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ABSTRACT: The present study aimed to evaluate, through data simulation, the

multivariate statistical tests Likelihood ratio test (LRT) and Hotelling’s T 2 test for

mean vectors regarding the type I error rate and the power of test. The scenarios

were designed to analyze test performance under the influence of p−variate normality,

correlation, and homogeneity of variance, as well as number of variables and sample

size. Our results show that the type I error rate was not affected by the violation of

the assumptions of independence and homogeneity of variances, due to the presence of

p−variate normality, differently from the power of test. In data simulation of p−variate

distribution with heavier tails than usual (Student−t with 1 degree of freedom), the

Hotelling’s T 2 showed to be conservative, while the LRT showed better results, especially

for small sample sizes.
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1Instituto Federal de Rondônia - IFRO, CEP: 76993-000 - Caixa Postal 51, Colorado do Oeste, RO,
Brasil. E-mail: mauriciolacerda57@gmail.com
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1 Introduction

When a hypothesis test is used, either in a univariate or multivariate statistical
context, we expect results that are reliable and allow the researcher to correctly
infer about the unknown population parameters of interest. An ideal scenario is
that where the test does not reject the null hypothesis when it is true and rejects
the null hypothesis when it is false. However, this is a hypothetic result, which
may not happen in reality. Therefore, previous knowledge about the hypothesis
test is essential, especially regarding the different conditions (sample size, number
of variables, etc.) and assumptions (normality, independence, homogeneity of
variance, etc.) involved (CANTELMO and FERREIRA, 2007). According to Rafter
et al. (2002), if any condition or assumption is violated, and the test still shows
satisfactory performance or a performance close to what was outlined during the
elaboration of its theory, we call this test robust to that condition or assumption.
Otherwise, the test is called sensitive.

When there is no previous information about the application of a hypothesis
test available, we can apply a data simulation technique as an alternative to verify
the test’s robustness and sensitivity to a given condition or assumption. Through
this technique, we can establish scenarios and recreate different real situations
without carrying out an experiment, stopping production, wasting raw materials,
workforce, and financial resources (DACHS, 1988).

In data simulation studies, the comprehension of some statistical concepts is
important. The first concept is the significance level (α) that, according to Steel
and Torrie (1980), can be controlled by the researcher and refers to the probability
of rejecting the null hypothesis (H0) when it is true, in other words:

α = P [ reject H0|H0 is true] .

In a situation like this, we are dealing with an error known as type I error.
It means that by repeating the test several times, we expect the type I error to
occur at α% times. A second important concept is the size of type II error (β), that
according to Mood et al. (1974), refers to the probability of not rejecting the null
hypothesis (H0) when it is false, in other words:

β = P [not reject H0|H0 is false] .

The size of type II error cannot be directly controlled by the researcher, and
therefore, we adopt the power of test (Pw) analysis. According to Oliveira et al.
(2005), the power of the test is defined as (1 − β) and refers to the probability of
rejecting the null hypothesis (H0) when it is false, in other words:

Pw = P [ reject H0|H0 is false] .

In data simulation, the main results focus on type I error and the power. In
such procedure, it is estimated a rate for type I error (α̂) that is further compared to
the nominal value of α. If α̂ surpasses α significantly, the test is considered liberal
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(HOCHBERG and TAMHANE, 1987); otherwise, it is considered conservative
(CARMER and SWANSON, 1973). In addition, a test is exact if α̂ is significantly
equal to α (MOOD et al., 1974). It is also estimated a rate for the Pw. In general,
a test is considered powerful if Pw is close to or surpasses 0.80 (SANTOS and
FERREIRA, 2003; RAMOS and FERREIRA, 2009; MINGOTI and SILVA, 2010;
BARROSO et al., 2012).

The two error measurements mentioned are inversely proportional. Therefore,
liberal statistical tests tend to display low values for β̂ and hence high values for P̂w
that are not actually true and thus should be corrected. For that reason, liberal tests
show weak performance and are not recommended. On the other hand, conservative
tests tend to display high values for β̂, and hence low values for P̂w and for that
reason, they are also not recommended. The exact test is considered ideal because
it reliably reproduces Pw values.

Data simulation is applied in several works. In an econometric context,
Lemonte et al. (2004) assessed the augmented Dickey and Fuller’s test applied
to Brazilian inflation tax series, which have long-dependence properties or, in
other words, stochastic processes generated by ARFIMA models. Cantelmo and
Ferreira (2007) used data simulation to compare the performance of Shapiro-Wilk’s
multivariate normality tests with asymmetry and kurtosis tests proposed by Mardia
(1970, 1974, 1975). Mingoti and Silva (2010) proposed two new multivariate
statistical tests to monitor variance and covariance matrices in multivariate
processes by comparing them with the traditional generalized variance test. Barroso
et al. (2012) assessed the efficiency of the Durbin-Watson (DWG) generalized test
in detecting serial autocorrelation of up to fourth order in time series. Riboldi et al.
(2014) compared the performance of parametric (Bartlett, Brow-Forsythe, O’Brien,
and Levene’s test) and nonparametric tests (Siegel-Tukey, Ansari-Bradley, Klotz
and Mood’s test) of homogeneity of variances, among others.

In this work, we assessed the performance of two multivariate statistical tests
for mean vectors, the Likelihood Ratio Test (LRT) and the Hotelling’s T 2 test,
through data simulation. In sum, both tests were assessed for the behavior of type
I error and power in situations with different sample sizes, number of variables,
absence of p−variate normality, and independence and homogeneity of variances.
We believe that our results will help minimize incorrect analysis and erroneous
results since knowing the weakness of a test and the conditions on which the test
performance is best or worse beforehand is important for its application.

2 Materials and methods

2.1 Likelihood ratio test (LRT)

The multivariate LRT is used when the researcher wants to test the hypothesis
that a parametric vector θ belongs to any Rp subspace, either restricted (Ω0) or
unrestricted (Ω). More specifically, in a hypothesis test, the restricted space refers
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to the null hypothesis (H0) while the unrestricted space refers to the alternative
hypothesis (Ha), in other words:{

H0 : θ ∈ Ω0

Ha : θ ∈ Ω1 = Ω− Ω0

Given that Y = (Y1, Y2, · · · , Yn) represents a random sample (independent
and equally distributed), where Y i = (Yi1, Yi2, · · · , Yip)

′
for i = 1, · · · , n, the LRT

consists of obtaining the maximum of the likelihood function for both subspaces and
further calculate its ratio according to shown in (1), in order to obtain a decision
criterion for the hypothesis:

Λ =
max

[
LΩ0

(Y ; θ̂)
]

max
[
LΩ1(Y ; θ̂)

] . (1)

For (1), we can infer that if Λ big, the restricted space possibly will contain
the values of the parameters present in vector θ, resulting in not rejection of the
null hypothesis H0 : θ ∈ Ω0. The opposite will happen if Λ is small and, possibly,
the null hypothesis, H0 : θ ∈ Ω0 will be rejected. To establish a rejection region for
H0, based on probabilities, it would be necessary to know Λ’s exact distribution,
conditioned to the fact that H0 is true (Ferreira, 2011). Since this is not a simple
task, according to Mood et al. (1974), we can use the approximated expression
−2 ln (Λ), that if Ω0 ⊂ Ω, with Ω0 ⊂ Rs and Ω ⊂ Rr, has asymptotically distribution
of χ2

r−s, where r is the number of parameters to be estimated on the unrestricted
space and s is the number of parameters to be estimated on the restricted space.

To formulate the LRT in this work, we considered that the Y vector has normal

p−variate distribution, Y
i.i.d.∼ Np(θ,Σ). According to what was shown in Johnson

and Wichern’s work (2002), in (2) and (3), we have the maximum of the likelihood
functions for the restricted and unrestricted spaces, respectively.

LΩ0

(
θ0, Σ̂

)
= (2π)−

np
2

∣∣∣Σ̂ +
(
Y . − θ0

) (
Y ,−θ0

)′∣∣∣−n
2

exp
{
−np

2

}
(2)

LΩ(θ̂, Σ̂) = (2π)−
np
2

∣∣∣Σ̂∣∣∣−n
2

exp
{
−np

2

}
, (3)

where Y . and Σ̂, are defined according to the equations (4) and (5)

θ̂ = Y . =

n∑
i=1

Y i

n
(4)

Σ̂ = Sn =

n∑
i=1

(Y i − θ0) (Y i − θ0)
′

n
. (5)
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Ferreira (2011) demonstrates that the Λ statistics and the approximated
statistics described by Mood et al. (1974) for hypothesis tests of mean vectors
for a population, with unknown variance and covariance matrices (Σ), being the
θ0 = (θ01, θ02, · · · , θ0p)′, vector pre-specified, are obtained from (6) and (7).

Λ =
[
1 +

(
Y · − θ0

)′
S−1
n

(
Y ,−θ0

)]
(6)

−2 ln(Λ) = n ln
[
1 +

(
Y · − θ0

)′
S−1
n

(
Y 0 − θ0

)]
, (7)

where r = p+ p(p+1)
2 and s = p(p+1)

2 , for r − s = p. Therefore

−2 ln(Λ) = n ln
[
1 +

(
Y · − θ0

)′
S−1
n

(
Y · − θ0

)]
∼ χ2

α,p.

2.2 Hotelling’s T 2

In multivariate statistics, the Hotelling’s T 2 is the most formally used test
to draw conclusions about mean vectors and mean differences of multivariate
normal populations. According to Giri (2004), given that the Y vector has
normal p−variate distribution, under independence and homogeneous variance and

covariance matrices, Y
i.i.d.∼ Np(θ,Σ), the test statistics, under the null hypothesis

H0 : θ = θ0, is exact and has central F−distribution with p and ν + 1− p degrees
of freedom, according to (8).

T 2 = n
(
Y · − θ0

)′
S−1

(
Y · − θ0

)
∼ νp

ν + 1− p
Fa;p;ν+1−p, (8)

where Y · and S, described in (9) and (10), are the sample estimators of
the parametric vector θ and the population variance and covariance matrix Σ,
respectively.

Y · = θ̂ =

n∑
i=1

Y ·

n
(9)

Σ̂ = S =

n∑
i=1

(
Y · − Y

) (
Y · − Y

)′
n− 1

. (10)

2.3 Data simulation

The different scenarios were simulated as follows. As to sample size (n), we
assessed the tests’ performance for n = 10, 20, 50, 100 and 200, in other words,
in critical conditions (small sample sizes) and asymptotic conditions (large sample
sizes). The number of variables (p) was established as p = 2, 4 and 6. The variance
and covariance matrix structure (Σ) was defined as:
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i) Σ = σ2


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


p×p

= σ2Ip×p

ii) Σ = σ2


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ . . . 1


p×p

= σ2 [(1− ρ)Ip×p + ρJp×p].

ii) is called compound symmetry structure, with equicorrelated variables of
same variance, in which ρ is the correlation intensity (ρ = 0.2, 0.5 and 0.9) and J
is a p × p matrix of 1s. When ρ = 0 the compound symmetry structure equals i)
(FERREIRA, 2011).

The two next structures for the variance and covariance matrix were defined
to assess test behavior when the assumption(s) iii) homogeneity of variances and
iv) homogeneity of variances together with independence, were violated, in other
words:

iii) Σ =


σ2
Y1

0 · · · 0
0 σ2

Y2
· · · 0

...
...

. . .
...

0 0 · · · σ2
Yp


p×p

, σ2
Y1

̸= σ2
Y2

̸= · · · ̸= σ2
Yp

iv) Σ =


σ2
Y1

ρ · · · ρ
ρ σ2

Y2
· · · ρ

...
...

. . .
...

ρ ρ · · · σ2
Yp


p×p

, σY 2
1
̸= σ2

Y2
̸= · · · ̸= σ2

Yp
.

To make sure the variances are heterogeneous in this study, we assumed that
σ2
Yi
/σ2

Yj
> 7, for i ̸= j and i, j ∈ {1, 2, · · · , p}. According to Pimentel-Gomes

(1990), if the ratio between the highest and lowest variance is higher than 7, we can
conclude that the variances are heterogeneous. Estimates of parametric values of
n, p and ρ were based in the works of Cantelmo and Ferreira (2007), and Cirilo et
al. (2006).

To verify test performance in the absence of p−variate normality, we simulated
data of a p−variate Student−t distribution with one degree of freedom, generated
as follows:

Y = µ+
X√

U
ν

∼ tν(µ,Σ),

where X ∼ Np(0,Σ), U ∼ χ2
ν . We adopted µ = 0 and ν = 1, which resulted

in Y ∼ t1(0,Σ). p−variate normal distribution data were generated using the
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mvrnorm function from the MASS package in the R software (R CORE TEAM,
2021).

2.4 Type I error and power of test estimations

We developed an R script to calculate test statistics and further repeat the
procedure 10,000 times. To evaluate the type I error rate, we assumed H0 to be
true, in other words, θ = θ0. α̂ was computed by the proportion of rejection of
the null hypothesis, with the calculated statistics and critical values obtained via
significance level (α = 0.05) and degrees of freedom from the chi-square and F
distributions. The significance of population proportions was assessed via exact
binomial tests at 1%, significance level, according to Riboldi et al. (2014). In sum,
we tested the null hypothesis H0 : α = 5% against Ha : α ̸= 5%. The test was
considered exact if the H0 was not rejected or liberal/rigorous otherwise (liberal if
α̂ > α and rigorous if α̂ ≤ α). As for the Pw, we assumed H0 to be false, in other
words, θ = θ0 + 0.5, in order to assess test performance in detecting small changes
on mean vectors. P̂w was estimated similarly to α̂.

3 Results and discussion

3.1 Type I error

Table 1 shows type I error rate estimates for LRT with simulated data under
a p−variate normal distribution.

As observed in Table 1, the LRT showed to be liberal in many cases,
overestimating the type I error rate. The LRT was exact only in extremely large
sample sizes, especially for n = 100 (if p = 2) and n ≥ 200. According to Cantelmo
and Ferreira (2007), results like this are already expected as the LRT statistics have
a chi-square asymptotic distribution. Hence, it has problems when the sample size
is small. Therefore, the bigger the sample size, the better the LRT performance. It
is important to point out that similar results were found in the study of Mingoti and
Silva (2010) when an asymptotic distribution was used for generalized variance and
eigenvalue tests. Additionally, in this study, when n values fitted within the 10 to
50 interval, the increase in p resulted in an increase in type I error rates. Therefore,
we recommend increasing sample size according to the increase in variable number.
No effect of correlation and heterogeneity of variances on type I error was detected,
no matter the n and p values used. Therefore, we can consider the LRT robust for
independence and homogeneity of variances. In Table 2 are the results of Hotelling’s
T 2 test.

The Hotelling’s T 2 was exact in all cases and robust for the assumptions and
conditions tested. According to Giri (2004), the Hotelling’s T 2 should have shown
approximated behavior since its assumptions were violated, which made the sample
not random. However, this was not verified. For Johnson and Wichern (2002),
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Table 1 - Type I error rate estimates for the LRT (p−variate normality)

Compound symmetry
α = 0.05 Homogeneity Heterogeneity
n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.088+ 0.088+ 0.091+ 0.090+ 0.090+ 0.087+ 0.089+ 0.094+

4 0.168+ 0.172+ 0.161+ 0.160+ 0.166+ 0.159+ 0.169+ 0.161+

6 0.322+ 0.316+ 0.309+ 0.322+ 0.321+ 0.327+ 0.323+ 0.317+

20

2 0.065+ 0.064+ 0.067+ 0.070+ 0.064+ 0.072+ 0.063+ 0.068+

4 0.091+ 0.090+ 0.094+ 0.085+ 0.090+ 0.094+ 0.087+ 0.088+

6 0.120+ 0.127+ 0.125+ 0.126+ 0.131+ 0.128+ 0.126+ 0.123+

50

2 0.060+ 0.056+ 0.057+ 0.059+ 0.059+ 0.057+ 0.056+ 0.058+

4 0.061+ 0.065+ 0.062+ 0.062+ 0.061+ 0.069+ 0.065+ 0.063+

6 0.071+ 0.073+ 0.072+ 0.071+ 0.074+ 0.068+ 0.066+ 0.071+

100

2 0.054 0.054 0.055 0.055 0.052 0.055 0.053 0.054
4 0.054 0.056+ 0.055+ 0.055+ 0.057+ 0.056+ 0.054 0.053
6 0.060+ 0.062+ 0.059+ 0.057+ 0.058+ 0.060+ 0.061+ 0.058+

200

2 0.050 0.053 0.051 0.048 0.049 0.052 0.050 0.052
4 0.056+ 0.053 0.054 0.053 0.053 0.053 0.052 0.054
6 0.054+ 0.054 0.054 0.053 0.055 0.055 0.056+ 0.055

+ means that the type I error rate exceeded the nominal value of 5% significance (p − value < 0.01).
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Table 2 - Type I error rate estimates for the Hotelling’s T 2 (p−variate normality)

Compound symmetry
α = 0.05 Homogeneity Heterogeneity
n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.050 0.049 0.050 0.052 0.049 0.049 0.049 0.052
4 0.050 0.051 0.051 0.049 0.049 0.047 0.052 0.048
6 0.053 0.049 0.049 0.051 0.051 0.050 0.049 0.053

20

2 0.049 0.049 0.049 0.052 0.051 0.045 0.049 0.050
4 0.051 0.049 0.049 0.050 0.051 0.049 0.052 0.051
6 0.049 0.048 0.049 0.051 0.052 0.051 0.050 0.048

50

2 0.049 0.050 0.048 0.049 0.050 0.051 0.051 0.049
4 0.053 0.051 0.050 0.050 0.053 0.052 0.053 0.052
6 0.048 0.049 0.050 0.050 0.050 0.047 0.048 0.049

100

2 0.050 0.053 0.048 0.050 0.051 0.052 0.046 0.051
4 0.047 0.047 0.047 0.052 0.048 0.048 0.051 0.052
6 0.049 0.050 0.052 0.052 0.049 0.049 0.049 0.053

200

2 0.052 0.047 0.047 0.051 0.048 0.048 0.050 0.053
4 0.047 0.051 0.052 0.052 0.052 0.053 0.047 0.046
6 0.049 0.049 0.050 0.048 0.048 0.047 0.047 0.050
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the multivariate normality of the random vector is the only requirement for the
Hotelling’s T 2 to be valid. Since we did not verify any limitations to the use of
Hotelling’s T 2 test, regarding sample size and variable number, we recommend
its use over the LRT if the conditions are the same as those in this study. This
conclusion could be foreseen because the Hotelling’s T 2 was exact and will correctly
reproduce Pw results, unlike the LRT.

In Table 3 are the results of type I error rate for the LRT, with simulated data
of a p−variate Student−t distribution.

Table 3 - Type I error rate estimates for the LRT (p−variate Student−t)

Compound symmetry
α = 0.05 Homogeneity Heterogeneity
n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.060+ 0.061+ 0.058+ 0.062+ 0.061+ 0.061+ 0.059+ 0.060+

4 0.114+ 0.109+ 0.110+ 0.105+ 0.107+ 0.106+ 0.103+ 0.109+

5 0.254+ 0.241+ 0.255+ 0.254+ 0.251+ 0.250+ 0.245+ 0.253+

20

2 0.054 0.046 0.054 0.053 0.051 0.053 0.050 0.050
4 0.062+ 0.063+ 0.058+ 0.061+ 0.060+ 0.064+ 0.064+ 0.059+

6 0.088+ 0.083+ 0.085+ 0.082+ 0.083+ 0.087+ 0.085+ 0.088+

50

2 0.050 0.051 0.050 0.049 0.051 0.049 0.049 0.051
4 0.048 0.050 0.050 0.048 0.053 0.051 0.050 0.050
6 0.055 0.059+ 0.054 0.054 0.059+ 0.056+ 0.054 0.055

100

2 0.050 0.049 0.048 0.046 0.049 0.051 0.048 0.049
4 0.048 0.051 0.050 0.051 0.048 0.049 0.049 0.046
6 0.050 0.052 0.048 0.052 0.047 0.051 0.047 0.049

200

2 0.045 0.050 0.048 0.047 0.048 0.050 0.049 0.047
4 0.053 0.052 0.048 0.050 0.048 0.050 0.048 0.050
6 0.049 0.048 0.053 0.049 0.052 0.051 0.048 0.052

+ means that the type I error rate exceeded the nominal value of 5% significance (p − value < 0.01).

Similar results to those in Table 1 were observed for n = 10, which means
that the LRT was still liberal. However, with simulated data from a p−variate
Student−t distribution, the LRT became an exact test for smaller sample sizes
(starting from n = 50), except for (n = 50, p = 6 and ρ = 0.2), which did not occur
with simulated data from p−variate normal distribution. Especially for n < 50, we
suggest not using the LRT or use it with a small number of variables (maximum
3). The same not-significant response pattern was also observed for the ρ and/or
Σ effects on type I error rate. Curiously, for n = 20 and p = 2, the LRT was exact.
Such result was unexpected, especially due to the LRT’s asymptotic statistics. In
addition, this was also a great result because n = 20 is possible and most likely to
be adopted in real situations.
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In Table 4 are the type I error rate estimates for the Hotelling’s T 2 with
simulated data from a p−variate Student−t distribution.

Table 4 - Type I error rate estimates for the Hotelling’s T 2 (p−variate Student−t
with 1 degree of freedom)

Compound symmetry
α = 0.05 Homogeneity Heterogeneity
n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.025− 0.024− 0.023− 0.024− 0.030− 0.025− 0.024− 0.027−

4 0.016− 0.016− 0.017− 0.017− 0.015− 0.013− 0.014− 0.018−

6 0.013− 0.013− 0.011− 0.012− 0.011− 0.013− 0.010− 0.014−

20

2 0.033− 0.036− 0.035− 0.035− 0.039− 0.034− 0.034− 0.036−

4 0.027− 0.026− 0.027− 0.024− 0.029− 0.027− 0.026− 0.027−

6 0.024− 0.021− 0.021− 0.020− 0.022− 0.020− 0.022− 0.018−

50

2 0.042− 0.043− 0.044− 0.044− 0.042− 0.046 0.047 0.046
4 0.037− 0.039− 0.039− 0.036− 0.038− 0.036− 0.040− 0.039−

6 0.039− 0.035− 0.032− 0.033− 0.032− 0.036− 0.035− 0.032−

100

2 0.047 0.046 0.049 0.046 0.044 0.048 0.048 0.046
4 0.045 0.043− 0.045 0.042− 0.041− 0.043− 0.044− 0.043−

6 0.041− 0.039− 0.040− 0.038− 0.040− 0.043− 0.042− 0.043−

200

2 0.046 0.047 0.049 0.048 0.046 0.051 0.047 0.049
4 0.046 0.048 0.048 0.045 0.047 0.047 0.049 0.049
6 0.047 0.045 0.047 0.047 0.046 0.047 0.049 0.046

− means that the type I error rate was lower than the nominal value of 5% significance (p−value < 0.01).

Hotelling’s T 2 results in Table 4 differed from the previous Hotelling’s
T 2 results shown in Table 2. The test was conservative in many situations,
underestimating the type I error rate. When n = 10 and p = 6, estimates were
close to 0.01, and, in truth, the nominal value of α was 0.05. Only in large sample
sizes, n = 100 (and p = 2) and for n ≥ 200, the test was exact. Notice that,
again, violating the assumptions of independence and homogeneity of variances
led to changes in type I error rates. Such results are consistent with Johnson e
Wichern’s theory (2002) that the p−variate normality assumption is indeed the
most important for test validation.

The previous result has been explored in other studies such as Arnold
(1964), Mardia (1970, 1975), Everitt (1979), and Kariya (1981). Chase and
Bulgren (1971) studied the bivariate Hotelling’s T 2 with correlated variables.
The data was generated through normal, uniform, exponential, lognormal,
gamma, and double exponential bivariate distributions. For uniform distributions
the Hotelling’s T 2 was approximately exact. Mardia (1974) supports this
finding by saying that the Hotelling’s T 2 is relatively robust to the lack
of normality if the distribution is approximately symmetric and liberal for
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gamma/exponential/lognormal distributions (asymmetric) and conservative for
double exponential distributions. The double exponential distribution has denser
tails than normal distributions as well as the Student−t. Therefore, such results are
consistent with those found in Table 4. In addition, the authors noticed that the
correlation effect upon the type I error rate was not significant like we also verified
here. It is important to point out that the LRT has advantages over the Hotelling’s
T 2 if data is generated by a Student−t distribution since with n = 50 its use is
already recommended just like it is for n = 20 and p = 2.

3.2 Power of test

In Table 5 are Pw results for the LRT with simulated data from a p−variate
normal distribution.

Table 5 - Power of test for the LRT (p−variate normality)

Compound symmetry
Homogeneity Heterogeneity

n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.4905 0.4314 0.3764 0.3132 0.3293 0.3206 0.3070 0.3012
4 0.7041 0.5361 0.4260 0.3358 0.3560 0.3535 0.3346 0.3245
6 0.8483 0.6685 0.5476 0.4663 0.4773 0.4704 0.4670 0.4608

20

2 0.7931 0.7132 0.6038 0.5159 0.5455 0.5305 0.5057 0.4982
4 0.9488 0.7907 0.5971 0.4452 0.4647 0.4551 0.4304 0.4239
6 0.9845 0.8213 0.5860 0.4365 0.4594 0.4427 0.4221 0.4043

50

2 0.9942 0.9858 0.9558 0.9028 0.9190 0.9116 0.8959 0.8831
4 1.0000 0.9963 0.9553 0.8433 0.8569 0.8361 0.8215 0.8048
6 1.0000 0.9998 0.9452 0.7831 0.8050 0.7883 0.7606 0.7435

100

2 1.0000 1.0000 1.0000 0.9969 0.9983 0.9980 0.9963 0.9960
4 1.0000 1.0000 1.0000 0.9917 0.9940 0.9919 0.9908 0.9859
6 1.0000 1.0000 1.0000 0.9880 0.9893 0.9846 0.9790 0.9765

200

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The Pw was affected by the violation of the assumptions of independence and
homogeneity of variances. The increase in correlation degree led to reductions in
Pw, no matter the p values, especially for n < 100. Therefore, the more correlated
the variables in study, the less powerful the LRT. The addition of a heterogeneous
structure in the Σ matrix also led to a decrease in Pw values. The non-homogeneity
of variances seems to reduce more sharply the Pw than the independence of
variables, except in situations where ρ = 0.9 and p = 6. In such cases, the fact
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that the variances are different did not cause reductions in Pw. This result was
more notorious for n ≤ 50, as p increases. We also verified that, for n = 10,
the Pw increased as p increased, no matter the correlation or covariance structure.
However, for n ≥ 20, this result was not observed, especially for correlated variables
(ρ ≥ 0.20) and with different variances.

Overall, Pw ≥ 0.80 was observed for n ≥ 50, except where the homogeneity
and independence of variances were violated, with p = 6. Such result was expected
since the Pw increases as n increases (Mood et al., 1974). However, despite p and n
relations with the Pw can be true, according to Cantelmo and Ferreira (2007), the
estimates for Pw found, as well as the Pw estimates for n < 50, are not real and
should be corrected since in these cases the LRT was extremely liberal. Therefore,
in these scenarios, by opting to use the LRT, we should be aware of this problem.
Only for n ≥ 200 was the test exact amongst the p values assessed. Noticed that
in real situations, a sample size of n = 200 is not easily seen for several reasons
(time, logistics, cost, etc.). Therefore, under data normality, the Hotelling’s T 2 is
recommended over the LRT. In Table 6 are the Pw results for the Hotelling’s T 2.

Table 6 - Power of test for the Hotelling’s T 2 (p−variate normality)

Compound symmetry
Homogeneity Heterogeneity

n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.3610 0.3060 0.2550 0.2060 0.2230 0.2090 0.2080 0.1980
4 0.3890 0.2500 0.1710 0.1320 0.1360 0.1340 0.1270 0.1220
6 0.3050 0.1770 0.1160 0.0910 0.0920 0.0890 0.0820 0.0890

20

2 0.7400 0.6480 0.5550 0.4520 0.4810 0.4750 0.4490 0.4510
4 0.8900 0.6860 0.4660 0.3270 0.3400 0.3420 0.3100 0.2980
6 0.9310 0.6410 0.3840 0.2470 0.2640 0.2540 0.2330 0.2240

50

2 0.9950 0.9850 0.9520 0.8910 0.9060 0.9050 0.8860 0.8780
4 1.0000 0.9950 0.9490 0.8010 0.8330 0.8080 0.7880 0.7790
6 1.0000 0.9970 0.9190 0.7280 0.7530 0.7330 0.7090 0.6910

100

2 1.0000 1.0000 1.0000 0.9960 0.9980 0.9980 0.9960 0.9970
4 1.0000 1.0000 1.0000 1.0000 0.9920 0.9910 0.9890 0.9860
6 1.0000 1.0000 1.0000 0.9810 0.9870 0.9830 0.9780 0.9710

200

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Conclusions similar to that of the LRT were also obtained for the Hotelling’s
T 2 as for the violation of the assumptions of independence and homogeneity of
variances from the variables in study. It means that, when both were neglected, the
Pw decreased. These Pw estimates are true and reliably represent the actual values
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since the Hotelling’s T 2 was exact (Table 2). For this reason, we did not verify a
completely defined pattern that demonstrates an increase in Pw as the variable
number increases, the same as happened to the LRT, which proves that the higher
the p values, the lower the Pw. Under data p−variate normality, the Hotelling’s
T 2 is more recommended than the LRT; however, its use is recommended only for
n ≥ 50, conditions where this test showed Pw estimates close to or higher than
0.80.

Table 7 - Power of test for the LRT (p−variate Student−t with 1 degree of freedom)

Compound symmetry
Homogeneity Heterogeneity

n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.315 0.269 0.229 0.197 0.201 0.187 0.184 0.181
4 0.420 0.324 0.247 0.205 0.214 0.207 0.202 0.196
6 0.593 0.470 0.379 0.342 0.347 0.335 0.334 0.337

20

2 0.579 0.510 0.417 0.345 0.369 0.343 0.340 0.335
4 0.749 0.550 0.389 0.276 0.286 0.278 0.263 0.258
6 0.825 0.563 0.381 0.270 0.272 0.269 0.254 0.249

50

2 0.945 0.905 0.831 0.726 0.764 0.744 0.723 0.704
4 0.996 0.949 0.810 0.627 0.659 0.633 0.608 0.579
6 1.000 0.958 0.770 0.567 0.578 0.567 0.532 0.516

100

2 0.999 0.998 0.988 0.958 0.971 0.963 0.960 0.951
4 1.000 1.000 0.988 0.922 0.938 0.929 0.914 0.905
6 1.000 0.999 0.984 0.892 0.905 0.887 0.867 0.856

200

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
4 1.000 1.000 1.000 0.998 0.998 0.999 0.998 0.998
6 1.000 1.000 1.000 0.998 0.998 0.998 0.995 0.995

In Table 7 are the Pw results for the LRT, with simulated data from
a p−variate Student−t distribution. Under independence and homogeneity of
variances, Pw results for the LRT were affected by the violation of the assumption
of p−variate normality. Such outcome was verified, for example, by comparing the
LRT’s Pw for n = 10 and p = 2 (0.4905 for bivariate normal, and 0.3150 for bivariate
Student−t, respectively). The decrease in Pw can also be observed when adding
correlation and heterogeneity structures into the Σ matrix. Remember that, under
the proposed data distribution (Student−t), the LRT showed to be liberal for small
sample sizes, but exact if n = 20 (if p = 2) and n ≥ 50 (except if p = 6). Therefore,
in situations where n ≥ 50, with homogeneous variances, only for p = 6 and high
correlation levels, Pw ≥ 0.80 was not found. As for heterogeneous variances, where
p = 2, Pw estimates were close to 0.80, and non-satisfactory results were verified
for p = 4 and 6. When n = 20, Pw estimates were much lower than 0.80; however,
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in these same conditions the Hotelling’s T 2 showed to be conservative and possibly
will show low estimates for Pw, as it will be verified in Table 8. Therefore, under
these circumstances, the LRT is more recommended.

Table 8 - Power of test estimates for the Hotelling’s T 2 (p−variate Student−t with
1 degree of freedom)

Compound symmetry
Homogeneity Heterogeneity

n p ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.9

10

2 0.178 0.144 0.119 0.099 0.095 0.097 0.096 0.096
4 0.102 0.067 0.053 0.036 0.042 0.041 0.038 0.036
6 0.052 0.035 0.025 0.022 0.022 0.018 0.019 0.020

20

2 0.509 0.427 0.354 0.271 0.304 0.281 0.280 0.277
4 0.587 0.385 0.240 0.151 0.166 0.163 0.149 0.149
6 0.547 0.279 0.161 0.093 0.103 0.098 0.093 0.089

50

2 0.934 0.897 0.815 0.705 0.743 0.718 0.707 0.680
4 0.995 0.932 0.775 0.578 0.616 0.589 0.556 0.534
6 0.999 0.934 0.706 0.485 0.498 0.487 0.451 0.433

100

2 0.999 0.997 0.986 0.957 0.970 0.962 0.956 0.950
4 1.000 1.000 0.986 0.915 0.930 0.922 0.902 0.896
6 1.000 0.999 0.981 0.876 0.885 0.869 0.844 0.834

200

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
4 1.000 1.000 1.000 0.998 0.999 0.999 0.998 0.998
6 1.000 1.000 1.000 0.997 0.998 0.997 0.995 0.994

Hotelling’s T 2 was conservative for simulated data from a Student−t
distribution (Table 4), therefore, its Pw estimates were lower than that under
p−variate normality. Such difference can be verified by comparing the results from
Tables 2 and 4, especially for n ≤ 50. The effects of correlation and heterogeneity
of variables were also significant, indicating a decrease in Pw. In addition, with
heterogeneous variances, for n = 10 and p = 2, 4 and 6, Pw estimates were
extremely low (0.02 < Pw < 0.10). As we can see, the violation of all three
assumptions, in small sample sizes, makes the Hotelling’s T 2 test inappropriate.

Conclusions

Our results demonstrated that under p−variate normality the Hotelling’s T 2

test had better performance compared to the LRT in terms of controlling the type I
error rate and Pw. In this specific situation, the Hotelling’s T 2 was exact, including
for small sample sizes and, therefore, reliably reproduced Pw values. The LRT,
because of its asymptotic properties, showed to be liberal for small sample sizes,
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overestimating Pw values. Therefore, when p−variate normality of variables is
identified, we suggest using the Hotelling’s T 2 test. With original data from a
p−variate Student−t distribution, with 1 degree of freedom, the Hotelling’s T 2 was
conservative in many cases and, only for relatively large sample sizes (n ≥ 200), it
was exact. The LRT, unexpectedly, showed satisfactory performance, even with its
asymptotic properties, becoming exact for sample sizes starting from n = 50. In
particular, when n = 20 and p = 2 the LRT was exact. This result is very important
since this scenario is more likely to happen in real situations. Therefore, if the data
is simulated from a distribution with tails heavier than normal, we suggest the use
of the asymptotic LRT over the Hotelling’s T 2.

In addition, the type I error rate was not significantly affected by the structures
of correlation and heterogeneity of variances established for the Σ matrix. The
negative impact of adding these structures can be verified by looking at the decrease
in Pw estimates.
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RESUMO: O presente trabalho tem por objetivo avaliar, via simulação de dados, os

testes estat́ısticos multivariados da Razão de Verossimilhanças (TRV) e T 2 de Hotelling

(T 2) para vetores de médias, em relação à taxa do erro de tipo I e ao poder do teste.

Os cenários propostos foram formados visando analisar o desempenho destes sob a

influência de normalidade p−variada, correlação e homogeneidade de variâncias das

variáveis em estudo, bem como o número de variáveis e o tamanho da amostra. Os

resultados demonstraram que a taxa do erro de tipo I não foi afetada pela violação das

pressuposições de independência e homogeneidade de variâncias das variáveis, dado a

presença de normalidade p−variada, diferentemente do poder do teste. Simulando dados

de uma distribuição p−variada com caldas mais densas que a normal (t−Student com 1

grau de liberdade), o T 2 mostrou-se um teste conservador, enquanto o TRV apresentou

melhores resultados, inclusive em pequenas amostras.

PALAVRAS-CHAVE: Teste de razão de verossimilhanças (TRV); T 2 de Hotteling; erro

de tipo I; teste mais poderoso.
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