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Abstract
Logistic regression model is the first option to deal with binary outcomes in cross-sectional health studies.
However, some conditions, such as the presence of a cure fraction, characterized when an unknown por-
tion of the population is no longer at risk of developing the event of interest, can lead to the non-adequacy
of the model. Therefore, the presence of a cure fraction requires an extension in the standard form of the
logistic regression model or the use of an alternative one. The present work aims to identify risk factors
for the presence of External Inflammatory Root Resorption (EIRR) using a real application. The data set
consisted in replanted permanent teeth referred to treatment at the Dental Trauma Clinic of the School
of Dentistry from the Federal University of Minas Gerais (DTC-SD-UFMG) after emergency care at
the Metropolitan Hospital Odilon Beherns in Belo Horizonte, Brazil. A logistic regression type model
is considered to study the association between clinical and radiographic factors and the presence/absence
of EIRR, measured radiographically at the first patient appointment at DTC-SD-UFMG. Considering
that EIRR is only expected in those cases where the root canal become infected following pulp necrosis,
those teeth whose pulp healing is favorable are not at risk of developing EIRR. However, pulpal status
usually can only be defined in the long term, such that information is not available at the time of data
collection, characterizing the presence of a latent cure fraction. Moreover, in the present sample some
patients contributed with more than one replanted tooth, forming clusters of correlated measurements.
In the present work we followed the methodology proposed by Hall & Zhang (2004) in which they used
an adaption of the EM (expectation-maximization) algorithm, called ES (Expectation-Solution) algo-
rithm combined with GEE (Generalized Estimation Equations) to accommodate the cluster (individual)
multivariate response in a logistic cure fraction model.
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1. Introduction
Cross-sectional studies are frequently used in clinical health research as they are useful for measur-
ing the prevalence of health/disease conditions, understand their determinants and describe features
of a population. The present research consisted in a cross-sectional study conducted at the Federal
University of Minas Gerais (Belo Horizonte- Brazil) aiming to identify risk factors for the presence
of External Inflammatory Root Resorption (EIRR) in permanent teeth reimplanted after traumatic
avulsion. Patients received emergency care at the Metropolitan Hospital of Belo Horizonte Odilon
Bherens and were referred to sequential treatment at the Dental Trauma Clinic at the School of
dentistry of UFMG (DTC-SD-UFMG). Tooth avulsion implies the total displacement of the tooth
out of its socket with rupture of the dental pulp neurovascular supply, at the apical foramen, as
well as the damage of all periodontal fibers that joints the tooth to the surrounding bone. Replan-
tation of avulsed permanent teeth is the treatment of choice, but the long-term prognosis shows
great variability because it is affected by several factors related to the immediate management of
the avulsed tooth as well as to the emergency and sequential treatment (Coste et al., 2020). External
root resorption is the most serious and frequent sequel after replantation of permanent teeth (ibid.).
Two progressive forms have been described being both triggered by severance of the periodontal
ligament and damage to the cementoblast layer as a result of extended extra-alveolar maintenance
of the avulsed tooth in unsuitable storage conditions prior to replantation (Andersen et al., 1992).
Progressive External Inflammatory Root Resorption (EIRR) develops in the presence of root canal
infection following pulp necrosis. Therefore, teeth with favorable pulpal healing will not develop
EIRR. Considering that pulpal status usually can only be confirmed in the long term, and such in-
formation was not available at the time of the outcome measure, performed at the initial visit at
the DTC-SD-UFMG, such clinical condition is a latent cure factor. That is, a portion of the study
population was not susceptible to develop the outcome, in this case the EIRR.

The logistic regression model is the most common approach to estimate the associations between
a binary outcome and exposures measured at one specific time point. However, when an unknown
portion of the population is no longer at risk of developing the event of interest, the conventional
logistic model became not adequate due to the presence of such latent cure factor, requiring an
extension of it or the use of an alternative model. Moreover, in the present sample, many patients
contributed with more than one traumatized tooth, characterizing the presence of clusters. It means
that the observations (teeth) within each cluster (individual) are correlated and it is necessary to take
into account in the statistical inference.

According to Diop et al. (2011), the cure fraction problem in binary response can be treated as
a Zero-Inflated Binomial (ZIB) model. Hall (2000) described the ZIB model for the adjustment
of binary data in cases where there are zero inflated for the binomial distribution and its extension
including random effects. Hall & Zhang (2004) presented an alternative approach to deal with ZIB
models involving more than one measurement for each individual: flexibilizing the step of maxi-
mizing in the EM (Expectation-Maximization) algorithm, including GEE (Generalized Estimation
Equations), named the ES (Expectation-Solution) algorithm. In the currrent work we present an
extension of the logistic model in order to include cure factor and repeated measures in the same
patient. Outline of the paper is as follow. The model for binary response under cure fraction is
presented for just one measure for each individual in Section 2. Section 3 extends the model for
including clusters of observations. Results of a restricted set of Monte Carlo simulations appear in
Section 4 showing small properties of the model estimates. The proposed methodology is illustrated
with a real data set from the DTC-SD-UFMG in Section 5. In Section 6 we present some final
remarks and future work.
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2. Binary response with cure factor: A simple random sample
Let’s consider Y as a binary variable and W is a latent binary random variable assuming 1 if the event
of interest occurs with probability p1 and 0 otherwise, with probability 1 – p1, which 0 < p1 < 1.
If W = 1, the binary random variable Y is degenerated at 0. Conditional on W = 0, the random
variable of interest follows a Bernoulli distribution with probability π1 of success, that is, Y = 1, in
which 0 < π1 < 1.

Therefore Y is defined as the following mixture random variable

Y =
{

0, with probability p1
Bernoulli(π1), with probability (1 – p1).

In section 2.1 we consider the inference in the logistic regression model with a cure factor for
a simple random sample of the population, including covariates. As in generalized linear models,
link functions are used to connect the mean of the distribution with the linear predictor. According
to Yamaguchi et al. (1992), one of the main advantages of using a standard mixture model is the
possibility of including covariates through a link function in both parts of the model structure. In
this way, it makes possible to determine covariates associated to the components of the mixture,
which is of practical interest for the researchers.

2.1 Inference in logistic model with cure factor: An EM algorithm approach
Let Y = (y1, ..., yn)′ be a random sample of size n. Consider X and Z regression structures containing
covariates with dimensions n× (p+ 1) and n× (q+ 1) respectively. Let β and γ vectors of dimensions
(p + 1) × 1 and (q + 1) × 1, respectively. Considering the logistic function, we have:

π1(x) =
exp(Xβ)

1 + exp(Xβ)
(1)

and

p1(z) =
exp(Zγ)

1 + exp(Zγ)
(2)

The observed log-likelihood function is:

lobs(β,γ;Y) =
n∑
i=1

(
I(0)(yi) log

[
exp(Ziγ) +

1
1 + exp(Xiβ)

]

– log (1 + exp(Ziγ)) +
(

1 – I(0)(yi)
)

(Xβ – log (1 + exp(Xiβ)))

)
, (3)

where I(0)(yi) is a indicator function for yi = 0.

A useful maximization strategy is to use the EM algorithm (Dempster et al., 1977). Let’s consider
wi =1 when Yi takes the value 0 and wi =0, if Yi follows a Bernoulli distribution with a probability
of success π1. Considering W = (w1,w2, ...,wn)T as the missing data, the log-likelihood function
for the complete data (Y,W) is:
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lc (γ,β; y,w) = log

n∏
i=1

P (Yi = yi,Wi = wi)

=
n∑
i=1

[wiZiγ – log (1 + exp (Ziγ))]

+
n∑
i=1

(1 – wi)
[(

1 – I(0)(yi)
)

Xiβ – log (1 + exp (Xiβ))
]

= lc (γ;w) + lc (β; y,w) (4)

The log-likelihood (4) factored into two parts, one that depends only on γ and the other on β.
This factorization, which does not occur in the observed log-likelihood (2) function, facilitates the
treatment of more than one measurement for the same individual, which is the main goal of the
present paper. The log-likelihood function (4) is a particular case of the ZIB function, described by
Hall (2000).

Let λ = (β,γ)
′
. The EM algorithm starts with an initial guess λ(0) and then switches between

the steps of expectation and maximization. The steps are the following.

1. Start λ(0) and j = 0
2. Step E: estimate wi as the conditional average. That is ŵi

(j) = E
[
wi | yi,β(j),γ(j)

]
.

Expectations is obtained by using Bayes’ theorem. j-th element of ŵi
(j) is given by:

ŵi
(j) = I0(yi)

1 + exp
(

–Ziγ
(j)
) 1

1 + exp
(

Xiβ
(j)
)
–1

3. Step M to γ: the estimate of γ = γ(j+1) is obtained by maximizing lc(γ;w(j)) in (4). Hall (ibid.)
defined that it is a binomial regression with weights and the vector response W (j).

4. Step M to β: the estimate of β = β(j+1) is obtained by maximizing lc(β;w(j)) in 4. Hall (ibid.)

defined the expression as a logistic regression with weights (1 – w(j)
i ), i : 1, ..., n and the response

vector Yi
5. Repeat the E and M steps until convergence is achieved.

The convergence criterion used to stop the iterative algorithm EM is:

max
r

(
|λj+1
r – λ

j
r |

|λjr | + δ1

)
< δ2,

where δ1 and δ2 are pre-specified constants and maxrAr represents the highest value of Ar for r = 1,
... , p.

The usual information matrix proposed by Louis (1982) has a difficult derivation because it re-
quires finding the distribution of the latent variable conditioned to the observed data. As an alter-
native, we used the information matrix proposed by Sy & Taylor (2001), considering by lobs(.) and
lc the likelihood functions based on the observed and complete data, respectively. That is

–
∂2lobs
∂γs∂γ b

= –
n∑
i=1

Zis

(
∂w∗

i
∂γb

–
∂p1i
∂γb

)
,
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–
∂2lobs
∂βr∂βl

= –
n∑
i=1

Xir

(
∂ (1 – w∗

i )
∂βl

)[
yi – π1i

]
,

–
∂2lobs
∂γs∂βa

= –
n∑
i=1

Zis

(
∂w∗

i
∂βa

)
,

where w∗
i represents the value of wi evalueted at β and γ. Wald statistic is used for inference on β

and γ.
In order to be identifiable the mixture model needs to follow some regularity conditions. The

following subsection presents some regularity conditions presented by Diop et al. (2011).

2.2 Regularity and identifiability conditions
A common problem with the presence of the cure factor is the impossibility of differentiating be-
tween susceptible and cured individuals when the observed value of Y is 0. Diop et al. (ibid.) present
four regularity conditions necessary to ensure identifiability and asymptotic results. The condition
that differs from traditional regularity ones for the logistic regression models, is the following. It is
necessary the existence of a continuous covariate V that is in X, but not in Z. If βV and γV denote
the coefficients of V in the two linear predictors, then βV ̸= 0 and γV = 0. Likewise, we can as-
sume that V is in Z and not in X. According to the authors, this condition imposes restrictions on
the choice of predictors because they cannot be equal, but it prevents the parameters from being
interchangeable.

Follmann & Lambert (1991) showed that finite mixtures of logistic regressions are identifiable
as long as the number of combinations of observed values of the covariates is large. According
to Diop et al. (2011), the established condition is enough to achieve this condition and guarantee
identifiability. Kelley & Anderson (2008) showed that if the focus is the comparison of two groups,
it is possible to include a continuous covariate in one and only one linear predictor, even if not
significant, that the model in question becomes identifiable.

3. Binary response with cure factor: a cluster sample
Situations with more than one measurement on the same individual may occur in practice, especially
in odontology. It can be said that each individual represents a cluster of correlated measurements.
Ignoring this fact can lead to wrong conclusions, as the standard errors of the estimates tend to be
poorly estimated. In addition, a standard analysis would discard information, as it would be necessary
to randomly select an individual measurement in order to use the methodology presented in Section
2.

Hall (2000) presented the mixed zero-inflated models as a possible solution. However, the direct
interpretation is not at the population level, which is not of practical interest to the researcher. Hall
& Zhang (2004) presented two solutions: the first is to change the M step of the EM algorithm to
accommodate more than one measurement on the same individual, including equations very similar
to the GEE, called the ES algorithm. The second option proposed to change the GEE equations
to accommodate zero inflation. According to the authors, from simulations studies performed by
them, the first solution is more efficient and was adopted in this work.
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3.1 ES algoritm
Let’s consider K clusters and yi the response vector of dimension ni × 1 for the i-th individual or
cluster, i = 1, ....,K and yij is the jth; j = 1, . . . , ni, response associated to the ith individual. Let’s
considered that Yij follows a degenerate distribution at 0 with probability pij if cure occurred and a
Bernoulli distribution with probability 1 – pij, in which 0 < pij < 1, with j = 1, ..., ni.

Consider Yi = (Yi1, ...,Yini ) and Wi = (wi1, ...,wini ), where wij = 0, if the random variable of
interest follows the Bernoulli distribution, and wij =1, when Yij = 0, i = 1, ..., K, j = 1, ..., ni. Let’s
considered the same link functions (1) and (2). The log likelihood function for the complete data
(Y,W) is the following

lc (γ,β; y,w) =
∑
i,j

[
wijZijγ

′
– log

(
1 + exp

(
Zijγ

′
))]

+
∑
i,j

(
1 – wij

) [(
1 – I(0)(yij)

)
Xijβ

′
– log

(
1 + exp

(
Xijβ

′
))]

. (5)

Following the same steps as in Section 2, Hall & Zhang (2004) changed the form of the M step
of the EM algorithm, by an S step, proposing the ES algorithm. E step consists of estimating wij in
the h-th iteraction by

ŵij
(h) = I0(yij)

1 + exp
(

–Ziγ
′(h)
) 1

1 + exp
(

Xiβ′(h)
)
–1

(6)

I0(yij) is the indicator for yij = 0.
Hall & Zhang (ibid.) described the S step by using the following GEE for the maximization of

γ and β

K∑
i=1

[
∂p1i (γ)T

∂γ

] [
Ai

1/2 [p1i (γ)
]

R (δ)Ai
1/2 [p1i (γ)

]]–1 [
wi

(h) – p1i (γ)
]

= 0 (7)

and
K∑
i=1

[
∂ζi (β)T

∂β

] [
Di

1/2 [ζi (β)] P (ρ)Di
1/2 [ζi (β)]

]–1
Wi

(j) [yi – ζi (β)
]

= 0 (8)

where R (δ) and P (ρ) are working correlation matrices, which must be specified, Ai (p1i) = diag[
p1i1 (1 – pi1) , ..., p1ini (1 – p1ini )

]
and W(h)

i = diag
[(

1 – w(h)
i1

)
, ...,
(

1 – w(h)
ini

)]
and

Di (ζi) = diag
[
π1i1 (1 – πi1) , ...,π1ini (1 – π1ini )

]
. In expressions 7 and 8, δ and ρ are correlation

parameters and must be estimated.
Correlation parameters are estimated at each iteration by the moment estimators for δ and ρ. In

special, that is the interest for the data set analysis in Section 5, for the compound simetry structure,
we have the following estimators

δ̂ =
K∑
i=1

∑
s<t

(wis – p1is) (wit – p1it)√
p1isp1it (1 – p1is) (1 – p1it)

, (9)

and
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ρ̂ =
K∑
i=1

∑
s<t

(1 – wis) (1 – wit) (yis – π1is) (yit – π1it)√
π1isπ1it (1 – π1is) (1 – π1it)

(10)

The estimation steps are the following (Xu (2013)).

1. Let h = 0. In addition to a guess for β and γ, it is necessary a guess for the correlation parameters
δ and ρ. Usually, it is used δ=0 and ρ=0, the independent case.

2. E step: compute the expectation of the latent variable conditioned to the observed data, by using
the expression (6).

3. S step: Find the solution in terms of β and γ of the equations (??) and (??).
4. Using the values βh+1, γh+1 and ŵij

(h), update the value of δ, by using expression 9.
5. Using the values βh+1, γh+1 and ŵij

(h), update the value of ρ, by using expression 10.
6. Repeat steps 2-5 until convergence. Use the same stop rule criterion for the EM algorithm

established in Section 2.

LetVγi andVβi equal toAi
1/2 [p1i (γ)

]
R (δ)Ai

1/2 [p1i (γ)
]

andDi
1/2 [ζi (β)] P (ρ)Di

1/2 [ζi (β)],
respectively. Xu (ibid.) defined the sandwich variance estimator for γ and β as being: B–1M1B–1,
such that

B =


∑K

i=1
∂p1i (γ)T

∂γ
V–1
γi

∂p1i (γ)
∂γT

0

0
∑K

i=1

[
∂ζi (β)T

∂β

]
diag (1 – ŵi)

1/2 V–1
βidiag (1 – ŵi)

∂ζi (β)
∂βT


and
M1 = MMT

with

M =


∑K

i=1
∂p1i (γ)T

∂γ
V–1
γi (ŵi – p̂1i)∑K

i=1
∂ζi (β)T

∂β
V–1
βidiag (1 – ŵi)

[
yi – ζi (β)

]
 .

Some extensions of this approach might also be found in the paper by Hall & Zhang (2004). They
presented a strategy to obtain greater efficiency in the estimation process, replacing the equations
in (7) and (8) by some combined estimation equations. Xu (2013) proposed an application of the ES
algorithm in the context of a ZIBN (Zero-Inflated Negative Binomial) model.

4. Simulation study
Monte Carlo simulations were performed, using EM algoritm in the independent case and ES algo-
ritm in the cluster correlated one. Two scenarios were considered takingX1 as a standard normal and
X2 as a Bernoulli(p) with p = 0.5 and the vector of parameters equal to β = (β0 = 1,β1 = 2,β2 = 1)

′
.

For the linear predictor of cure, Z1 was generated from a standard normal and the real param-
eter vector equal to γ = (γ0 = –2.0,γ1 = –2.5)

′
to get a cure fraction of approximately 25% and

(γ0 = 2.0,γ1 = 2, 5)
′

for 75%, respectively. In the results, VR(%) indicates the mean of the relative
bias and PC(%) indicates the proportion of the confidence intervals that contained the true value of
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the parameter. Mean standard error is the mean of the standard errors of each Monte Carlo simula-
tion and the column Standard deviation estimates is the true standard error obtained by calculation
the standard deviation of the estimates of the parameters of the Monte Carlo repetitions.

4.1 Independent sample- EM Algorithm
Table 1 presents the results of the 200 simulations for n = 10000 for the independent case of Section
2. Results obtained are very close to the real ones, specially mean standard errors are very similar to
the true ones. Increasing the cure fraction survival estimates presented a small bias, around 10%.

Table 1. Monte Carlo simulations by the EM algorithm - cure fraction 25% and 75%.

Cure fraction Par Mean Mean Standard Error Standard deviation of estimates VR(%) PC(%)

β0 1,012 0,198 0,203 1,20% 95,4%
β1 2,026 0,213 0,200 1,30% 96,3%

25% β2 1,029 0,247 0,256 2,90% 93,0%
γ0 -2,037 0,281 0,290 1,85% 94,4%
γ1 -2,550 0,297 0,313 2,00% 94,4%

β0 1,116 0,510 0,518 11,60% 95,8%
β1 2,208 0,532 0,543 10,40% 97,2%

75% β2 1,086 0,544 0,539 8,60% 96,7%
γ0 2,015 0,177 0,183 0,75% 94,5%
γ1 2,519 0,256 0,251 0,76% 94,9%

4.2 Sample in clusters - ES algorithm
.

Cluster data were generated using the function rbin from the package SimCorMultRes by Touloumis
(2016). The data generation process used the NORTA method, proposed by Cario & Nelson (1997)
to generate values of marginal distributions from a specified correlation matrix. More details can be
found in Li & Hammond (1975) and in the SimCorMultRes package documentation.

The simulation was conducted assuming the exchangeable correlation structure. This choice
is justified by the practical application, as it was the adequate modeling correlation structure. The
simulation was conducted considering cluster sizes of 250 and 100, with 4 measurements each. The
correlation matrix to generate the cure and the observed response are identical, with a 4x4 dimension
and the correlation value equal to 0.50.

Table 2 presents the results of the Monte Carlo study with 200 repetitions and a cure fraction
of 25%. The average of the estimates are very close to true values. As expected the standard de-
viations decrease as the sample size increases. Increasing the cure ratio, the algorithm took longer
to converge, approximately 39% of the simulation runs required more than 50 iterations to reach
convergence.

The mean of the standard errors is different from the standard deviation of the estimates, the
true value. The problem is also found in Xu (2013), because the sandwich variance treats the latent
variable as known, ignoring the uncertainty about its estimate.

One way to get around with this difficulty is using bootstrap resample method at the cluster level
to estimate standard error and the confidence interval. The group identification is randomly selected
with replacement, loading all 4 measurements to form the database for each bootstrap repetition.
200 bootstrap repetitions were considered for each generated database, calculating the deviation of
the estimates and the confidence interval with quantiles of order 2.5% and 97.5%.
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Table 2. Monte Carlo simulations by the ES algorithm with cure fraction 25%

K Par Mean Mean Standard Error Standard deviation of estimates VR(%)

β0 1,049 0,168 0,321 4,90%
β1 2,076 0,181 0,289 3,38%

250 β2 1,248 0,251 0,349 24,80%
γ0 -2,047 0,115 0,392 2,35%
γ1 -2,502 0,154 0,403 0,08%

β0 1,371 0,304 0,792 37,10%
β1 2,378 0,332 0,863 18,90%

100 β2 1,352 0,446 1,230 35,2%
γ0 -1,939 0,182 0,464 -3,5%
γ1 -2,546 0,246 0,502 1,96%

Table 3 presents the results for K = 250, showing the mean of the standard deviations and point
estimates obtained by the bootstrap method, and PC(%). The results are in agreement with the
true values. The mean deviation of the bootstrap estimates is close to the standard deviation of the
estimates and the confidence intervals are close to the nominal value and symmetrical around the
true value.

Table 3. Bootstrap results. Cure fraction 25% and K = 250 groups

Par Average bootstrap deviation Standard deviation of estimates Average point estimate PC(%)

β0 0,318 0,321 1,03 91,3%
β1 0,336 0,289 2,12 94,8%
β2 0,390 0,349 1,25 93,1%
γ0 0,384 0,392 -2,14 91,3%
γ1 0,361 0,403 -2,61 91,3%

5. Real data application
The logistic model with a cure factor was applied to a real data set from the DTC-SD-UFMG
briefly described in Section 1. The sample is formed by 90 patients and 104 reimplanted teeth after
a traumatic avulsion, referred to treatment at DTC-DS-UFMG) after an emergency care at the
Metropolitan Hospital Odilon Beherns in Belo Horizonte, Brazil. The number of replanted teeth
per patient is presented in Table 4.

Table 4. Number of patients x Number of replanted teeth

Number of patients Number of teeth

78 1
10 2
2 3

Clinical and radiographic data were collected at the first appointment at DTC-DS-UFMG. The
main goal was to identify risk factors related to the presence or absence of EIRR. Among the fol-
lowing covariates:

• tooth storage medium after avulsion and before reimplantation, categorized as (1) dry storage
or (2) wet storage (saliva, water, saline and milk);
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• extra-alveolar period (PerEO), that is, the time in minutes that the tooth remained out of its
soket after avulsion;
• stage of root development: stage of root formation of the avulsed tooth categorized according

to the diameter of the apical foramen;
• time in days between the date of replantation and the beginning of treatment at DTC DS

FUMG, called infection time.
• Prescription of systemic antibiotic therapy after reimplantation (such information was not avail-

able in 26.7% of the sample)
• patient gender.

Although, in the present sample the number of individuals with more than one traumatized
tooth was small, this is a frequent feature in the data sets of the DTC-SD-UFMG. Therefore, the
first step in the analysis was to identify the most appropriate model for this data set. The exchange-
able correlation is the most appropriate structure for cluster analysis. Others structures avalilable,
such as the first order Auto-Regressive cannot be used since there is no temporal component in a
cross-sectional study. The unstructured case is not feasible due to the high number of correlation
parameters to be estimated and the unbalanced design.

Table 5 presents the final model, with 90% bootstrap confidence intervals for the odds ratio.
Bootstrap method was used in the application since it was observed in the simulations that the sand-
wich variance estimates do not eliminate the effect of the latent variable and therefore it is biased.
Final model was obtained by using a backward stepwise method.

Table 5. Final fitted model estimates.

Predictor Parameter Estimative DP Boot OR IC Boot OR (90%)

β0 -13,98 7,02 - -
EIRR β1 (Log Time to Infection) 4,32 2,02 2,19 [1,17; 3,56]

γ0 1,87 1,87 - -
Cure γ1 (Antibiotic-No) -2,18 0,87 0,11 [0,02; 0,53]

γ2 (Log PerEO) -0,51 0,31 0,91 [0,80; 0,99]

In terms of the cure model, antibiotic prescription and extra alveolar period (PerEO) were im-
portant markers. An increase of 20% of the PerEO decreased the chance of cure by approximately
9%. Patients who did not have an antibiotic prescription after reimplantation had approximately
89% less chance of cure. When considering the main response (EIRR), only infection time was a
significant marker. An increasing of 20% in the time of infection increased the chance of EIRR by
220%. Correlation parameter estimate associated to the symmetry compound structure was -0.23
(se = 9.82) for the observed response model and -0.18 (se=0.21) for the cure one.

The regularity conditions were satisfied according to the points raised in Section 2.2. That is,
the linear predictor for the observed response is not the same as the one for the cure portion of the
model.

6. Conclusions and future work
The present study treated binary response with cure fraction for correlated data adopting a GEE
model using the ES algorithm version to take into account the cluster structure. A Monte Carlo
simulation evaluated the small sample properties of the proposed estimators and a real data illustrated
the results.

Additional studies are important to assess situations in which there are substantial gains in con-
sidering such methodology including clusters. Using bootstrap has advantages and disadvantages.
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Main advantage makes possible to identify factors associated with the occurrence EIRR with an easy
computational implementation. The disadvantages and limitations are the computational time due
to the amount of repetitions needed and some possible numerical algorithm non-convergence.

No studies were found in the literature that take into account the fact that pulpal healing is
a latent cure factor for the outcome of interest. The limitation of the analysis is related to small
sample sizes. Numerical problems might occur in simulation studies and real data set applications
under small sample sizes. A real challenge for future works is related to remove the effect of the
latent variable in the estimation of the sandwich variance presented in Xu (2013). Finally but not
least, another important challenge is obtaining goodness of fit statistics or a residual analysis to check
the adequacy of the model. As far as we konwn, residual analysis is available only for the logistic
model with cure fraction without a cluster structure, the independent case.
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