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▪ ABSTRACT: Factorial designs have been increasingly used in scientific investigations and 

technological development. The designs, through the use of matrices with all the treatment 

combinations, have been capable to effectively characterize the relationships between the variables 

of multi-factor experiments, assess the experimental variabilities, and derive mathematical 

functions that represent the behavior of the responses. Factorial designs were fractionalized, which 

substantially reduced the number of treatments without the loss of relevant information. The 

addition of central and star points to the factorial arrays has given them the orthogonality and 

rotatability characteristics, frequently used to fit models with curvature and identify critical regions 

of interest. Literature reports indicated that factorial designs, also called factorial experiments, were 

successfully applied in different types of investigations, including in cost evaluations and time-

series studies. They were capable to estimate important features of the experiments, like the 

individual and combined effects of factors, the magnitude of residuals, additionally to express the 

relationships of the variables in polynomial equations, draw response surface and contour plots, 

and determine optimal combinations of parameters. In this review, the fundamental aspects of the 

Complete, Fractional, Central Composite Rotational and Asymmetrical factorial designs were 

conceptualized, and recent applications of these powerful tools were described. 

▪ KEYWORDS: Design of experiment; DOE; experimental planning; process optimization; research 

design; statistical plan; statistical model. 

 

 

1 Introduction 

Experimentation is an essential part of the scientific methodology, fundamental for 

the production of knowledge, progress of science and technological development 

(ZANCAN, 2000). The process of experimentation, initially defined as a “deliberate 

observation under conditions deliberately arranged by the observer”, has been summarized 

to a “a cause-and-effect relationships in a system”, an essential requirement to demonstrate 
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theories or hypotheses of a functional structure (HINKELMANN and KEMPTHORNE, 

2007; MONTGOMERY, 2017). The application of statistical designs in experimentation, 

which now has been a common practice in academic laboratories to ensure valid 

conclusions in objective investigations, has begun in the 1930s, when the activities of 

getting products with better quality and processes with higher productivity had become a 

goal in industries (MASON et al., 2003; MONTGOMERY, 2017). Since then, the 

experimentation process through statistical designs has been increasingly used, along to 

achieve products with better quality within the limits of desired specifications, to 

substantially reduce the development time and cost, promote reliable and environmental-

friendly processes, and to proceed experimental analyses and data collection more 

efficiently (MASON et al., 2003; RODRIGUES and IEMMA, 2005; WEISSMAN and 

ANDERSON, 2015; MONTGOMERY, 2017). 

The use of statistical designs, also called statistical plans, has enabled the researchers 

to, within the rigor and adherence to the principles of science, generate the maximum 

amount of relevant information in a minimum number of possible experiments (MASON 

et al., 2003). They have been used to accurately draw inferences from the observational 

data, characterize the relationships between different types of experimental variables, and 

economically assess the relevance and the quantifying effects of factors (CHRISTENSEN, 

1996; MASON et al., 2003). Different from OFAT (one-factor-at-a-time) experiments that 

only shows how a response variable is affected by varying each factor while all the other 

are kept constant, well planned statistical designs, like the factorial ones, have enabled the 

consideration of any possible interaction between the factors, a remarkable achievement in 

modern experimentation (MONTGOMERY, 2017). Factorial designs, in which the factors 

are varied together instead of one at a time, have been an important approach for scientists 

and designers to, without the excessive use of experimental resources and waste through 

uneconomical methods, quantify synergistic or antagonistic effects of factors and estimate 

ideal combinations of variables (MASON et al., 2003; RODRIGUES and IEMMA, 2005). 

Another great feature of statistical designs is that they have been able to measure the 

magnitude of errors, that is, random variations that can occur due to changes in the ambient 

condition, experimental and measurement errors, or effects due to any other known or 

unknown influences (MASON et al., 2003). The possibility to distinguish assignable causes 

of variations from random ones has been widely used to eliminate sources of bias 

(systematic differences) and ensure that the experiment has provided precise information 

concerning the responses of interest (MASON et al., 2003). They have been successfully 

able, thus, to properly measure the relationships between the variables and the influence of 

experimental factors (DRAPER and SMITH, 1998; HINKELMANN and KEMPTHORNE, 

2007). Additionally, they have been successfully capable to derive simple and complex 

polynomial equations regarding the behavior of the experimental data, draw response 

surface and contour plots that simplify the interpretation of the empirical results, forecast 

future events based on previously observed values, and determine optimal operational 

conditions of different kind of systems (MASON et al., 2003; RODRIGUES and IEMMA, 

2005). 

Due to the growing importance that statistical designs have been acquiring in modern 

researches, as well the great relevance that they have been detaining in scientific and 

technological areas, this review article addressed the conceptualization of their 

fundamentals and described the characteristics of the Complete, Fractional, Central 
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Composite Rotational and Asymmetrical factorial designs. The article also addressed the 

sequential use of factorial statistical designs as an experimental optimization strategy, their 

employment in cost evaluations and time-series studies, and summarized recent 

applications of their use in several scientific fields. 

2 Methodology 

The literature review was based on physical documents obtained in the library of the 

local University and in virtual databases indexed on the Web of Science, Scopus, 

ScienceDirect and Google Scholar platforms. The surveys were conducted until August 

12th, 2021, and included both public open-access and institutional available documents 

published in English or Portuguese. The terms used in the searchers were “Fundaments of 

Statistics”, “Concepts of Statistics”, “Statistical Analysis”, “Design of Experiment”, 

“Statistical Inference”, “Confidence Interval”, “Prediction Interval”, “Regression 

Analysis”, “Factor Effects”, “Determination Coefficient”, “Analysis of Variance”, 

“ANOVA”, “Lack-of-Fit”, “Outlier”, “Pareto Diagram”, “Response Surface”, “Contour 

Plot”, “Multi-factor Design”, “Factorial Design”, “Complete Factorial”, “Full Factorial”, 

“Fractional Factorial”, “Central Composite Rotational”, “Asymmetrical Factorial”, 

“Mixed-Level Factorial”, “Sequential Use of Factorial”, “Plackett-Burman Design”, 

“Taguchi Design”, “Cost Evaluation”, “Economic Analysis”, “Time-Series” and “Time-

Trend”. After the acquirement of the documents, they were screened according to their 

titles, abstracts and contents in order to eliminate duplicates and verify their adequacy to 

the theme proposed in this article. Then, the documents were classified according to the 

following topics: (i) Fundaments of Statistics, (ii) Design of Experiments, (iii) Complete 

Factorial, (iv) Fractional Factorial, (v) Central Composite, (vi) Asymmetrical Factorial, 

(vii) Sequential use of Factorial Designs, (viii) Cost Analyses/Evaluations and (ix) Time-

Series Studies. 

3 Results 

The literature survey found 216 documents that had adherence to the theme proposed 

by this review article. After the screening process mentioned in the previous item, 66 

documents were classified as belonging to the topic (i), 28 as belonging to the topic (ii), 12 

to the topic (iii), 15 to the topic (iv), 20 to the topic (v), 13 to the topic (vi), 16 to the topic 

(vii), 17 to topic (viii) and 29 to the topic (ix). Of these, 98 documents that presented great 

quality were chosen to be used as a theoretical basis in the preparation of this article and 

included in the references. 

 

4 Principles of statistical designs 

Analyze and understand a relevant set of data from a certain investigation are frequent 

practices in the research activity of different study fields. Descriptive statistical values, 

which summarize datasets, such as the simple arithmetic mean, mode, median, and 

dispersion measures, like the amplitude, deviations and variances, have been notoriously 
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used to explore and simplify the interpretation of empirical observations (Equations 1, 2, 3, 

4, 5 and 6) (PEARSON, 1894; YULE, 1897; FISHER, 1919; ZWILLINGER and 

KOKOSKA, 1999; ALTMAN and BLAND, 2005; SHESKIN, 2011). Regularities or 

patterns identified from the observations, though, have enabled the researchers to transform 

the data into more useful information, a fundamental approach to draw valid inferences 

from the observational data and develop models that adequately describe them (MASON et 

al., 2003; HINKELMANN and KEMPTHORNE, 2007). Statistical analyses, in this 

context, have been playing a major role to judge the adequacy of scientific hypotheses, 

compare results in the literature, and make strategic decisions (BROWNLEE, 1965; 

MORETTIN and BUSSAB, 2017).  

The possibility to develop experimentation designs, that is, statistically designed 

experiments that allows an efficient measurement of the relationship among variables of 

interest and the estimation of the magnitude of experimental errors, have enabled the 

researchers to comprehend cause-and-effect relations in a system, thus, represent a theory 

and make accurate forecasts based on their results (MASON et al., 2003; KUTNER et al., 

2005; MONTGOMERY, 2017). These designs, where the variables of interest are often 

controlled and fixed at predetermined values for each test run, have been named statistical 

designs, also known as statistical experiments (MASON et al., 2003). Statistical designs, 

besides developed from empirical observations obtained in experimental studies, have also 

considered various types of statistical parameters, specifications and measurement errors 

(MASON et al., 2003). The designs’ assumptions, which can have many forms and 

configurations, have been mainly confirmed from adequation proceedings, adjustment 

measures or subjectively by graphic techniques (CHRISTENSEN, 1996; MASON et al., 

2003).  
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where �̅� refers to the arithmetic mean, xi to the response of a random variable, n to the 

sample size, S to the sample standard deviation, 𝜎 to the population standard deviation, µ 

to the population mean, N to the population size, SE to the sample or populational standard 

error, S2 to the sample variance, and 𝜎2 to the population variance. 

5 Statistical inferences 

Statistical designs have enabled the estimation of conclusions about certain population 

characteristics and processes through measurements or observations made in a 

representative set, called the sampling group (CHRISTENSEN, 1996; MORETTIN and 

BUSSAB, 2017). The conclusions, also known as statements or inferences, have involved 

a degree of uncertainty due to uncontrollable experimental variations based on statistical 

models that represent the probability of the occurrence of events, named probabilistic 

frequency distributions (GALTON, 1889; MASON et al., 2003; ONYIAH, 2008). Most of 

statistical designs have been assumed to detain a Normal or close to Normal frequencies, 

that is, when the data is symmetrically concentrated around a central value. Statistical 

designs with small sample sizes (n < 30), however, in order to adjust the number of 

observations through the degree of freedom, have commonly replaced the Normal 

distribution by the Student’s t distribution, and the populational standard deviations by the 

sample deviations (RODRIGUES and IEMMA, 2005; ONYIAH, 2008). 

The assumptions of the inferences have been done by the use of hypothesis tests, 

which uses a validation criterion with two suppositions: a null (H0) and an alternative 

hypothesis (HA) (CHRISTENSEN, 1996). The null hypothesis has been commonly used to 

state that there was sufficient evidence to prove that there was no relationship between two 

measured parameters, and the alternative hypothesis, that there was not enough evidence 

for such statement. The results of the tests have been compared to tabulated critical regions 

of the Normal or the Student’s t distributions models according to determined levels of 

significance (Equations 7 and 8) (MORETTIN and BUSSAB, 2017). The levels of 

significance, also called α value, have been used to determine the probability to mistakenly 

reject the null hypothesis when it was true, that is, the probability of the occurrence of a 

false positive (KALINOWSKI and FIDLER, 2010). The test uses a measurement of 

evidence related to the probability to obtain extreme results under the null hypothesis, called 

p-value, probability value or descriptive level (BROWNLEE, 1965). The p-value has been 

interpreted as a decreasing index of reliability, that is, the higher its value, the less reliable 

has been the observed relationship between the parameters of interest. 
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where 𝑍𝑐𝑎𝑙𝑐 and 𝑡𝑐𝑎𝑙𝑐 refers to the test statistics following the respective Normal or Student’s 

t distributions, �̅� to the sample mean, µ to the population mean, n to the number of 
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independent observations (Student’s t distribution with a n – 1 degree of freedom), 𝜎 to the 

population standard deviation, and S to the sample standard deviation. 

 

6 Confidence and prediction intervals 

Confidence intervals, a type of estimate that infers information regarding the precision 

of the estimators, have been used to represent repetition frequencies around estimates of 

uncertainties and to indicate the inaccuracy of the means (NAKAGAWA and CUTHILL, 

2007; PATINO and FERREIRA, 2015). In statistical designs, the intervals are associated 

to a confidence level whose amplitude estimates the frequency in which the value of a 

parameter of interest would be included in infinite hypothetical repetitions (KALINOWSKI 

and FIDLER, 2010). Confidence intervals of 95%, for example, have indicated that the 

mean value of the parameter of interest would tend to be included within the calculated 

extremities 95% of the time if the procedure was repeated numerous times (COX and 

HINKLEY, 1979). The prediction interval has also been interpreted as an interval estimate 

calculated from observations, however, it has indicated values in which a new observation 

would probably fall according to a certain probability. This type of interval has provided 

more accurate estimates in relation to the occurrences of events and experimental responses 

(CHRISTENSEN, 1996). The calculation of a 100(1-α)% confidence interval of a normally 

distributed large sample size with a known populational standard deviation has been done 

as described in equation 9. The prediction interval has been calculated as indicated in 

equation 10 (ONYIAH, 2008). 

 

𝜃 = �̅� ∓  𝑧α
𝜎

√𝑛
     (9) 

𝜃 = �̅� ± 𝑧α𝜎     (10) 

where  �̂� refers to the interval estimate, �̅� to the sample mean, Z to the tabulated value of 

the Normal distribution, α to the probability of the confidence level, 𝜎 to the population 

standard deviation, and n to the number of independent observations. 

7 Regression analyzes 

Statistical designs, through regression methods, have enabled the characterization of 

the relationships between independent and dependent variables used in the experiments, so 

called predictor and response variables respectively (DRAPER and SMITH, 1998; 

MONTGOMERY, 2017). Regression techniques, widely used in statistical modeling, 

besides used to quantitatively estimate the contribution of independent variables in the 

prediction of the dependent ones, have been used to assess the adequacy of the assumptions, 

examine the influence of atypical observations (outliers), and also to identify the presence 

of linear effects between variables, called correlations (CHRISTENSEN, 1996; MASON et 

al., 2003). In general, the relationships between the variables have been expressed in 
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mathematical functions calculated using the least squares method (DRAPER and SMITH, 

1998; ZWILLINGER and KOKOSKA, 1999). 

The least squares method has provided a numerical estimation of the vertical intercepts 

and the slopes of the regression equations, in other words, the values of the constants and 

the angular coefficients, also called gradient of the linear functions. The associations of the 

responses have been described through simple or complex linear coefficients, that is, of first 

or more orders (Equations 11 and 12). The regression models have been referred as linear 

because the unknown coefficients have appeared in linear forms, that is, as additives or 

multipliers constants of the values of the predictor variables (MASON et al., 2003). 

Regression models have been diagnosed through adjustment measures, inferences analysis, 

and visually through graphics, such as dispersions and scatterplots (CHRISTENSEN, 1996; 

MASON et al., 2003; MONTGOMERY, 2017). 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝑒    (11) 

𝑦 = 𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 +  𝛽12𝑥1𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝑒  (12) 

where y refers to the predicted response of the adjusted model, x... to the predictor variables, 

β0 to the intercept value, β... to the simple or quadratic (parabolic) linear coefficients, k to 

the number of predictor variables, and e to the adjustment error. 

8 Factors’ effects 

In statistical designs, the independent variables, also referred as the predictors or 

controllable variables, have been commonly called factors. As seen in regression models, 

the relationships between the factors and the responses have been quantitatively calculated 

and described in the form of polynomial functions (Equation 13) (BEZERRA et al., 2008). 

The effects of the factors have also been used in inferences tests and interval estimates 

(MASON et al., 2003). The interactions and correlated effects, non-linear and linear 

relationships between the responses of three or more variables, have occurred when the 

results of one factor depended on the state of another factor. The interactions effects have 

also been measured and described in the form of mathematical equations in regression 

models (Equation 14) (CHRISTENSEN, 1996). In balanced statistical designs, that is, with 

equal amounts of repetitions for all the combinations of equally spaced factor’s values, the 

coefficients of the effects have been previously tabulated, which had simplified the 

derivation of polynomial functions of second or more orders (Equation 15) (MASON et al., 

2003). The values of the predictor variables have been used in a standardized and coded 

forms, facilitating comparative analyses (Equation 16). 
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𝑦 =  𝛽𝑜 + ∑ 𝛽𝑖
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𝑧𝑖 =
𝑥𝑖−�̅�𝑖

𝑆𝑖
     (16) 

where y refers to the predicted response, k to the number of variables, 𝛽0 to the constant 

term, 𝛽𝑖  to the simple linear coefficient, 𝛽𝑖𝑗 to the interaction coefficient, 𝛽𝑖𝑖  to the quadratic 

coefficient (second order), 𝑥𝑖 and 𝑥𝑗 to the predictor variables, 𝑒 to the residue, 𝑧𝑖  to a 

standardized predictor variable, �̅�𝑖 to the sample mean, and 𝑆𝑖  to the sample standard 

deviation. 

 

9 Coefficients of determination 

The coefficient of determination, also called explanatory coefficient or R2, has been 

interpreted as a measure of the percentage of responses that was explained by the regression 

equations. In other words, the determination coefficient has quantified the proportion of the 

adequacy between the observed values in relation to the proposed values by the statistical 

design (RODRIGUES and IEMMA, 2005; NAKAGAWA and SCHIELZETH, 2013). The 

adjusted coefficient of determination (R2a), in turn, has been defined as an adjustment of 

the R2, as it has also considered the number of independent observations, the degree of 

freedom. The adjusted determination coefficient has been used to compare statistical 

designs with different numbers of predictor variables (CHRISTENSEN, 1996). The quality 

of the regression equation fit, according to the determination coefficient R2, has been 

calculated as indicated in equation 17. The calculation of the adjusted R2 has been done as 

demonstrated in equation 18. In general, R2 and R2a values have varied between 1 and 0, 

and have been expressed as percentages. 

 

𝑅2 = 1 −  
∑ (𝑦𝑖− �̂�𝑖)2

𝑖

∑ (𝑦𝑖− �̅�)2
𝑖

     (17) 

𝑅2𝑎 =  1 −
𝑛−1

𝑛−𝑘−1
 ( 1 − 𝑅2)   (18) 

where 𝑅2 refers to the determination coefficient, 𝑅2𝑎 to the adjusted determination 

coefficient, 𝑦𝑖  to the experimental value observed in the response variable as a function of 

the level i of a predictor variable, �̅� to the general mean of the observed values, �̂�𝑖  to the 

estimated or predicted value of the adjusted model for a response variable as a function of 

the level i of a predictor variable, n to the number of observations, and k to the number of 

predictor variables. 
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10 Analysis of variance 

Through the use of analytical techniques around the variances, statistical designs have 

been capable to estimate significant differences between the means of treatment groups. 

The method, called ANOVA, has enabled to separate or partition the observable variation 

of the designs into two components: assignable and uncontrollable causes of variations, and 

suppose if there were significant differences between them (MASON et al., 2003). The 

assignable causes have been considered as sources of variations that were possible to be 

measured and controllable, while the uncontrollable, sources of random variations 

(RODRIGUES and IEMMA, 2005; MORETTIN and BUSSAB, 2017). In general, the 

variability decomposition of random and independent samples, with normally distributed 

frequencies and equal populational variances, has been done through the Total Sum of 

Squares (Equations 19 and 20). The Sum of Squares of the Error and the Sum of Squares 

of the Regression model, respectively called residue and adjusted model, have been 

calculated using the equations 21 and 22. 

 

𝑇𝑆𝑆 =  𝑆𝑆𝑅 +  𝑆𝑆𝐸    (19) 

𝑇𝑆𝑆 =  ∑ (𝑦𝑖 −  𝑦)2𝑛
𝑖=1      (20) 

𝑆𝑆𝐸 = ∑ (𝑦𝑖 −  �̂�𝑖)2𝑛
𝑖=1     (21) 

𝑆𝑆𝑅 =  ∑ (�̂�𝑖 − 𝑦)2𝑛
𝑖=1     (22) 

where TSS refers to the sum of squares due to Total variation, SSR to the sum of squares 

due to parameters considered in the model (Regression), SSE to the sum of squares due to 

adjustment Errors (residue), 𝑦𝑖  to the value observed in the response variable as a function 

of the level i of a predictor variable, �̅� to the general mean of the observed values, �̂�𝑖  to the 

predicted value of the adjusted model for a response variable as a function of the level i of 

a predictor variable, and n to the number of independent observations. 

11 ANOVA significance tests 

In analyzes of variance, the probability to obtain conclusive statements about the 

differences among the means of treatment groups, in general, have been calculated through 

the Mean Square of the Regression and the Residue ratio, called F test (Equation 23). The 

estimates of the test have been compared to critical regions of the Fisher-Snedecor 

distribution according to previously determined significance levels (HOAGLIN et al., 

1991; CHRISTENSEN, 1996). The ANOVA test has been commonly used to measure the 

magnitude of the statistical significance, that is, the estimates related to the “degree of 

certainty” between the associations of the parameters. ANOVA procedures have been 

frequently used in multiple variables analysis, where the F test has been done independently 
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for each factor and interaction, including covariates, blocks and curvatures (SHESKIN, 

2011).  

 

𝐹𝑐𝑎𝑙𝑐 =
𝑀𝑆𝑟𝑒𝑔

𝑀𝑆𝑟𝑒𝑠
     (23) 

where 𝐹𝑐𝑎𝑙𝑐 refers to the value of the test statistic following the F distribution, MSreg to the 

mean square of the Regression, and MSres to the mean square of the Residue. 

12 Lack-of-fit tests 

The residuals of statistical designs are important parameters of reliability. They have 

been commonly used in inferences methods that allow the validation of the adequacy of the 

hypothetical models (RODRIGUES and IEMMA, 2005). The estimates have been done by 

the use of the variation between repetitions within each treatment, that is, random 

fluctuations between authentic replicates (DRAPER and SMITH, 1998; BEZERRA et al., 

2008). The calculations have been made by partitioning the Sum of the Squares of the 

Residues into two useful components for a hypothesis test according to certain levels of 

significance, so called Pure Error and Lack of Fit (Equations 24 and 25). Statistically 

significant lack-of-fit hypothesis tests (p ≤ α) have, in general, indicated a residual 

variability greater than a pure error variability (Equation 26).  

Depending on the significance criterion, significant lack-of-fit tests have indicated a 

low degree of model adequacy, requiring, in some cases, the use of more complex designs 

to describe the behavior of the responses (RODRIGUES and IEMMA, 2005). Noteworthy, 

the lack-of-fit test by the sum of squares has been highly sensitive regarding deviations 

from normality, large or small sample sizes, and the presence of influential observations, 

those with atypical values, called outliers (HOOPER et al., 2008). During the past years, 

remarkable researches have been done involved in the development of new diagnostic 

techniques and structural transformations of statistical designs. Methods, such as goodness-

of-fit, incremental fit indices, parsimony fit indices, among others, have been proposed to 

validate the assumptions of different types of models (D'AGOSTINO, 1986; MULAIK et 

al., 1989; STEIGER, 1990; MILES and SHEVLIN, 2007; HOOPER et al., 2008; 

MONTGOMERY, 2017). 

 

𝑆𝑆𝑃𝐸 =  ∑ (𝑦𝑖𝑗 −  𝑦𝑖)2𝑛
𝑖=1     (24) 

𝑆𝑆𝑅𝑒𝑠 = 𝑆𝑆𝐿𝑂𝐹 + 𝑆𝑆𝑃𝐸 =  

∑ (𝑦𝑖𝑗 −  �̂�𝑖)2𝑛
𝑖=1 =  ∑ (𝑦𝑖𝑗 −  �̂�𝑖)2𝑛

𝑖=1 +  ∑ (𝑦𝑖𝑗 −  𝑦𝑖)2𝑛
𝑖=1   (25) 

𝐹𝐿𝑂𝐹𝑐𝑎𝑙𝑐 =  
𝑆𝑆𝐿𝑂𝐹

𝑆𝑆𝑃𝐸
     (26) 

where SSPE refers to the sum of squares of the Pure Error, SSRes to the sum of squares of 

the Residue, SSLOF to the sum of squares of lack of fit, 𝐹𝐿𝑂𝐹𝑐𝑎𝑙𝑐  to the value of the test 

statistic following the F distribution, 𝑦𝑖𝑗 to the observed value of the j repetition in the 
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response variable as a function of the level i of a predictor variable, �̅�𝑖 to the general mean 

of the values observed in the level i of a predictor variable, �̂�𝑖  to the value predicted through 

the adjusted model for a response variable as a function of the level i of a predictor variable, 

�̅�𝑖𝑗 to the mean value of observations between the repetitions at the level i of a predictor 

variable, and n to the number of independent observations. 

 

 

13 Outliers 

The presence of outliers, observations with atypical values in relation to other 

observations obtained under the same condition, was seen to strongly affect the inferences 

procedures and the regression models (MASON et al., 2003). Outliers, usually with a high 

residual value, have been visually identified through graphs and diagrams, such as box 

plots, residual plots, normal Quantil-Quantil, and also by diagnostic techniques, such as 

Grubbs test, Leverage values, Cook’s distance, standardized and studentized analysis of 

residues (GRUBBS et al., 1950; COOK, 1977; CHRISTENSEN, 1996; KUTNER et al., 

2005; MONTGOMERY, 2017). Accommodation methods, such as the collection of more 

data, model reexpression, deletion, winsorizing and trimming extreme observations, have 

been often used to mitigate the effects of outliers (TUKEY, 1962; MASON et al., 2003). 

The techniques, however, have been proceeded in a careful, justified and gradual way, 

based on stepwise selection methods, such as forward selection, backward elimination and 

stepwise iteration (CHRISTENSEN, 1996; DRAPER and SMITH, 1998; SHESKIN, 2011). 

14 Pareto diagrams 

Pareto diagrams, graphs that contain histograms and lines, have been used to order the 

frequencies according to their occurrences. In statistical designs, Pareto diagrams have been 

used to order the individual and combined effects of the variables according to the 

magnitudes of their statistical significance. The description of the effects in absolute and 

standardized values has enabled the inclusion of reference lines that have indicated a 

minimum magnitude for a significant statistical effect according to determined α levels of 

significance (RODRIGUES and IEMMA, 2005). In statistical modeling, Pareto diagrams 

have permitted the prioritization of variables of greater importance in a simplified way and 

frequently used in quality control charts (PORTER et al., 1997).  

15 Response surface and contour plots 

The relationship between two or more factors has been drawn on graphs with two or 

three dimensions, called contour or response surface plots. The graphs, constructed through 

mathematical functions regarding the relationship between the independent and dependent 

variables, have been used to simplify the interpretation of empirical results, mainly in 

experiments with multiple factors (MASON et al., 2003; HINKELMANN and 

KEMPTHORNE, 2007). In scientific investigations, contour and response surface graphs 

have been frequently used to evaluate important characteristics of statistical designs, such 
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as the behavior of the results, sensitivity of the variables and effects of interactions. In the 

assessment of industrial processes, response surface and contour charts have been used to 

improve the quality of products and to estimate optimal operational conditions of the 

systems (NOORDIN et al., 2004; RODRIGUES and IEMMA, 2005).  

 

 

 

16 Designs’ equations 

The behavior of experimental responses of statistical designs have been described in 

mathematical functions, expressed, in general, as demonstrated in equation 27 (MASON et 

al., 2003). In the equation, the smooth or the regular part, so called μ, refers to the 

predictable part of the statistical design. The e part, considered as important as the μ part, 

refers to adjustment errors, also called residue (MORETTIN and BUSSAB, 2017). The 

residue is calculated from uncontrollable sources of variation, and has been interpreted as a 

measure of discrepancy between the observed and the proposed values by the statistical 

designs. Residual analyzes, which are usually done through adjustment measurements or 

by the use of graphs and diagrams, have been crucial to validate the adequacy of theoretical 

models (CHRISTENSEN, 1996; TSAI et al., 1998). 

 

𝑦 = 𝜇 + 𝑒      (27) 

where y refers to the representation or the description of the observed data, μ to the statistical 

design, and e to the adjustment error (residual). 

17 Multi-factor designs 

Statistical designs have been increasingly used in experiments with multiple factors, 

also called multi-factors. The application of appropriate statistical designs in this type of 

study has allowed an efficient characterization of the individual and the interaction effects 

of the factors, in addition to provide the acquisition of precious estimates around the 

variability of adjustment errors (BEZERRA et al., 2008; ANDERSON and WHITCOMB, 

2010). Statistical designs with multiple factors have been commonly used in the 

construction of mathematical equations that describe the behavior of experimental 

responses in certain regions of interest (MASON et al., 2003). The functions of first, 

second, third or more orders, derived from multi-factor statistical designs, have been used 

in the synthesis of response surface graphs and contour plots. The approach has enabled a 

quantifying estimation of the factors’ effects, identification of critical regions, and 

optimization of responses (RODRIGUES and IEMMA, 2005; WEISSMAN and 

ANDERSON, 2015).  

18 Complete factorial designs 

The choice between the various types of statistical designs has depended on the 

objective, number of factors involved, available resources, and especially, the number of 
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required experiments (MASON et al., 2003; WEISSMAN and ANDERSON, 2015). The 

Complete Factorial (CF) design, a classic multi-factor statistical design, has enabled all the 

treatment combinations through the use of a matrix with predetermined and equidistant 

coefficients (FISHER, 1936). CF designs, due to their broad applications in many research 

fields, have been increasingly used to characterize the individual and combined effects of 

different type of variables, estimate variations concerning the measurement errors, and also 

to derive graphs and mathematical functions that represent the behavior of experimental 

responses (HINKELMANN and KEMPTHORNE, 2007; SHESKIN, 2011; 

MONTGOMERY, 2017). Depending on the availability of time and experimental 

resources, the sequences of the factorial testing runs, that is, the assignments of each factor-

level combination, have been capable to be minimally or maximally randomized by 

algorithms according to different criteria, which tend to decrease nonconstant variances, 

time trend effects and possible sources of bias (CHENG et al., 1998; ANGELOPOULOS 

et al., 2009; HILOW, 2013; BHOWMIK et al., 2017). The treatment points of the matrix 

of a CF design, also called Full Factorial design, with three factors and three levels (33) 

were represented in Figure 1. The second order polynomial function generated by the 

regression model of a 33 CF planning was described in equation 28. 

According to reports, CF designs have been successfully used in the study of different 

types of processes, including the optimization of an eco-friendly biosorption process of a 

cotton dye, and the extraction method of a chemical compound with pharmacological 

activity from a plant’s leaves (HENN et al., 2019; MOGHAZY et al., 2019). The authors 

stated that the CF designs were effectively used to determine the factors of the processes 

that were statistically significant. According to the descriptions, the polynomial equations 

built from the CF designs were successfully used to evaluate the individual and combined 

influences of the parameters, and provided robust assessments about the variables’ effects 

as a function of the responses. The CF designs were also used by Porto et al. (2019) and 

Lara et al. (2019) to evaluate the performance of anticorrosive alloys, and to optimize the 

dielectric properties of a magneto-dielectric composite. According to the authors, the CF 

designs enabled an efficient investigation of the parameters that were used to achieve 

desired characteristics, and were successfully used to improve the performance of the 

systems. Ravindran et al. (2020) also used a CF design to screen out the significant 

constituents of a growth medium that was used for the cultivation of a freshwater microalga. 

The CF design was able to determine the multiple significant factors that were affecting the 

growth rate and the final biomass of the microorganism, as much as the existence of 

interactions between the variables. 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽11𝑥1
2 + 𝛽2𝑥2 + 𝛽22𝑥2

2 + 𝛽3𝑥3 + 𝛽33𝑥3
2 + 𝛽12𝑥1𝑥2 +

𝛽122𝑥1𝑥2
2 + 𝛽112𝑥1

2𝑥2 + 𝛽1122𝑥1
2𝑥2

2 + 𝛽13𝑥1𝑥3 + 𝛽133𝑥1𝑥3
2 + 𝛽113𝑥1

2𝑥3 +

𝛽1133𝑥1
2𝑥3

2 + 𝛽23𝑥2𝑥3 + 𝛽233𝑥2𝑥3
2 + 𝛽223𝑥2

2𝑥3 + 𝛽2233𝑥2
2𝑥3

2 + 𝑒 (28) 
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where y refers to the predicted response of the adjusted design, β0 to the value of the 

intercept, x1, x2 and x3 to the predictor variables, β... to the partial linear coefficients, and e 

to the adjustment error. 

 

 

Figure 1 - Representation of a Complete Factorial (FC) statistical design with three levels and three 

factors (33). 

 

19 Fractional factorial designs 

Due to limitations involving time and availability of resources, Complete Factorial 

designs have not always been possible to be conducted. In such cases, Fractional Factorial 

(FF) designs have been used, that is, models that were consisted of a subset of the 

experimental points of a CF planning, a fraction of the CF treatment runs (BOX and 

HUNTER, 1961). The fractionalization of factorial designs has been made by the use of 

confounded effects, whose values could only be attributed to the combined influences of 

responses, and not to single individual responses, also called aliased effects (MASON et 

al., 2003). The fractions of the FF matrices have been carefully chosen, ensuring that the 

effects of interest were not confounded with others of interest or, at least, were confounded 

with the effects of variables that did not have appreciable magnitudes (MASON et al., 

2003). This type of application has enabled a significant reduction of the number of 

experiments and, even so, has provided a comprehensive investigation of the factors without 

the loss of relevant information (BOX and HUNTER, 1961; GUNST and MASON, 2009). 

The treatment points of the matrix of a one-third FF design with three factors and three 

levels (33-1) were represented in figure 2. The second order polynomial function generated 

by the regression model of the FF planning was described in equation 29. 

Reports indicated that FF designs have been successfully used to identify significant 

variables in screening scientific experiments and industrial processes. Studies by Pan et al. 

(2019), who used a FF design to develop and optimize a fermentation medium for the 

production of a biopolymer by a lactic bacterium, indicated that the experimental design 
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allowed the authors to simultaneously evaluate a large number of variables in a reduced 

number of experiments. Lim et al. (2020), in turn, also used a FF plan to optimize the 

combinations of the drugs that were used in the therapy of cancer cell lines. The authors 

reported that the FF statistical design enabled an accurately identification and optimization 

of effective factors combinations. FF designs were also used in the investigation of the 

impacts that various constituents had on the microbial activity of a plant growth media, and 

in the study of the effects that design parameters had on the performance of reinforced 

concrete bridge piers strengthened with steel-reinforced polymer composites (VAN 

GERREWEY et al., 2020; WAKJIRA et al., 2020). The FF design also allowed Rocha et 

al. (2021) to produce cost effective and efficient magnetic activated carbon for the 

adsorptive removal of pharmaceuticals from aqueous media, and Al-Dawalibi et al. (2020) 

to select the best marketing strategy for the purpose of increasing the sales revenue. The 

authors stated that the FF designs, in a reduced number of trials, enabled the identification 

of the most important experimental variables and were also extremely useful to investigate 

the main effects and possible interactions among them. 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽11𝑥1
2 + 𝛽2𝑥2 + 𝛽22𝑥2

2 + 𝛽3𝑥3 + 𝛽33𝑥3
2 + 𝛽12𝑥1𝑥2 +

𝛽122𝑥1𝑥2
2 + 𝑒     (29) 

where y refers to the predicted response of the adjusted design, β0 to the value of the 

intercept, x1, x2 and x3 to the predictor variables, β... to the partial linear coefficients, and e 

to the adjustment error. 

 

 

Figure 2 - Representation of a one-third Fractional Factorial (FF) statistical design with three levels 

and three factors (33-1). 
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20 Central Composite Rotational designs 

The Central Composite Rotational (CCR) design, developed by Box & Hunter (1957), 

is consisted of a factorial design with orthogonality and rotationality (rotatability) 

characteristics, acquired by the insertion of star (alpha) and central points to the factorial 

arrangements. The conditions have provided independent estimates for the model 

coefficients and identical variances for all the treatment points, situated at the same distance 

from the center (CONAGIN, 1982). CCR designs have enabled the obtention of robust 

experimental information in a relatively modest number of treatments, including the 

quantification of individual and combined effects of the factors, the estimation of variations 

related to procedural errors, and also the construction of equations that express responses 

with curvatures, that is, with second-order functions (MASON et al., 2003; ONYIAH, 

2008). The adjusted models of CCR designs have been often used to economically 

synthesize contour plots and response surface graphs (RODRIGUES and IEMMA, 2005). 

The treatment points of the matrix of a CCR design with three factors, two levels and six-

star points, were represented in figure 3. The second order polynomial function generated 

by the regression model of the CCR planning was described in equation 30. 

According to reports, a Central Composite design was successfully used to optimize 

the parameters of a process that was used for the production of bioethanol by a yeast strain 

(ZANI et al., 2019). Other studies indicated that CCR designs were also effectively applied 

in the evaluation of performance and optimization of the parameters of an anaerobic co-

digestion of leachate and glycerol for renewable energy generation, and in the maximization 

of the phytoremediation process of an arsenic-contaminated water (DE SOUZA et al., 2019; 

TAKEDA et al., 2020). Statistical CCR designs were, as well, able to optimize the 

parameters for the production of an halotolerant enzyme by a filamentous fungi grown 

under solid-state fermentation, and the key factors that were affecting the hydrogen 

production from coffee waste (DAS NEVES et al., 2020; VILLA MONTOYA et al., 2020). 

The CCR design was also successfully partitioned into blocks without losing the 

characteristics of rotationality and orthogonality in fertilization experiments, a highly 

desirable characteristic (CONAGIN, 1982). According to the researchers, CCR designs 

were capable to study different factors simultaneously, and effectively quantified their 

individual and combined effects. The mathematical functions constructed by the CCR 

designs were seen to have a good fit in comparison to the experimental data, and efficiently 

enabled the synthesis of response surface and contour plots. The authors stated that CCR 

statistical designs could be successfully used to control, forecast, and optimize scientific 

experiments and industrial processes.  

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽11𝑥1
2 + 𝛽2𝑥2 + 𝛽22𝑥2

2 + 𝛽3𝑥3 + 𝛽33𝑥3
2 + 𝛽12𝑥1𝑥2 +

𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3 + 𝑒    (30) 

where y refers to the predicted response of the adjusted design, β0 to the value of the 

intercept, x1, x2 and x3 to the predictor variables, β... to the partial linear coefficients, and e 

to the adjustment error. 
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Figure 3 - Representation of a Central Composite Rotatable (CCR) statistical design with two levels, 

three factors and six-star points (23, α = 81/4 = 1,6818). 

 

21 Asymmetrical designs 

In some applications, due to the lack of uniform conditions, such as heterogeneous 

experimental units, restrictions of experimental procedures, factors that have more than two 

levels, or to the addition of qualitative variables, such as a control group, it has not been 

possible to include all factor combinations in the factorial designs (MASON et al., 2003; 

SHESKIN, 2011; MONTGOMERY, 2017). In those situations, however, it has been 

possible to use factorial arrays that have an unequal number of levels of factors, so called 

Asymmetrical Factorial (AF) ones (HINKELMANN and KEMPTHORNE, 2007). The 

designs, also named Mixed-Level factorial designs, have been defined as factorial 

experiments that have more than two groups of factors with different numbers of levels, in 

which, all factors in the same group have the same number of levels. For example, 2m x 3n 

experiments, where the m factor has 2 levels each and n factor 3 levels each 

(HINKELMANN and KEMPTHORNE, 2007). AF designs have been mainly evaluated by 

employing a factorial analysis of variance for a mixed design, where one of the factors is 

analyzed as a between-subjects variable and the other factor as a within-subjects variable 

(SHESKIN, 2011). The method has been used to extract the variability as a separate sum 

of squares, which reduces the magnitude of the error, enables the simultaneously evaluation 

of the influence of the treatments, and recognize the presence of carryover effects 

(SHESKIN, 2011), that is, when the effects of the treatments are not independent from each 

other. 

AF designs, according to NAZIEF et al. (2020) and KUMAR et al. (2017), were 

successfully applied to evaluate the nutritional and cooking characteristics of brown rice at 

different storage structure, and to optimize the formulation of solid lipid nanoparticles that 
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enhances the oral bioavailability of poorly water-soluble drugs. They were also effectively 

used to analyze the performance of a heat exchanger system, optimize the spherical 

agglomeration crystallization method of a pharmaceutical active agent, and to investigate 

the empirical result that an audience experienced to repetition of anthropomorphic ads on 

multiple-media conditions (GYULAI et al., 2018; AGRAWAL et al., 2020; 

CHANDRASEKARAN et al., 2021). According to the researchers, AF designs, besides 

highly flexible due to their capacity to evaluate different type of variables with mixed 

number of levels, were also capable to economically identify important factors that were 

significantly contributing to the system’s responses, quantify the main effects and 

interactions, as much to optimize the operational parameters in order to obtain the best 

desired conditions. 

22 Sequential experimentation 

A comprehensive investigation, which is generally performed to answer questions, 

frequently involves a sequence of experiments (MASON et al., 2003). The experimental 

process, therefore, has been used to provide the knowledge to answer the stated questions 

and, mostly, foment decisions about further experimentations and extend the investigation 

(MASON et al., 2003; HINKELMANN and KEMPTHORNE, 2007). The first step of a 

sequence of experiments has conventionally been a screening experiment, used to identify 

the key variables that will be examined more comprehensively in subsequent experiments, 

also termed dominant factors (MASON et al., 2003; RODRIGUES and IEMMA, 2005). 

Screening designs, defined as a deliberately confounded multifactor experiment that has the 

objective to filter out important main effects, in other words, to “screen out” factors that 

presents major impact on the dependent variable, have been developed to efficiently 

evaluate a large number of factors employing a minimal number of observations and limited 

experimental resources (SHESKIN, 2011; MONTGOMERY, 2017).  

The Plackett-Burman (PB) designs (PLACKETT and BURMAN, 1946), e.g., are 

Fractional Factorial designs that have been used to screen out a large number of factors 

using the smallest possible number of combinations of experimental conditions. This type 

of design, where each independent variable has two levels, allows the testing of all the main 

effects but none of their interactions (SHESKIN, 2011). After the screening process, more 

extensive investigations involving only the dominant factors have been typically conducted 

(MASON et al., 2003). The strategy has mainly involved the sequential use of FF designs, 

which provides the identification of strong two-factor interactions, followed by the use of 

response surface methods, such as CF or CCR designs, which enables the comprehensive 

evaluation of few factors, the derivation of second order models and the geometric 

representation of the responses (MASON et al., 2003). If the objective of the response 

surface is to determine specific operational regions or optimal conditions, another 

sequential procedure is often conducted in order to improve the system until the point of 

desired response (MONTGOMERY, 2017), a procedure named “steepest ascent” (BOX 

and WILSON, 1951). 

The use of PB designs as a screening experiment, followed by the sequential use of 

Complete, Central Composite or Central Composite Rotational designs, e.g., were 

successfully employed to develop and evaluate the properties of an oil‑based emulsion gel, 

optimize the production of an enzyme by an actinomycete in submerged fermentation, and 
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to develop a method of sterols and squalene extraction and determination in cyanobacteria 

(CÂMARA et al., 2020; FAGUNDES et al., 2021; PATEL et al., 2021). The initial use of 

FF designs, followed by the sequential use of CF and/or Central Composite designs, in turn, 

was used by Keijok et al. (2019) to optimize a method used in the synthesis of metallic 

nanoparticles, by Gautério et al. (2020) to maximize the production of an enzyme by a 

yeast-like fungus using a by-product of rice grain milling, and by Lv et al. (2019) to 

optimize an ethanol-water distillation column. According to the authors, the results obtained 

in the initial screening designs were essential to, in an economical number of experiments, 

identify significant factors that were affecting the system’s response. The sequential use 

CF, Central Composite and CCR designs, indeed, enabled the researchers to effectively 

evaluate the effects of the selected variables, their interactions, and also to apply response 

surface methods to optimize the system’s parameters in order to obtain ideal specifications.  

23 Cost analyses 

The use of factorial designs has been gaining increasingly importance in costs 

analyses, also referred as economic evaluations. Those designs have mainly focused in the 

development of cost-efficient processes and products by using particular criteria, like the 

expenditures related to specific raw materials, machinery settings, technology employed, 

fabrication or assembly methods (ASKIN and GOLDBERG, 1988; TACK and 

VANDEBROEK, 2004). Along that, cost related statistical designs have also aimed at 

meeting all the product or process functional requirements, obtain the highest possible 

quality, as well to reduce the environmental negative impacts (SIVAKUMAR et al., 2008; 

LABIDI et al., 2021). The Taguchi design (TAGUCHI, 1985), e.g, is a Fractional Factorial 

that was developed to aid the selection of various parameter settings using a minimum 

number of experimental conditions, and to identify combinations of levels which produce 

highest robustness, quality performance and low variability over uncontrollable factors 

(SHESKIN, 2011). The design, firstly developed to improve the quality of manufactured 

products, has now been frequently applied to design processes to operate consistently and 

optimally over a variety of conditions, thus, maximize efficiencies and minimize costs 

(KARNA and SAHAI, 2012). 

Taguchi designs, according to reports, were effectively applied to evaluate the 

economic aspects of the operational conditions of advanced oxidation pre-treatment 

processes of a reverse osmosis concentrate, the mechanical properties and associated costs 

of pervious concrete mixtures, as well to analyze and optimize the design of a cost-effective 

planar waveguide solar concentrator (CAI et al., 2020; KANT et al., 2021; TAHERI and 

RAMEZANIANPOUR, 2021). Others designs, like the FF, CF, Central Composite and 

Mixed ones, were used to evaluate economic and environmental aspects of a continuous 

electrocoagulation process of nitrate removal, analyze the economic sustainability of a 

methanol production plant using renewable energy sources, and optimize the formulation 

of cleaning products with better properties and cost (OCHOA et al., 2017; BELLOTTI et 

al., 2019; KARAMATI-NIARAGH et al., 2019). The authors stated that the factorial 

designs, in a minimum number of experiments, were capable to identify significant 

variables that were affecting the system’s quality and economic value, estimate optimal 

parameters conditions, and successfully develop cost-effective products and processes.  
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24 Time-Series studies 

Factorial designs have also been increasingly employed in time-series studies, 

regarded as designs with longitudinal data or repeated measures, as they present 

measurements repeated over a specific length of time (HINKELMANN and 

KEMPTHORNE, 2007). Time-series studies, also known as Time-trends, have been often 

applied in medical, pharmaceutical, nutritional, agricultural or psychological applications, 

where it is intended to study the influence of the treatments over a certain period of time 

(HINKELMANN and KEMPTHORNE, 2007). Moreover, they have been used in the 

evaluation of industrial processes due to their natural dynamic behavior and unstable 

statistical control (VANHATALO et al., 2013). The key aspect of a time-series design is 

that the time points have a natural temporal ordering and lack independence, since their 

errors are correlated (CHRISTENSEN, 1996; KUTNER et al., 2005). In some statistical 

models, moreover, the time points may also not be equidistant, that is, may be placed in 

unequally spaced intervals of time (HINKELMANN and KEMPTHORNE, 2007). Time-

series factorial designs have been usually analyzed by comparing the time points separately, 

where each time point is considered as a separate experiment, or jointly through the use of 

linear filter models, autoregressive models, moving average (ARIMA) and nonstationary 

models (STEINBERG, 1988; VANHATALO et al., 2013; BOX et al., 2015). The analyses 

have been also performed based on summarizing measurements, a measure that summary 

the entire set of time points for each treatment, such as the averages responses for each run 

(HINKELMANN and KEMPTHORNE, 2007; VANHATALO et al., 2013).  

Factorial designs, e.g, were used in a 24-day time-series analysis to investigate the 

effects and mechanisms that the carbon and nitrogen amendment had on the mineralization 

of organic phosphorus in microcosm soils, in a 12-month longitudinal study to investigate 

the role that a pancreatic enzyme supplementation had on patients after a gastric surgery, 

and in a time-course study related to bone aging gene expression in mice (CATARCI et al., 

2018; MISE et al., 2020; WU et al., 2021). They were also effectively used to study daily 

variations and annual seasonal patterns that fire rotation interval and overstory vegetation 

type had on ambient soil temperatures in a pine forest, assess the effects of 30 years of 

nutrition intervention on total and cancer mortality in a population, and to understand and 

forecast the short and long term of ports demand (WANG et al., 2018; WEISE et al., 2019; 
DA SILVA and BARBOSA, 2020). According to the researchers, factorial designs, when 

applied to time-series studies, besides capable to detect experimental time patterns and 

generate robust diagnoses regarding the dynamics of the systems under study, were also 

capable to jointly estimate factorial and longitudinal effects, and accurately forecast future 

events based on previously observed values. Some recent applications of factorial statistical 

designs in different scientific fields published in the literature were described in table 1. 

 

 

 

 

 

 



   

 

Braz. J. Biom., Lavras, v.40, n.1, p.75-107, 2022  - doi: 10.28951/bjb.v40i1.552 95 
 

 

 

Table 1 - Applications of factorial statistical designs found in the literature 

Design Field Objective Reference 

Complete 

Factorial 

Pharmacology Optimization of the extraction 

method of a chemical 

compound with 

pharmacological activity from 

a plant’s leaves 

Henn et al. 

(2019) 

Complete 

Factorial 

Environmental Determination of the optimum 

efficiency condition of an eco-

friendly biosorption process 

of a cotton dye 

Moghazy et al. 

(2019) 

Complete 

Factorial 

Engineering Evaluation of the performance 

of anticorrosive alloys 

Porto et al. 

(2019) 

Complete 

Factorial 

Physics Investigation and optimization 

of the dielectric properties of 

a magneto-dielectric 

composite 

Lara et al. 

(2019) 

Complete 

Factorial 

Bioprocess Screening the significant 

medium constituents that 

affected the growth rate and 

final biomass concentration of 

a freshwater microalga 

Ravindran et al. 

(2020) 

Fractional 

Factorial 

Biotechnology Development and 

optimization of a fermentation 

medium for the production of 

a biopolymer by a lactic 

bacterium 

Pan et al. (2019) 

Fractional 

Factorial 

Therapeutic Optimization of drug 

combinations 

Lim et al. 

(2020) 

Fractional 

Factorial 

Bioscience 

Engineering 

Investigation of the impacts of 

various constituents on the 

microbial activity of a plant 

growth media  

Van Gerrewey 

et al. (2020) 

Fractional 

Factorial 

Civil 

Engineering 

Study the effects that design 

parameters had on the 

performance of reinforced 

concrete bridge piers 

Wakjira et al. 

(2020) 
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Design Field Objective Reference 

strengthened with steel-

reinforced polymer 

composites 

Fractional 

Factorial 

Chemistry Produce cost effective and 

efficient magnetic activated 

carbon for the adsorptive 

removal of pharmaceuticals 

from aqueous media 

Rocha et al. 

(2021) 

Fractional 

Factorial 

Marketing Select the best marketing 

strategy for the purpose of 

increasing the sales revenue 

Al-Dawalibi et 

al. (2020) 

Central 

Composite 

Process 

Engineering 

Optimization of the 

parameters of the production 

process of bioethanol by a 

Saccharomyces cerevisiae 

strain 

Zani et al. 

(2019) 

Central 

Composite 

Rotational 

Environmental Monitoring and maximization 

of the phytoremediation 

process of arsenic-

contaminated water 

De Souza et al. 

(2019) 

Central 

Composite 

Rotational 

Environmental Evaluation of the performance 

and parameters optimization 

of an anaerobic co-digestion 

of leachate and glycerol for 

renewable energy generation 

Takeda et al. 

(2020) 

Central 

Composite 

Rotational 

Bioprocess Optimization of the 

parameters for the production 

of an halotolerant enzyme by 

a filamentous fungi grown 

under solid-state fermentation 

Das Neves et al. 

(2020) 

Central 

Composite 

Rotational 

Chemical 

Engineering 

Optimization of the 

fermentation conditions that 

were affecting the hydrogen 

production from coffee waste 

Villa Montoya 

et al. (2020) 

Central 

Composite 

Rotational 

Agricultural Field fertilization experiments Conagin (1982) 

Asymmetrical Pharmaceutics Study the effects and optimize 

the formulation of solid lipid 

nanoparticles that enhances 

Nazief et al. 

(2020) 
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Design Field Objective Reference 

the oral bioavailability of 

poorly water-soluble drugs 

Asymmetrical Food Science Evaluate the nutritional and 

cooking characteristics of 

brown rice at different storage 

structures 

Kumar et al. 

(2017) 

Asymmetrical Engineering Analyze the performance of a 

heat exchanger system 

Chandrasekaran 

et al. (2021) 

Asymmetrical Pharmaceutical Optimize the spherical 

agglomeration crystallization 

method of an active agent 

Gyulai et al. 

(2018) 

Asymmetrical  Marketing Investigate the effects that an 

audience experienced to 

anthropomorphic ads on 

multiple-media condition 

Agrawal et al. 

(2020) 

Plackett-

Burman and 

Complete  

Food 

Technology 

Development and evaluation 

of the properties of an 

oil‑based emulsion gel 

Câmara et al. 

(2020) 

Plackett-

Burman and 

Central 

Composite 

Biotechnology Optimization of the 

production of an enzyme by 

an actinomycete 

Patel et al. 

(2021) 

Plackett-

Burman and 

Central 

Composite 

Rotational 

Chemistry Develop a method of sterols 

and squalene extraction and 

determination in 

cyanobacteria 

Fagundes et al. 

(2021) 

Fractional and 

Complete  

Biotechnology Optimization of a method 

used for the biosynthesis of 

metallic nanoparticles 

Keijok et al. 

(2019) 

Fractional and 

Central 

Composite 

Biotechnology Maximization of the 

production of an enzyme by a 

yeast-like fungus using a by-

product of rice grain milling 

Gautério et al. 

(2020) 

Fractional, 

Complete and 

Central 

Engineering Optimization of an ethanol-

water distillation column 

Lv et al. (2019) 
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Design Field Objective Reference 

Composite 

Face-Centered 

Central 

Composite and 

Central 

Composite 

Rotational 

Biotechnology Optimization of the enzyme 

production by a fungus 

isolated from the Atlantic 

Forest 

Vieira et al. 

(2019) 

Taguchi Chemical 

Engineering 

Evaluate the economic aspects 

of the operational conditions 

of advanced oxidation pre-

treatment processes of a 

reverse osmosis concentrate 

Cai et al. (2020) 

Taguchi Mechanical 

Engineering 

Analyze and optimize the 

design of a cost-effective 

planar waveguide solar 

concentrator 

Kant et al. 

(2021) 

Taguchi Civil 

Engineering 

Evaluate the mechanical 

properties and associated 

costs of pervious concrete 

mixtures 

Taheri & 

Ramezanianpour 

(2021) 

Complete and 

Central 

Composite 

Engineering Analyze the economic 

sustainability of a methanol 

production plant using 

renewable energy sources 

Bellotti et al. 

(2019) 

Fractional and 

Mixture 

Chemistry Optimization of the 

formulation of cleaning 

products with better properties 

and cost 

Ochoa et al. 

(2017) 

Central 

Composite 

Environmental 

Engineering 

Evaluate economical and 

environmental aspects of a 

continuous electrocoagulation 

process of nitrate removal 

Karamati-

Niaragh et al. 

(2019) 

Complete 

Factorial 

Agricultural 24-day time-series analysis to 

investigate the effects and 

mechanisms that the carbon 

and nitrogen amendment had 

on the mineralization of 

organic phosphorus in soil 

Mise et al. 

(2020) 

Complete 

Factorial 

Clinical 12-month longitudinal study 

to investigate the role that a 

Catarci et al. 

(2018) 
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Design Field Objective Reference 

pancreatic enzyme 

supplementation had on 

patients after a gastric surgery 

Complete 

Factorial 

Biomedical Time-course study related to 

bone aging gene expression in 

mice 

Wu et al. (2021) 

Complete 

Factorial 

Ecology Study daily and annual 

patterns that fire rotation 

interval and overstory 

vegetation had on ambient soil 

temperatures in a pine forest 

Weise et al. 

(2019) 

Fractional 

Factorial 

Medical Assess the effects of 30 years 

of nutrition intervention on 

total and cancer mortality in a 

population 

Wang et al. 

(2018) 

 

Conclusions 

Through the use of matrices with all the possible treatment combinations, factorial 

statistical designs have been extremely useful in scientific experiments and research 

activities. They have been used to draw accurate inferences from the experimental results, 

estimate confidence and prediction intervals, characterize relationships among the 

variables, quantify the individual and combined effects of factors, distinguish assignable 

causes of variations from random ones, as well to estimate the adequacy and validate the 

proposed models. The fractionalization of factorial designs has been successfully employed 

to considerably reduce the number of experiments without the loss of pertinent information. 

The property has been useful to screen out the variables of interest in experiments with a 

large number of factors. The orthogonality and rotationality (rotatability) characteristics 

were achieved by the addition of star (alpha) and central points to the designs’ matrices. 

The condition has provided the achievement of robust estimates regarding the individual 

and combined effects of the variables, fit responses with curvatures, and derive quadratic 

polynomial functions regarding the nature of the responses.  

From reports found in the literature, it was observed that the Complete, Fractional, 

Central Composite Rotational and Asymmetrical factorial statistical designs were 

successfully applied in investigations related to different scientific fields. The designs were 

used to economically identify variables that were significantly affecting the responses of 

the systems under study, quantify the magnitude of experimental errors, as well the 

individual and combined influence of the factors. They were also used to derive 

mathematical functions that accurately represented the behavior of the responses, elaborate 

response surface and contour plots, and optimize the system’s conditions in order to obtain 

desired specifications. Moreover, the designs were capable to, in a minimum number of 
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experiments, develop cost-effective products and processes within specific quality 

standards, diagnose the dynamics of longitudinal investigations, and accurately forecast 

future events based on previously observed values. Due to their high efficiency and 

robustness, statistical factorial designs will most likely be keep increasingly used in the 

future. As addressed in this article, their great applicability, which allow them to be 

employed in many academic and industrial areas, make them a powerful and important tool 

in modern researches and development of technology. 
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▪ RESUMO: Planejamentos fatoriais têm sido cada vez mais utilizados em investigações científicas 

e no desenvolvimento tecnológico. Os delineamentos, por meio da utilização de matrizes com 

todas as combinações de tratamentos, têm sido capazes de caracterizar efetivamente as relações 

entre as variáveis de experimentos multifatoriais, avaliar as variabilidades experimentais e 

derivar funções matemáticas que representam o comportamento das respostas. Os delineamentos 

fatoriais foram fracionados, o que reduziu substancialmente o número de tratamentos sem a perda 

de informações relevantes. A adição de pontos centrais e estrela às matrizes fatoriais conferiu a 

eles as características de ortogonalidade e rotatividade, frequentemente utilizadas para ajustar 

modelos com curvatura e identificar regiões críticas de interesse. De acordo com os relatos da 

literatura os delineamentos fatoriais, também chamados de experimentos fatoriais, foram 

aplicados com sucesso em diferentes tipos de investigações, incluindo avaliações de custos e 

estudos de séries temporais. Eles foram capazes de estimar características importantes dos 

experimentos tais como efeitos individuais e combinados dos fatores, a magnitude dos resíduos, 

além de expressar as relações das variáveis em equações polinomiais, desenhar gráficos de 

superfície e contorno de resposta e determinar combinações ótimas de parâmetros. Nesta revisão, 

os aspectos fundamentais dos planejamentos Fatoriais Completo, Fracionado, Rotacional 

Composto Central e Assimétrico foram apresentados e as aplicações recentes dessas ferramentas 

poderosas foram descritas. 

▪ PALAVRAS-CHAVE: Delineamento de experimentos; DOE; planejamento experimental; 

otimização de processo; desenho experimental; planejamento estatístico; modelo estatístico. 
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