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ABSTRACT: A spatial point pattern is a collection of points irregularly located within
a bounded area (2D) or space (3D) that have been generated by some form of stochastic
mechanism. Examples of point patterns include locations of trees in a forest, of cases
of a disease in a region, or of particles in a microscopic section of a composite material.
Spatial Point pattern analysis is used mostly to determine the absence (completely
spatial randomness) or presence (regularity and clustering) of spatial dependence
structure of the locations. Methods based on the space domain are widely used for this
purpose, while methods conducted in the frequency domain (spectral analysis) are still
unknown to most researchers. Spectral analysis is a powerful tool to investigate spatial
point patterns, since it does not assume any structural characteristics of the data (ex.
isotropy), and uses only the autocovariance function, and its Fourier transform. There
are some methods based on the spectral frameworks for analyzing 2D spatial point
patterns. There is no such methods available for the 3D situation and, therefore, the
aim of this work is to develop new methods based on spectral framework for the analysis
of three-dimensional point patterns. The emphasis is on relating periodogram structure
to the type of stochastic process which could have generated a 3D observed pattern.
The results show that the methods based on spectral analysis developed in this work
are able to identify patterns of three typical three-dimensional point processes, and can
be used, concurrently, with analyzes in the space domain for a better characterization
of spatial point patterns.
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1 Introduction

In the study of spatial point processes, each event can be idealized as a point,
and the irregular distribution of the events generated by the point process within a
bounded region (2D or 3D) is called a spatial point pattern. The primary stochastic
component is the spatial location of the event and, thus, the data of interest is the
coordinate of each of these events in the study region (BADDELEY et al., 2015;
DIGGLE, 2003).

The analysis of point patterns is of interest in many different areas of research
such as ecology, epidemiology, and composite materials to name but a few. In
epidemiology, for example, a common problem is to determine whether the cases of
a certain disease are clustered.

The main aim of the spatial point pattern analysis is to characterize how
individuals are located with respect to each other over the space. The analysis is
conducted to characterize the three fundamental spatial point patterns: complete
spatial randomness (CSR), regularity and clustering (DIGGLE, 2003).

Statistical methods for spatial point pattern analysis have been base on
“space-domain” techniques that involve the examination of inter-point distances
within a bounded essentially planar region (BADDELEY et al., 2015; DIGGLE,
2003). Lately, we have observed the increased ability to capture data through
three-dimensional materials, and thus it has been made it possible to extend those
2D space-domain methods to the 3D point patterns analysis (BRAENDGAAR and
GANDERSEN, 1986; BADDELEY et al., 1993, 2015).

Although, the ideas of spectral analysis are widespread and applied in several
areas of knowledge (e.g. signal processing, time series), their potential for analyzing
spatial point patterns is still unexplored (MUGGLESTONE and RENSHAW, 1996).
Bartlett (1964) was the pioneer in suggesting the use of spectral analysis in point
processes, while Renshaw and Ford (1984) and Mugglestone and Renshaw (1996,
2001) have shown how the spectral framework can be an important tool for
exploratory analysis of 2D spatial point patterns. These two-dimensional spectral
methods was applied with success by Araújo et al. (2014) in order to investigate
the the spatial patterns of silicon carbide particles located in an aluminum alloy
matrix (Al/SiC).

Although, spectral framework has shown to be a powerful tool for the
investigation of 2D spatial point patterns, since it does not assume any structural
characteristics of the stochastic point process (e.g. isotropy), and it is based on the
autocovariance function, and its Fourier transform, there is no developed theory
based on the ”frequency domain”for the 3D spatial point pattern analysis.

The aim of this work is to develop new methods based on the spectral
framework that can be used as a tool for the exploratory analysis of three-
dimensional spatial point patterns. The emphasis will be on relating periodogram
structure to the type of typical simulated point patterns.
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2 Three-dimensional spectral function

The methodology for point patterns in volume has not yet been fully
explored, being slightly addressed by Baddeley et al. (1993). The methodology
can be developed as an extension of the theory in two-dimensional point processes.

As in the plane, different spatial point processes can be distinguished by
comparing their first and second order properties.

The first-order three-dimensional intensity function, expanding the two-
dimensional case, is defined as:

λ(s) = lim
vol(B)→0

[

E[N(B)]

vol(B)

]

, (1)

where E[ ] denotes the expected value, B ⊂ R3 is an infinitesimal region around
the point s = (si, sj , sk), and vol(B) is the volume of this space.

The three-dimensional second-order intensity function, for s 6= r, is defined as:

λ(s, r) = lim
vol(B)→0vol(C)→0

[

E[N(B)N(C)]

vol(B)vol(C)

]

. (2)

where B,C ⊂ R3, B is an infinitesimal region around the point s = (si, sj , sk) with
vol(B) being the volume of this space. C is an infinitesimal region around the point
r = (ri, rj , rk) where vol(C) is the volume of this space.

The covariance density function for the three-dimensional case is defined in
equation (3). Also, expanding the two-dimensional case, we have

γ(s, r) = lim
vol(B)→0vol(C)→0

[

E[{N(B)− λ(B)}{N(C)− λ(C)}]

vol(B)vol(C)

]

, (3)

where s ∈ B ⊂ R3, and r ∈ C ⊂ R3.
Developing the equation (3) we have

γ(s, r) = lim
vol(B)→0vol(C)→0

[

E[N(B)N(C)−N(B)λ(C) − λ(B)N(C) + λ(B)λ(C)]

vol(B)vol(C)

]

.

(4)
Using the property of the sum limit and the property of the mathematical

expectation of the sum of two random variables, that is, E[X + Y ] = E[X ] + E[Y ]
in the equation (4), we have

γ(s, r) =

= lim
vol(B)→0vol(C)→0

[

E[N(B)N(C)]

vol(B)vol(C)

]

− lim
vol(B)→0vol(C)→0

[

E[N(B)λ(C)]

vol(B)vol(C)

]

− lim
vol(B)→0vol(C)→0

[

E[λ(B)N(C)]

vol(B)vol(C)

]

+ lim
vol(B)→0vol(C)→0

[

E[λ(B)λ(C)]

vol(B)vol(C)

]

(5)
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We observe that in equation (5), the first limit corresponds to the equation
(2), whereas the regions are disjoint.

Thus, we have
E[N(B)λ(C)] = E[N(B)]E[λ(C)],

E[λ(B)N(C)] = E[λ(B)]E[N(C)] and E[λ(B)λ(C)] = E[λ(B)]E[λ(C)],

because the spaces are independents.
When the volume of B (vol(B)) and the volume of C (vol(C)) approach to

zero, λ(B) tends to λ(s) e λ(C) tends toλ(r), respectively.
Considering the fact that

λ(s) = lim
vol(B)→0

[

E[N(B)]

vol(B)

]

,

and

λ(r) = lim
vol(C)→0

[

E[N(C)]

vol(C)

]

,

then, the equation (5) is:

γ(s, r) = λ(s, r) − λ(s)λ(r) − λ(s)λ(r) + λ(s)λ(r).

or yet,
γ(s, r) = λ(s, r) − λ(s)λ(r). (6)

The equation (3) is related to equation (1) and equation (2) by equation (6).
The definition of covariance density function in the equation (3) for s 6= r. This

can be extended to include the case s = r, assuming that the process is ordered,
that is, P [N(B) > 1] = 0, and, therefore,

E[N(B)2] = E[N(B)] = λ(s)vol(B). (7)

Thus, the complete covariance density function is given by

k(s, r) = λ(s)δ(si − ri)δ(sj − rj)δ(sk − rk) + γ(s, r), (8)

where δ is the Dirac delta.
The three-dimensional spectral density function is defined as the Fourier

transform of the complete covariance function, and may be obtained from the
expansion of the theory presented in Bartlett (1964).

Let f : R3 → C be an integrable function, then a three-dimensional Fourier
transform ℑ{f(p, q, t)} = F (wp, wq, wt) is defined by

F (wp, wq, wt) =

∫

R3

f(p, q, t)e−i(wpp+wqq+wtt)dpdqdt, (9)

where wp, wq e wt are frequencies and C is a set of complex numbers.
The power spectrum of the three-dimensional Fourier transform is defined by
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P = {ℜ {F (wp, wq, wt)}}
2 + {Im {F (wp, wq, wt)}}

2 =| F (wp, wq, wt) |
2, (10)

with phase angle

φ = arctan

{

Im{F (wp, wq, wt)}

ℜ{F (wp, wq, wt)}

}

. (11)

Bartlett(1964) advocates to use the density function of the complete covariance
as an alternative to describe a spatial point process in order to perform the spectral
analysis. The spectral density function of a point process (or spectrum point) is
defined as the Fourier transform of the density function of the complete covariance.
It can be formally defined in a three-dimensional space as

f(wp, wq) =

∫

R3

∫

R3

k(s, r)e−i(w⊤

p s+w⊤

q r)dsdr, (12)

s ∈ R3, r ∈ R3, with inverse given by

k(s, r) =

∫

R3

∫

R3

f(wp, wq)e
i(w⊤

p s+w⊤

q r)dwpdwq, (13)

where wp ∈ P ⊂ R3 and wq ∈ Q ⊂ R3 and ⊤ denotes transpose.
Substituting equation (8) in the equation (12), we get a more general spectral

density function as follows:

f(wp, wq) =

∫

R3

∫

R3

λ(s)δ(si − ri)δ(sj − rj)δ(sk − rk)e
−i(w⊤

p s+w⊤

q r)dsdr

+

∫

R3

∫

R3

γ(s, r)e−i(w⊤

p s+w⊤

q r)dsdr (14)

In the case of a three-dimensional isotropic point process where c = (ci, cj , ck),
we get the equation (14) in the following form

f(wp, wq, wt) = λ+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

γ(ci, cj , ck)e
{−i(wpci+wqcj+wtck)}dcidcjdck, (15)

where (wp, wq, wt) ∈ R3.
Proof :
An isotropic point process has constant first order intensity λ(s) = λ. In this

case, the covariance function depends only on the distance and not on the direction,
that is, γ(s, r) = γ(c), where c = s − r, for s = (si, sj , sk) and r = (ri, rj , rk).
Therefore, the equation (14) is given by

f(wp, wq, wt) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

λδ(si − ri)δ(sj − rj)δ(sk − rk)

. e{−i(wpci+wqcj+wtck)}dcidcjdck

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

γ(c)e{−i(wpci+wqcj+wtck)}dcidcjdck, (16)
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where (wp, wq, wt) ∈ R3.
If the Fourier transform of the Dirac delta function is equal to one, the equation

(16) can be written as

f(wp, wq, wt) = λ+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

γ(c)e{−i(wpci+wqcj+wtck)}dcidcjdck, (17)

where (wp, wq, wt) ∈ R3.

The three-dimensional discrete Fourier transform of the coordinates is defined
as

F (p, q, t) =

Nx
∑

j=1

e
−2πi(

px1j
l1

+
qx2j
l2

+
qx3j
l3

)
= A(p, q, t) + iB(p, q, t), (18)

where Nx is the number of events within a bounded three-dimensional space of sides
l1, l2, where l3 and (x1j , x2j , x3j) denotes the location of the events for j = 1, ..., Nx.

The periodogram, also known as the sample spectral function, can be
calculated as the power spectrum of the discrete Fourier transform of the coordinates
as

f̂(wp, wq, wt) = |F (p, q, t)|2 = {A(p, q, t)}2 + {B(p, q, t)}2, (19)

where

(wp, wq, wt) =

(

2πp

l1

2πq

l2
,
2πt

l3

)

. (20)

The coordinate of the periodogram, or the real part of the discrete Fourier
transform, has asymptotically Normal distribution (Nx → ∞) with mean (µ(A))
equal to zero e variance (V (A)) equal to the spectral function divided by two
(MUGGLESTONE and RENSHAW, 1996). Thus, for the three-dimensional case,
we have

A(p, q, t) ∼ N

(

0,
f(wp, wq, wt)

2

)

, (wp, wq, wt) 6= (0, 0, 0). (21)

If (wp, wq, wt) = (0, 0, 0), thus A(0, 0, 0) has asymptotically Normal
distribution with mean (µ(A)) = λ, and variance (V (A)) equal to the spectral
function divided by two in (wp, wq, wt) = (0, 0, 0) and, therefore,

A(0, 0, 0) ∼ N

(

λ,
f(0, 0, 0)

2

)

. (22)
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The imaginary part of the discrete Fourier transform also has an asymptotic
Normal distribution with mean (µ(B)) equal to zero and variance (V (B)) equal to
the spectral function divided by two. Thus, for the three-dimensional case, we have

B(p, q, t) ∼ N

(

0,
f(wp, wq, wt)

2

)

, (wp, wq, wt) 6= (0, 0, 0). (23)

B(0, 0, 0) = 0, where A(p, q, t) and B(p, q, t) are asymptotically independents.
Considering (wp, wq, wt) 6= (0, 0, 0), we have

2f̂(wp, wq, wt)

f(wp, wq, wt)
∼ χ2

2, (wp, wq, wt) 6= (0, 0, 0) (24)

Proof : If A(p, q, t) e B(p, q, t) have distributions (21) and (23), respectively,
them

A(p, q, t)− µ(A)
√

V ar(A)
∼ N(0, 1), (25)

and

B(p, q, t)− µ(B)
√

V ar(B)
∼ N(0, 1). (26)

If Z1, Z2, ..., Zn are standard normal random variables, thus

n
∑

i=1

Z2
i ∼ χ2

n. (27)

It can be proved that if two random variables have known and equal moment-
generating functions, then they have the same distribution function (MAGALHÃES,
2006).

Let

U =
n
∑

i=1

Z2
i . (28)

Then, the moment-generating function of U is given by

E(etU) = E(et
n
∑

i=1

Z2
i ) = E(etZ2

1 )...E(etZ2
n)

=
n
∏

i=1

E(etZ
2

i ) =
n
∏

i=1

(

1
√

(1− 2t)

)

=

(

1

1− 2t

)
n
2

, t <
1

2
, (29)
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where
(

1
1−2t

)
n
2

, t < 1
2 is the moment-generating function of the distribution χ2

n.

Therefore,

f̂(wp, wq, wt)
f(wp,wq,wt)

2

=
(A(p, q, t)− 0)2

f(wp,wq,wt)
2

+
(B(p, q, t))2

f(wp,wq,wt)
2

= Z2
1 + Z2

2 . (30)

that is,

2f̂(wp, wq, wt)

f(wp, wq, wt)
∼ χ2

2, (wp, wq, wt) 6= (0, 0, 0). (31)

In the case of (wp, wq, wt) = (0, 0, 0), we have

2f̂(0, 0, 0)− λ

f(0, 0, 0)
∼ χ2

1 (32)

Proof :
Let (wp, wq, wt) = (0, 0, 0), thus

2f̂(wp, wq, wt)

f(0, 0, 0)
=

f̂(0, 0, 0)
f(0,0,0)

2

=
(A(0, 0, 0)− λ)2 + (B(0, 0, 0))2

f(0,0,0)
2

. (33)

Considering B(0, 0, 0) = 0, thus

f̂(0, 0, 0)
f(0,0,0)

2

=
(A(0, 0, 0)− λ)2

f(0,0,0)
2

. (34)

and, therefore,

(A(0, 0, 0)− λ)2

f(0,0,0)
2

= Z2
1 , (35)

that is,

2f̂(0, 0, 0)− λ

f(0, 0, 0)
∼ χ2

1. (36)

An advantage of the spectral analysis in relation to the analysis in the space
domain is the possibility to evaluate the point pattern considering both the scale and
the direction. In the three-dimensional case, each f̂(wp, wq, wt) can be represented

in spherical coordinates using the notation ĝ(wr , wθ, wφ), where r =
√

p2 + q2 + t2,

θ = tan−1

(

q

p

)

and φ = tan−1

(

√

p2 + q2

t

)

(ARAÚJO, 2013).

The mean values of the ordinates of the periodogram for similar values of r
investigate scale features of the point pattern under the hypotheses of isotropy.
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The R-spectrum f̂R(r) is defined as

f̂R(r) =
1

nr

∑

r′

∑

θ

∑

φ

ĝ(wr′ , wθ, wφ), r = 1, 2, ..., (37)

where the total sum is divided by nr ordinates of the periodogram, for which r−1 <

r′ ≤ r.
The mean values of the ordinates of the periodogram for similar values of

θ investigate directional features of the point pattern. The θ-spectrum, f̂θ(θ), is
defined as

f̂θ(θ) =
1

nθ

∑

r

∑

θ′

∑

φ

ĝ(wr , wθ′ , wφ), θ = 00, 100, 200, ..., 1700, (38)

where the total sum is divided by nθ coordinates of the periodogram, for which
θ − 50 < θ′ ≤ θ + 50.

The mean values of the ordinates of the periodogram for similar values of
φ investigate directional features of the point pattern. The φ-spectrum, f̂φ(φ), is
defined as

f̂φ(φ) =
1

nφ

∑

r

∑

θ

∑

φ′

ĝ(wr , wθ, wφ′), φ = 00, 100, 200, ..., 1700, (39)

where the total sum is divided by nφ coordinates of the periodogram, for which
φ− 50 < φ′ ≤ φ+ 50.

Using the additivity property of random variables with χ2 distribution, we
have

∑

r′

∑

θ

∑

φ

ĝ(wr′ , wθ, wφ)

g(wr′ , wθ, wφ)
∼

χ2
2nr

2nr

, (40)

where r = 1, 2, ...
∑

r

∑

θ′

∑

φ

ĝ(wr , wθ′ , wφ)

g(wr, wθ′ , wφ)
∼

χ2
2nθ

2nθ

, (41)

where θ = 00, 100, 200, ..., 1700.

∑

r

∑

θ

∑

φ′

ĝ(wr , wθ, wφ′)

g(wr, wθ, wφ)
∼

χ2
2nφ

2nφ

, (42)

where φ = 00, 100, 200, ..., 1700.
The original idea of Renshaw and Ford (1983) for performing the spectral

analysis of spatial point patterns is to place the data on a fine two-dimensional
grid. This idea can be easily expanded to the three-dimensional case where the
positions of the events are allocated at the intersections of a fine three-dimensional
grid.

The sample autocovariance is defined as
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Cijk =
1

mno

m−i
∑

r=1

n−j
∑

s=1

∑

Ωu

XrsuXr+i,s+j,u+k (43)

where Ωu = 1, ..., o− k; k ≥ 0 or Ωu = −k + 1, ..., o; k < 0 e Xrsu is the matrix
of observations corrected by the mean, where r = 1, ..., m; s = 1, ..., n; u =
1, ..., o.

In the three-dimensional case, the matrix is obtained by subtracting the value
of the sample mean in each element of the matrix M.O ×N .

The periodogram can be calculated trough the sample autocovariance, as seen
in the equation (43), by expanding the two-dimensional case presented by Renshaw
and Ford (1983). Therefore, the periodogram is defined as

f̂(wp, wq, wt) =

m−1
∑

i=−m+1

n−1
∑

j=−n+1

o−1
∑

k=−o+1

Cijkcos(iwp + jwq + kwt). (44)

The spatial autocorrelation matrix is given by
{

Cijk

s2

}

, where s2 is the sample

variance of {Xrsu}. The spatial autocorrelation matrix measures the correlation of
the data with each other, and it has central value given by C000

s2
= 1.

The equation (44) for the frequency values (wp, wq, wt) =
(

2πp
m

, 2πq
n

, 2πt
o

)

is
given by

f̂

(

2πp

m
,
2πq

n
,
2πt

o

)

= m.n.o(a2pqt + b2pqt), (45)

where apqt is the real part, and bpqt is the imaginary part of the equation (46) as

apqt + ibpqt =
1

mno

m
∑

r=1

n
∑

s=1

o
∑

u=1

Xrsue
2πi( pr

m
+ qs

n
+ tu

o ). (46)

Developing the equation (46), we have

apqt + ibpqt =
1

mno

m
∑

r=1

n
∑

s=1

o
∑

u=1

Xrsu{cos

[

2π

(

pr

m
+

qs

n
+

tu

o

)]

+ isen

(

2π

(

pr

m
+

qs

n
+

tu

o

))

}. (47)

Thus,

apqt =
1

mno

m
∑

r=1

n
∑

s=1

o
∑

u=1

Xrsucos

[

2π

(

pr

m
+

qs

n
+

tu

o

)]

(48)

e

bpqt =
1

mno

m
∑

r=1

n
∑

s=1

o
∑

u=1

Xrsusen

[

2π

(

pr

m
+

qs

n
+

tu

o

)]

. (49)

The frequency range is about p = 0, ...,m−1; q = 0, ..., n−1; t = 0, ..., o−1.

186 Rev. Bras. Biom., Lavras, v.39, n.1, p.177-193, 2021 - doi: 10.28951/rbb.v39i1.524



3 Material and methods

We have simulated three typical three-dimensional spatial point patterns
with structures of spatial dependence associated with complete spatial randomness
(CSR), cluster and inhibition processes.

Figure 1 shows a realization of 675 simulated events within a unit cube
following the homogeneous Poisson process or CSR.
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Figura 1 - Typical realization of a homogeneous Poisson process with 675 events
distributed in a 3D space.

Figure 2 shows a typical realization of a three-dimensional point pattern with
870 simulated events with strong evidence for clustering.
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Figura 2 - Typical realization of a point pattern with 870 events distributed in
clusters in a 3D space.

Figure 3 shows a typical realization of a three-dimensional point pattern with
264 events of a regular point process with inhibition distance equal to δ = 0.1.
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Figura 3 - Typical realization of a point pattern with 264 events regularly
distributed in a 3D space with inhibition distance equal to δ = 0.1.

These three typical realizations of 3D spatial point patterns will be analyzed
using both: a fine 3D regular grid with M×N×O knots, and the three-dimensional
spectral theory developed in the previous sections (equations (43), (45), (48), and
(49)).

All analyzes were performed using functions developed in software R (R CORE
TEAM, 2020).

Results and discussion

It is well known that the idea of complete spatial randomness (CSR) provides a
useful benchmark against which to compare observed patterns. A stochastic model
for a CSR is the homogeneous Poisson process in which points are distributed
uniformly across the space independently of one to another (DIGGLE, 2003).

Mugglestone and Renhaw (1996) affirm that the spectrum of the CSR contains
all frequencies to the same degree. Thus, to detect departures from CSR, in an
exploratory way, it is necessary to examine the shape of the periodogram to decide
whether it is flat (characteristic shape of a periodogram associated with CSR) or
not flat (various alternatives to CSR).
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Figure 4 shows the periodogram of the 3D spatial point pattern presented in
Figure 1. The shape of the periodogram is broadly flat, reflecting the absence of
structure in the three-dimensional simulated spatial point pattern. The observed
fluctuations in this periodogram are entirely due to sampling variations.
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Figura 4 - Periodogram of the simulated three-dimensional homogeneous Poisson
point pattern.

One of the alternatives to CSR occurs when events display clustering (Figure
2). It is obvious from Figure 2 that there is strong clustering of events in the
spatial pattern. The shape of the periodogram for spatial cluster point patterns
should exhibit very large low frequency values at all angles (MUGGLESTONE and
RENSHAW, 1996). Also, the periodogram features a constant flat shape close to
zero. That is exactly we can observe in the periodogram presented in figure 5.
Thus, the periodogram shows evidences for clustering of events in the spatial point
pattern presented in Figure 2.
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Figura 5 - Periodogram of the simulated three-dimensional clustered spatial point
pattern.
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Although the map of the pattern (Figure 3) shows evidence of a minimum
inter-event distance (inhibition distance), the underlying regular structure is almost
impossible to detect by eye. The shape of the periodogram of regular patterns
should have very small low frequency values, and feature a broadly constant flat
shape different from zero, as we can see in figure 6. Thus, the periodogram of the
spatial point pattern presented in Figure 3 shows evidence of having a minimum
inhibition distance.
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Figura 6 - Periodogram of the simulated regular three-dimensional spatial point
pattern.

Although these results show that the spectral analysis can be competitive with
the analysis based on the space domain for the characterization of three-dimensional
spatial point patterns, some problems must be kept in mind that may limit a wider
diffusion of its application.

First, spectral theory is, in general, more difficult to understand than theory
in the space domain. For example, Haining (1982) believes that spectral analysis
”may provide considerable insight into the structure of point patterns, but the
need for large data sets,the arbitrary nature of the smoothing procedures, and the
complicated statistical inference problems have all discouraged its wider use”.

In addition, the spectral theory for spatial point pattern analysis is dispersed
in the literature, while the theory in the space domain is consolidate and available
in several books (DIGGLE, 2003; BADDELEY et al., 2015).

Another problem refers to the absence of computer programs available to carry
out spatial spectral analysis. We would like to point out that all R functions used
in this paper are available on request to the first author.

Finally, we should observe that spectral spatial analysis, more than a
competitive tool, it is an alternative tool that can be used concurrently with space
domain methods to investigate three-dimensional spatial point patterns.
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Conclusions

This paper aimed both: to present theoretical aspects involved in spectral
analysis of three-dimensional spatial point patterns, and to show how this theory
can be used in the exploratory analysis of such patterns.

We demonstrated that the theory of spectral analysis of three-dimensional
spatial point patterns can be developed as an extension of the theory of two-
dimensional point processes.

We also showed that the spectral methods developed in this paper were able to
correctly identify three typical three-dimensional simulated spatial point patterns
(complete spatial randomness (CSR), regularity and clustering).

In this work, the spectral theory was used only to generate periodograms,
whose shapes were analyzed visually. It is well known that exploratory analysis
based on visual inspection is dependent on the observer, which is not recommended.
However, the theory presented in this work makes it possible to develop more formal
methods of analysis than exploratory analysis. Thus, it’s worth pointing out that
other works are under way by the authors in order to develop formal methods
based on spectral framework for testing against the hypothesis of complete spatial
randomness in three-dimensional spatial point patterns.
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RESUMO: Uma configuração pontual espacial é uma coleção de pontos localizados

irregularmente dentro de uma área (2D) ou espaço (3D) que foram gerados por algum

mecanismo estocástico. Exemplos de padrões pontuais incluem localizações de árvores

em uma floresta, de casos de uma doença em uma região ou de part́ıculas em uma

seção microscópica de um material compósito. A análise de padrões pontuais é usada

para determinar a ausência (completa aleatoriedade espacial) ou presença (regularidade

e agrupamento) de estrutura de dependência espacial dos eventos no espaço. Métodos

no domı́nio espacial são amplamente utilizados para esse fim, enquanto os métodos

conduzidos no dominio da frequência (análise espectral) ainda são desconhecidos para

a maioria dos pesquisadores. A análise espectral é uma ferramenta poderosa para

investigar padrões de pontos espaciais, uma vez que não assume, a priori, caracteŕısticas

estruturais de dados (por exemplo, isotropia) e usa apenas a função de autocovariância e

sua transformada de Fourier. Existem alguns métodos baseados nas estruturas espectrais

para analisar padrões de pontos espaciais 2D. Nao existem tais métodos dispońıveis

para a situação 3D e, portanto, o objetivo deste trabalho é desenvolver novos métodos

baseados no domı́nio espectral para análise de padrões de pontos tridimensionais.

A ênfase está em relacionar a estrutura do periodograma ao processo estocástico

que gerou uma configuração pontual 3D. Os resultados mostram que os métodos

baseados em análise espectral propostos neste trabalho são capazes de, corretamente,

identificar padrões de processos pontuais tridimensionais t́ıpicos, podendo ser utilizados,

concomitantemente, com análises no domı́nio espacial para uma melhor caracterização

dos padrões pontuais.

PALAVRAS-CHAVE: Análise espacial; domı́nio da frequência; processos pontuais;

transformada de Fourrier; periodograma.
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