribution and its respective cumulative distribution function (cdf). Section 3
show the moments. We provides the risk rate function, reliability function and
provides graphical illustrations, in Section 4. Section 5 the quantile function
and hazard quantile function. In Section 6, we discuss parameter estimation of
the distribution using the maximum likelihood method and applications of the
Sacramento distribution was discussed in Section 7. In Section 8 finally our
conclusions.

2 The Sacramento distribution

Suppose X is a random variable that follows the Sacramento distribution
SACR(σ, λ), with scale parameter σ > 0, shape parameter λ > 1. Hence, the
cumulative distribution function (cdf) is given by

F (x) =
2

π
arctan

[(x
σ

)λ]
, x > 0;λ > 1, σ > 0. (1)

The probability density function (pdf) of the SACR distribution for (1) is
given by

f(x) =
2λ
(
x
σ

)−1+λ
π
(

1 +
(
x
σ

)2λ)
σ
, x > 0. (2)
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Figures 1 and 2 illustrate some of the possible shapes of the cdf (1) and pdf
(2), respectively, for selected parameter values.

Figure 1 - Shape of Sacramento distribution for selected parameters.

Figure 2 - cdf of the Sacramento distribution for selected parameter values.

3 Moments

In any statistical analysis the moments are of great importance, especially
in the applied works. Through the moments one can verify asymmetry, tendency,
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for example. In this section, the general expression for the rth moment of the
Sacramento distribution is presented now.

Let X ∼ Sacramento(σ, λ). The rth moment of the random variable X is
defined as follows:

E [xr] = σr sec
[πr

2λ

]
, r < λ, r + λ > 1. (3)

4 Reliability function

Let X be a continuous random variable with cdf given in (1), and pdf (2), the
reliability function S(x) and hazard function h(x) are provided by equations (4)
and (5), as follow:

S(x) = 1− 2 arctan((x/σ)λ)

π
, x > 0; λ > 1, σ > 0. (4)

and

h(x) =
2λ((x/σ)λ)

x(1 + (x/σ)λ)(π − 2 arctan((x/σ)λ))
, x > 0; λ > 1, σ > 0, (5)

The Figure 3 illustrates some of the possible shapes of h(x) for selected values
of (λ, σ): for fixed λ’s, Figure 3 (a), increasing the values, for σ, flattens and shifts
the maximum risk position to the right, for the case in which the σ’s are fixed,
Figure 3 (b), it shows that in increasing the λ values, the maximum values of the
hazard functions are directly proportional and the non-variation of the σ parameter
means that there is no translation of the hazard function. Furthermore, h(x) → 0
as x→ 0 and h(x)→ 0 as x→∞, for all σ > 0 and λ > 1.
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(a) Examples of Sacramento Hazard Func-
tions for λ = 5.

(b) Examples of Sacramento Hazard Func-
tions for σ = 5.

Figure 3 - Plot of Sacramento Hazard Functions.

4.1 Stress-strength reability

Let X and Y be independent random variables SACR with parameters (λ, σ1)
and (λ, σ1), respectively. In this way, the component X represents the force of a
component and Y the stress acting on it. The probability density functions (pdfs)
of X and Y are given, respectively, by

fx(x;λ, σ1) =
2λ
(
x
σ1

)−1+λ
π

(
1 +

(
x
σ1

)2λ)
σ1

, x > 0; λ > 1, σ1 > 0. (6)

fy(y;λ, σ2) =
2λ
(
y
σ2

)−1+λ
π

(
1 +

(
y
σ2

)2λ)
σ2

, y > 0; λ > 1, σ2 > 0. (7)
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where σ1 and σ2 are unknown parameters and λ is a known common parameter.

R = P [Y < X] =

∫ ∞
0

∫ x

0

2λ
(
x
σ1

)−1+λ

π

(
1 +

(
x
σ1

)2λ)
σ1

2λ
(
y
σ2

)−1+λ

π

(
1 +

(
y
σ2

)2λ)
σ2

dy dx

=

∫ ∞
0

22λ
(
x
σ1

)−1+λ

π2

(
1 +

(
x
σ1

)2λ)
σ1

arctan

[(
x

σ2

)λ]
dx.

=
1

2

[
Sign

[(
1

σ2

)λ] [
−LerchPhi[σ−2λ

1 σ2λ
2 , 2, 1/2]

+

[
π2 − 4λ arctan

[(
σ2

σ1

)λ]
(log[σ1] − log[σ2])

] (
1

σ2

)λ](
1

σ2

)−λ]
,(8)

where Sign is the signum function and the LerchPhi function is defined as follows:

LerchPhi(x, lambda, σ) =

∞∑
n=0

xn

(σ + n)λ
, (9)

for |x| < 1 or |x| = 1 and <(λ) > 1 McPhedran et al. (2006).

5 Sacramento quantile function

Let X be a random variable with distribution function F, and let u ∈ [0, 1]. A
value of x such that F (x−) = P (X < x) ≤ u and F (x) = P (X ≤ x) ≥ u is called a
quantile of order u for the distribution.
The quantile function of Sacramento distribution is obtained by solving the
equation,

u =
2

π
arctan[(

Q(u)

σ
)λ] (10)

Thus, the quantile function is given by

Q(u) = σ λ

√
tan (

πu

2
) , 0 ≤ u ≤ 1 (11)

From the definition in (11) since F is continuous FQ(u) = u, where FQ(u) = u
represents the composite function F (Q(u)) = q and Q′(u) = q(u). We must

∂F (Q(u))

∂u
= q(u)fQ(u) = 1

According to Parzen (1979), the density quantil function is defined as fQ(u),
where f is the density function of X. The hazard rate of X de (5) can be written
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in 11 terms as the hazard quantile function,

H(u) = hQ(u) = (1− u)−1fQ(u)

= [(1− u)q(u)]−1

=

[
π(1− u)σ sec

[
πu
2 ]2
]

tan
[
πu
2

]−1+1/λ

2λ

]−1
. (12)

6 Inference

Consider that X ∼ Sacramento(θ), in which θ = (σ, λ)T is the parameter
vector. The log-likelihood function of θ can be written as

`(θ) = n log(2λ)− n log(πσ) + (λ− 1)

n∑
i=1

log(xi/σ)−
n∑
i=1

log(1 + (xi/σ)2λ) (13)

For a given random sample x = (x1, · · · , xn) ofX, and size n,the total log-likelihood
is ` =

∑n
i=1 `

i, in which `i is the log-likelihood for the i-th remark (i = 1, · · · , n).

The maximum likelihood estimator (MLE) θ̂ de θ can be calculated numerically.
The components of the vector score Uθ = (Uσ, Uλ)T are given by

Uσ =
−n(−1 + λ)

σ
+

n∑
i=1

2λxi(xi/σ)2λ−1

σ2[1 + (xi/σ)2λ]

Uλ =
n

λ
+

n∑
i=1

log(xi/σ)−
n∑
i=1

2 log(xi/σ)(xi/σ)2λ

1 + (xi/σ)2λ
(14)

The maximum likelihood estimate (MLE) θ̂ of θ is obtained by solving the
nonlinear likelihood equations Uσ(θ) = 0, Uλ(θ) = 0. These equations can
not be solved analytically and statistical software can be used to obtain the
MLEs numerically. We can use iterative techniques such as Newton-Raphson,
quasi-Newton algorithms, etc., to obtain the estimate θ̂. In addition, you can use
routines in the R statistical package, such as maxLik, Nlminb, and others, to find
the maximum of the function (13), with initial kicks for the parameter choices. For
interval estimation and hypothesis tests on the model parameters, we require the

2 × 2 unit observed information matrix, given by Jn(θ) = −∂2`(θ)
∂(θ)∂θ>

= −Uij , para

i, j = σ e λ.
Under conditions that are fulfilled for parameters in the interior of the

parameter space but not on the boundary, the asymptotic distribution of

√
n(θ̂ − θ) is N2(0, I(θ)−1),
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where I(θ) is the unit expected information matrix, i.e.,

I(θ) = − 1

n

[
E(Uλλ) E(Uλσ)
E(Uσλ) E(Uσσ)

]
,

whose elements are

E(Uσσ) = −n(λ2−2σ+2λ(1+σ))
2σ2 ,

E(Uλλ) = −nπ2

8λ2 ,

E(Uλσ) = E(Uσλ) = 0.

This asymptotic behaviour holds if I(θ) is replaced by J(θ̂), i.e. the

observed information matrix evaluated at θ̂. The asymptotic multivariate normal
N2(0, I(θ)−1) distribution can be used to construct approximate confidence intervals
for the individual parameters and for the hazard and survival functions.

7 Applications

In this section, the Sacramento distribution was adjusted using real databases
and then compared with the Burr III, Burr XII and Beta Prime distributions in
order to compare them and verify their potentiality and robustness. The first data
set consist of the number of successive failures for the air conditioning system of
each member in a fleet of 13 Boeing 720 jet airplanes Proschan (1963). These
data with 214 observations were also discussed by Dahiya and Gurland (1972),
Gleser (1989), Barreto-Souza et al. (2011) and Kehinde et al. (2018). The second
data set consists of 63 observations, and are the strengths of 1.5 cm glass fibers,
measured at the National Physical Laboratory, England. These data were analyzed
by Smith and Naylor (1987). To obtain the maximum likelihood estimates (MLEs)
for the distribution parameters, the maxLik function of the statistical software R
was used, and the iteration method was Newton Raphson. The estimated values
of the parameters, -2log-Likelihood statistic, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) are presented in the Tables 1 and 2. The
distributions compared to the Sacramento distribution were: Burr III, Burr XII
and Beta Prime.

The Figure 4 shows the fits of the Sacramento, Burr III, Bur XII and Beta
Prime models for the first set of data. According to the illustration, the good fit of
the Sacramento distribution is observed.

The plots of estimated densities of Sacramento, Burr III, Burr IX and Beta
Prime in Figures 4 and 5 show that the Sacramento distribution provides a good
fit for both sets of data.
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Figure 4 - Fitted densities of the Sacramento, Burr III, Burr XII and Beta Prime
distributions for the first data set.

Table 1 - The statistics -2Log-Likelihood, AIC and BIC and estimates of the model
parameters for the Boeing 720 data, the corresponding standard error
(given in parentheses)

MODEL -2Log-Likelihood AIC BIC α β
Sacramento 2080.792 2084.784 2091.256 1.17102 50.83174

(0.07617) (2.09715)
Burr XII 2345.973 2350,18 2356.491 11.649259 0.022139

(0.864568) (0.002306 )
Burr III 2116.623 2116.56 2123.033 0.80032 14.15020

(0.03878) (1.73821 )
Beta Prime 2128.322 2132.322 2138.795 17.0888 0.7571

(0.6503) (0.0478 )
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Figure 5 - Fitted densities of the Sacramento, Burr III, Burr XII and Beta Prime
distributions for the second data set.

Table 2 - AIC, BIC and (MLEs) of the distributions for the second data set
MODEL -2Log-Likelihood AIC BIC α β

Sacramento 41.63148 45.63148 49.88575 6.84883 1.54479
(0.78313) (0.03819)

Burr XII 95.68713 99.68713 103.9414 7.45920 0.32274
(1.29985) (0.06661)

Burr III 72.8382 76.8382 81.09247 4.0818 3.4083
(0.3387) (0.4507)

Beta Prime 56.79804 60.79804 65.05231 36.3642 25.0472
(0.6704) (0.5868)
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Conclusion

In this work, we define a new model called Sacramento distribution. It is
observed that the new distribution of two parameters is quite similar in nature to
the other distributions like Burr III, Burr XII and Beta Prime.

Some mathematical properties are derived and plots of the pdf, cdf and
hazard functions are presented to show the flexibility of the new distribution. We
obtained the quantile function, general formula for the moments, the fdp of the order
statistics, and two measures of entropy. The estimation of maximum likelihood, the
expected and observed information matrices are discussed.

Finally, we fit Sacramento model to two different types real data sets e we
observed that the new distribution presented a more flexible behavior in relation to
the others models compared.

SACRAMENTO, V. P.; SACRAMENTO, K. P. N.; RODRIGUES, F. A. A. A
distribuição Sacramento. Rev. Bras. Biom., Lavras, v.39, n.3, p.434-446, 2021.

RESUMO: Neste artigo, apresentamos a distribuição Sacramento de dois parâmetros.
Este modelo compete efetivamente com as distribuições usadas nas análises de dados
de falha porque tem uma função de risco não monótona, que pode moldar muitas
formas de risco. Algumas propriedades matemáticas da nova distribuição são também
apresentadas, incluindo as funções de risco, de sobrevivência e a fórmula geral para
momentos. O método de máxima verossimilhança foi usado para estimar os parâmetros
do modelo. Obtivemos a matriz de informação esperada e discutimos métodos
inferênciais. Finalmente, dois conjuntos de dados reais são analisados e comparações são
feitas entre a nova distribuição com as distribuições Burr XII, Burr III e Beta Prime,
para mostrar a flexibilidade e o potencial da nova distribuição.

PALAVRAS-CHAVE: Fórmula geral para momentos; função de risco; matriz de

informação esperada; máxima verossimilhança; sobrevivência.
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