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Abstract
The Cuiabá River registers cyclical occurrences of floods and droughts over the years, according to the
hydrological periods, thus characterizing a non-linear behavior. The prediction of the level of the Cuiabá
river is important to help institutions such as the Civil Defense of the state of Mato Grosso and many
other institutions that are concerned with the prevention and mitigation of natural disasters. Thus, this
study considered the nonlinear Threshold Autoregressive Self-Excking Open-loop (TARSO) model with
2 regimes, with a Bayesian approach. We tested models to which values of the linimetric quota (river water
level in millimeters) with and without rainfall (mm) were associated. All models were compared using the
lowest DIC, MAPE and MSE criterion, and the TARSO (2; 1, 0, 3, 1, 1) model performed best according
to these criteria. Finally, the selected model was shown to produce reliable predictions.
Keywords: Times Series, Bayesian analysis, nonlinear models, Cuiabá River, Floodings

1. Introduction
Natural disasters have been studying more frequently in the international science community

due to the conflicting relationship between society and nature worldwide, even as the consequences
of catastrophic events for the population of affected regions. Brazil still lacks papers that purport to
present preventive decision-making tools to reduce the outcomes caused by natural phenomena.

These catastrophes are frequently triggered by heavy rainfalls. When precipitation is intense
but cannot soak into the soil fast, a large part of its water volume flows into the drainage system,
surpassing its natural drainage capacity. The surplus water volume not drained by the soil fills the
floodplain, submerging according to the topography of the areas close to the rivers (Tucci, 2004).
Generally, these phenomena are enhanced by human changes in the environment, such for example,
the waterproofing of the soil and the rectification of watercourses due to urban interventions (Goerl
& Kobiyama, 2005).
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Floodings in fluvial systems are natural phenomena that occur anywhere worldwide. These
events come about when there is an increase in the average level in a water system and does not
necessarily cause harm to the population. However, they often gain sufficient proportions to ex-
trapolate the smaller bed of the watercourse, affecting large cities, mainly where urban development
did not occur in a planned way, severely impacting the economy and society in general (Paes, 2011).

According to IBGE (2014), the Midwest region had the lowest concentration of municipalities
affected by flooding (19%). However, Cuiaba, the capital of Mato Grosso, has records of floods
that devastated neighborhoods in the metropolitan area. In 1974, for example, the so-called "great
flood" took place, where the waters of the Cuiaba river basin reached 10.87 meters. The Manso
plant, located 280 km from Cuiaba, was then planned in the late 70s. It has the aim of attenuating
the floods that used to compromise this region. Furthermore, other floods fell out in 1942, 1959,
1995, 2001 (Zamparoni, 2012)

Concerning the high frequency of these phenomena and their impacts on the local populations,
the Superintendence of Civil Defense of State of Mato Grosso (SUDEC/MT) specified planimetric
reference levels for several rivers in locations with potential floods (Paes, 2011). SUDEC/MT con-
sidered the experiences of floodable areas upstream of the Pantanal and adopted the alert (8.50m),
emergency (9.50m), and calamity (11.00m) levels for the Cuiaba River.

The Cuiaba river basin is located in the state of Mato Grosso, with a total area of approximately
29,000 km2, covering 13 municipalities. Understanding the hydrological dynamics of this basin
is of fundamental importance for plans that minimize the impacts caused by floods and overflows.
Therefore, the modeling of hydrometeorological variables provides support for the knowledge of the
future behavior of the basin, having fundamental importance in the planning of flood forecasting
systems. The region stands out by the presence of perennial rivers and a good water production
capacity. Furthermore, the hydrological regime presents a severe drought period between June and
September, and a lot of rain with peak flows from December up to February (SEDEC, 2013).

The dynamics of the Cuiaba river basin does not assume a linear behavior, then it is necessary
to develop non-linear models, which is challenging, as the relationship between the parameters
and the observed values are only hypotheses, without any general law leading to this relationship
(Chakraborty et al., 1992).

The time series model is widely used to represent hydrological data. However, the models that
belong to the well-known Box-Jenkins methodology may be inappropriate, as they assume linear
relationships between the variables. Therefore, non-linear time series models can perform better in
fitting hydrological data.

Among the various nonlinear models, the threshold models stand out (Tong & Lim, 1980). These
models present as the main characteristic the presence of different states or regimes for the time
series and allow the variables to have several dynamic behaviors depending on the regime pattern
that occurs at each time slot. In the autoregressive models with a threshold (TAR), the threshold
variable controls the regimes. The threshold autoregressive (TAR) and the self-excited threshold
autoregressive (SETAR) models stand out in this class (de Almeida et al., 2020).

Another process belonging to the threshold class is the threshold autoregressive self-exciting
open-loop (TARSO) proposed by Tong (1990). This model emerged to time series modeling due to
several factors, such as flow series, water level series, plant disease levels, weather variables, among
other aspects.

Several works using threshold models for hydrological data were presented in the scientific com-
munity. Jian et al. (1998) used the TARSO model to describe the dynamics of groundwater flow in
Shanxi province, in northwestern China, in which the threshold parameter enables different precip-
itation processes, and the lag parameter stamps the time interval between precipitation and spring
flow increase. Vasas et al. (2007) used this model to describe the daily series of water discharges from
the Tisza River in Hungary. de Almeida et al. (2020) modeled the average daily quota in the Cuiaba
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River, Brazil using the SETAR model, with a threshold set by the median.
This work aims to analyze the behavior of the time series of the daily quota of the Cuiaba River

and propose forecast models through the TARSO model.

2. Matherials and Methods
Study area

The Cuiaba watershed is located in the western part of central Brazil, in the state of Mato Grosso,
with a total area of approximately 29,000 km2 with 841 km in perimeter belonging to the Upper
Paraguay River basin. The basin is located between the geographic coordinates 1418 and 1700S and
5440 and 5655W . The headwaters belong to the municipality of Rosário Oeste, on the riverside of
Serra Azul, and their main sources are the Cuiaba da Larga and Cuiaba do Bonito rivers. After the
confluence of these rivers, it changes its name to Cuiabazinho river and, only after the encounter
with the Manso, it turns to the name of Cuiaba River (de Almeida et al., 2020; MATO GROSSO,
2003).

The Cuiaba river basin consists of two large geological formations with well-defined biotic and
abiotic characteristics: the Pantanal flatland and the surrounding highland and mountain ranges.
These orographic characteristics enable us to distinguish three different regions in the Cuiaba river
basin, namely: Upper Cuiaba, Middle Cuiaba, and Lower Cuiaba (de Almeida et al., 2020)

Pluviometric anad Fluviometric data
The pluviometric and fluviometric daily data were obtained from January 1st, 2001, up to De-

cember 31st, 2012, resulting in a total number of 4384 observations for each data set. The fluvio-
metric data consists of measurements from the limnimetric level (river water level in millimeters),
and the pluviometric data consists of rainfall measurements (mm). The limnimetric quotas refer to
the Rosário Oeste stations (code 66250001) obtained from the Hidroweb system of the National
Water Agency (ANA). Furthermore, the rainfall data were collected through the TRMM satellite
(The Tropical Rainfall Measuring Mission).

2.1 TARSO MODEL
In this work, it is considered the TARSO model with two regimes and threshold value r (Tsay,

1998). Consider the model

Yt =


ϕ10 +

p1∑
i=1

ϕ1iYt–i +
q1∑
j=1

θ1iXt1 – 1 + ε
(1)
t se Yt–d ≤ r

ϕ20 +
p2∑
i=1

ϕ2iYt–i +
q2∑
j=1

θ2iXt1 – 1 + ε
(2)
t se Yt–d > r

(1)

where

• Yt is the linimetric level of the Cuiabá river at time t;
• Xt is the precipitation at time t
• r is the threshold parameter which breaks the series into two parts;
• d > 0 is the lag parameter;
• p1, p2, q1, q2 are orders of submodels in each regime;
• ϕ and θ are the autoregressive parameters;
• εt is the white noise, uncorrelated with zero mean and constant variance.
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The equation 1 assigns that Yt belongs to two different processes with different orders (k, p1, p2, m1, m2, q1, q2),
where k is the number of regimes that depends on the threshold variable Xtd . It is denoted by

TARSO(k = 2; p1, p2, q1, q2, d)

Assuming that the orders (pi, qi), i = 1, 2 are known, the model parameters are (γi, τi) where

γi = {ϕi0,ϕi1, ...,ϕipi , θi0, θi1, ..., θiqi}, i = 1, 2

Let Zit = (1, Yt–1, Yt–2, ..., Yt–pi , Xt–1, Xt–2, ...Xt–pi ) with i = 1, 2 the model 1 can be matrix
rewritten as

Yt =

{
γ1Z1t + ε

(1)
t se Yt–d ≤ r

γ2Z2t + ε
(2)
t se Yt–d > r

(2)

Let D = Yt, Xt, t = p + 1, ..., n the entire sequence, p = max(p1, p2, q1, q2) and d a fixed value,
in which the model is conditioned and n1, n2 the number of observations in each regime. Condi-

tioning in the p-first observations then ε
(1)
t ∼ N(0, τi), the conditional likelihood function can be

approximated by

L(Φ|d, r, D) ≈ τ
n1
2

1 τ
n2
2

2 exp

–
τ1
2

n∑
t=p+1

(Yt – γ1Z1t)
2 –

τ2
2

n∑
t=p+1

(Yt – γ2Z2t)
2


where

•
n∑

t=p+1
(Yt – γ1Z1t)

2 is the sum in t under the first regime, that is, Xt–d ≤ r

•
n∑

t=p+1
(Yt – γ2Z2t)

2 is the sum em t under the second regime, that is, Xt–d > r

• Φ = {γ1,γ2, τ1, τ2}

2.2 Statistical Analysis
All analyzes were performed in the R Core Team (2020) software. Initially, descriptive analyzes

of the linimetric quota series and rainfall were performed using the graphs of the time series, as
well as the application of the Cox-Stuart and g Fisher tests (Morettin & Toloi, 2006) to verify,
respectively, the existence of trend and seasonality.

2.2.1 Bayesian Analysis
The Bayesian analysis was performed considering the article by Sáfaddi & Morettin (2001) as-

suming a previous distribution by Jeffreys:

P(Φ) ≈ τ–1
1 τ–1

2

The parameters r and d are known, their values were specified as r = 119 (median of the quota),
and d = 1 in the same way as used by de Almeida et al. (2020).

Thus, the posterior distribution is gamma-normal and the complete conditional distributions of
γi and τi are given by

γi|τi, d, r, D ∼ N
(
A–1

i Bi, τiA
–1
i

)
τi|γi, d, r, D ∼ Gama

(
ni – (pi + mi + 1)

1
,
µ

2

)
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in which

µ = Ci – B′
iA

–1
i Bi +

(
γi – A–1

i Bi
)′

Ai
(
γi – A–1

i Bi
)

Ai =


ni∑

t=p+1
Yt–1Yt–1

ni∑
t=p+1

Yt–1Zt–1

ni∑
t=p+1

Yt–1Zt–1

ni∑
t=p+1

Zt–1Zt–1

 Bi =


ni∑

t=p+1
Yt–1Yt

ni∑
t=p+1

Zt–1Yt


Ci =

( ni∑
t=p+1

YtYt

)

The posterior distribution estimates for γi and τi were obtained using the MCMC method and
the Gibbs sampling algorithm Geman & Geman, 1984.

The models were fit to datasets considering the different combinations of

• p1 = 1, ..., 5
• p2 = 1, ..., 5
• m1 = 0, ..., 5
• m2 = 0, ..., 5
• with and without the parameters ϕ10,β10,ϕ20,β20

3. Results and Discussion
Figure 1 exhibits the time series of the daily average linimetric quotas at the Rosário Oeste

Station, in which a seasonal behavior is observed. The Fisher g test shows the existence of seasonality
(p-value <0.0001) with a period of oscillation of the series around 366 days, which was determined
by the periodogram (Morettin & Toloi, 2006), with the maximum in the rainy periods and minimal
in the dry period. The Cox-Stuart test had no trend (p-value=0.8639), indicating that there was no
gradual increase or decrease in the series over time.

Figure 1. Series of daily average linimetric quotas, for Rosário Oeste station, from January 1st, 2001 up to December 31,
2012.

Figure 2 shows the precipitation series, which has similar behavior to the quota, with seasonality
(p-value <0.0001), and an oscillation period of 367 days, and without a trend (p-value p=0.0985).
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Figure 2. Daily rainfall series for Rosário Oeste station, from January 1st, 2001 up to December 31, 2012.

The cross-correlation function between the mean elevation and precipitation is shown in figure
3. In positive and negative lags they are significant up to around 30 days, indicating that precipitation
positively influences the average quota and the opposite also occurs, but it is also observed that
positive lags have a greater correlation, indicating a greater force of precipitation in influencing the
quota.

Figure 3. Cross-correlation function between the average quota and precipitation.

3.1 Models
Among the 14,400 fitted models, only 38 had all significant parameters, and their configuration

of these models is presented in table 1. Of these 38 models, we have to:

• In the first regime for the quota autoregressive order 31 models with p1 = 1 and 7 models with
p1 = 2, all models presented m1 = 0, indicating that when the quota is lower than its median, its
value depends on 1 or two previous ones and has no influence of precipitation.
• In the second regime for the autoregressive order of the quota, 22 models with p2 = 1, 1 model

with p2 = 2 and 15 models p2 = 3, for rainfall variable 19 models presented m2 = 0 and m2 = 1,
indicating that when the quota is higher than its median, its value depends on the previous 1 to
3 and is influenced by the previous day’s rainfall.
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From Tabel 1 it is also possible to observe that the models 26 and 29 presented better performance
since they have the lowest DIC value (9503,4).

Table 1. TARSO models fitted with (p1, m1, p2, m2) and with and without ϕ10,β10,ϕ20,β20

model p1 m1 p2 m2 ϕ10 β10 ϕ20 β20 DIC

1 1 0 1 0 without without without without 9520.8
2 1 0 1 0 with without without without 9517.6
3 1 0 1 0 without without with without 9520.6
4 1 0 1 0 with without with without 9517.7
5 1 0 1 0 without without without with 9532.1
6 1 0 1 0 with without without with 9529.2
7 1 0 1 0 without without with with 9531.4
8 1 0 1 0 with without with with 9528.4
9 1 0 1 1 without without without without 9525.2

10 1 0 1 1 with without without without 9510.5
11 1 0 1 1 without without with without 9525.0
12 1 0 1 1 with without with without 9510.0
13 1 0 1 1 without without without with 9531.7
14 1 0 1 1 with without without with 9528.8
15 1 0 1 1 without with without with 9530.1
16 1 0 1 1 without without with with 9531.4
17 1 0 1 1 with without with with 9528.3
18 1 0 2 1 with without with with 9524.9
19 1 0 3 0 without without without without 9508.9
20 1 0 3 0 with without without without 9506.0
21 1 0 3 0 without with without without 9507.0
22 1 0 3 0 without without with without 9508.6
23 1 0 3 0 with without with without 9506.0
24 1 0 3 0 with without with with 9514.9
25 1 0 3 1 without without without without 9506.8
26 1 0 3 1 with without without without 9503.4
27 1 0 3 1 without with without without 9509.5
28 1 0 3 1 without without with without 9506.2
29 1 0 3 1 with without with without 9503.4
30 1 0 3 1 without without with with 9511.4
31 1 0 3 1 with without with with 9508.6
32 2 0 1 0 without without without without 152623.7
33 2 0 1 0 without with with without 151641.7
34 2 0 1 0 without with without with 151069.7
35 2 0 1 0 with without with with 144412.2
36 2 0 1 1 without without without without 152959.8
37 2 0 3 0 without with without without 10022.3
38 2 0 3 1 without without with with 10041.0

Figure 4 shows the final densities and chains of the parameters for model 26 - TARSO (2,1,0,3,1,1)
with intercept ϕ10.

The estimates for model 26 - TARSO(2,1,0,3,1,1) with intercept ϕ10 - are presented in table ??,
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Figure 4. Densities and final strings of parameters for the TARSO model (2,1,0,3,1,1) with ϕ10 intercept, for daily average
linimetric quotas, for Rosário Oeste station, from January 1st, 2001 up to December 31, 2012.

and from the 95% credible intervals, all parameters are found to be meaningful. From the estimates,
it is possible to observe that:

• In the first regime, the quota value revolves around a constant 2.97 and is positively affected by
the value of the previous day, it does not influence precipitation;
• In the second regime, the quota value is influenced by up to three past values, with the first and

third day having a positive influence, and the second day negatively. The quota is also positively
influenced by the past day’s rainfall.

Table 2. TARSO (2,1,0,3,1,1) model estimates with intercept ϕ10 e ϕ20

Parameters a Posteriori 95% credible intervals
Mode lower upper

ϕ10 2.97980 0.34485 5.67386
ϕ11 0.98320 0.95477 1.00923
ϕ21 0.98661 0.94151 1.02818
ϕ22 -0.12656 -0.18791 -0.06094
ϕ23 0.11584 0.06729 0.15763
β21 0.25900 0.10282 0.42901
τ1 0.00894 0.00837 0.00946
τ2 0.00054 0.00050 0.00057

Figure 5 shows the densities and final chains of the parameters for model 29 - TARSO(2,1,0,3,1,1)
with intercept ϕ10 and ϕ20.

The table 3 shows the estimates for model 29 - TARSO(2,1,0,3,1,1) with intercept ϕ10 and ϕ20
- where all parameters are found to be significant. From the estimates, it is possible to observe that:

• In the first regime, the quota value revolves around a constant 3.00 and is positively affected by
the value of the previous day and it does not influence precipitation;
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Figure 5. Densities and final strings of the parameters for the TARSO model(2,1,0,3,1,1) with ϕ10 and ϕ20 intercept, for
daily average linimetric quotas, for Rosário Oeste station, from January 1st, 2001 to December 31, 2012.

• In the second regime, the quota value revolves around a constant 13.24 and it is influenced by
its values of up to 3 previous ones, with the first and third day having a positive influence, and
the second day negatively. The quota is also positively influenced by the previous day’s rainfall.

Table 3. TARSO (2,1,0,3,1,1) model estimates with intercept ϕ10 e ϕ20

Parameters a Posteriori 95% credible intervals
Mode lower upper

ϕ10 3.00497 0.44726 5.84880
ϕ11 0.98194 0.95433 1.00954
ϕ20 13.24514 8.68038 17.71779
ϕ21 0.96031 0.91703 1.00350
ϕ22 -0.12385 -0.18383 -0.06123
ϕ23 0.09665 0.04868 0.13786
β21 0.25160 0.09830 0.41759
τ1 0.00895 0.00844 0.00955
τ2 0.00055 0.00051 0.00058

Figure 6 shows the daily average linimetric quotas observed and estimated by the TARSO
model(2,1,0,3,1,1) with ϕ10 intercept for the Rosário Oeste station. It is noted observed that the
values presented by the model were similar to the observed values.

The daily average linimetric quotas observed and estimated by the TARSO model(2,1,0,3,1,1)
with ϕ10 and ϕ20 intercept for Rosário Oeste station are presented in Figure 7, in which similarity
is observed between the results obtained by the model and the observed values.

The table 4 presents the MAPE and MSE of the TARSO models (2,1,0,3,1,1), in which there is a
good predictive capacity of the two models, but the model with intercept shows a better performance
considering the first regime ϕ10.
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Figure 6. Fit of the TARSO model (2,1,0,3,1,1) with interceptϕ10, for daily linimetric quotas, for Rosário Oeste station, from
January 1st, 2001 up to December 31, 2012.

Figure 7. Fit of the TARSO model (2,1,0,3,1,1) with ϕ10 and ϕ20 intercept, for daily average linimetric quotas, for Rosário
Oeste station, from January 1st, 2001 up to December 31, 2012.

Table 4. Forecast quality indicators for TARSO models obtained for daily average linimetric quotas, for Rosário Oeste sta-
tion, from January 1st, 2001 up to December 31, 2012

Model MAPE MSE

TARSO(2,1,0,3,1,1) with intercept ϕ10 7.23 543.25
TARSO(2,1,0,3,1,1) with intercept ϕ10 e ϕ20 7.48 552.42

4. Conclusions
Forecasting the stage of the Cuiabá river basin is crucial to help the Civil Defense of Mato Grosso

and many other authorities concerned with the anticipation and mitigation of natural disasters.
Due to the history of flooding in the Cuiabá river basin and its complex dynamics, linear time
series models do not present good fits. Consequently, they are inappropriate for fitting seasonal
time series. Accordingly, this paper considered the Threshold Autoregressive Self-exciting Open-loop
(TARSO) non-linear with two regimes to study the daily quota of the Cuiabá river.

The Bayesian framework was implemented through the MCMC methods and Gibbs sampling
algorithm, which is available in R software, thus the parameter estimates of the TARSO model
were obtained. Among the total of 14,400 models considered in this analysis, only 38 of them
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present significance in all the parameters. According to selection model criteria, the TARSO model
(2,1,0,3,1,1) presented the best performance, having the intercept coefficient in the first regime. This
model holds a good predictive capacity for estimating the Cuiabá river basin level, being suitable
for a system of flood alarm.

de Almeida et al. (2020) used the SETAR model to forecast the daily quota of the Cuiabá river.
The authors supposed that the river flow dynamics depend only on its past values. The TARSO
model, however, may take into account external variables. In this work, incorporating the daily
precipitation in the TARSO model improved its predictive capacity, mainly in estimating high quota
values.

The TARSO model presented satisfactory results in capturing the non-linear dynamics of the
daily quota in the Cuiabá river. This threshold model is suitable in capturing seasonality and non-
stationarity characteristics of the Cuiabá river. Furthermore, it captures the relationship between
river height and precipitation. It is worth mentioning that the rainfall-runoff process presents asym-
metric effects on river flow and it is adequately captured by the TARSO model with two regimes.

In TARSO model, d parameter expresses the threshold, and r parameter is the one that splits the
series into two parts. In this work, these quantities are fixed and known. Future work may consider
these parameters as unknown, affording more flexibility to the inference methodology.
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