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Abstract
Coffee is one of the main products of Brazilian agriculture and the country is currently the largest pro-
ducer and exporter in the world. The coffee fruit has a double sigmoidal growth pattern, however, as well
as in other fruits that also show such a growth pattern, the authors generally do not estimate parameters
of regression models to describe such curve. In the study of fruit growth curves, the sample size is gener-
ally small, so the estimation of the parameters should preferably be done by the Bayesian methodology,
since a priori information is incorporated, reducing the effects of having few observations. The Markov
Chain Monte Carlo algorithms are the most used computational tool in Bayesian statistics. However,
these generate dependent samples, can be complicated to implement and, mainly, to teach. There are also
other alternatives to the MCMC algorithms to obtain approximations of integrals of interest in Bayesian
inference, the main ones are based on the importance resampling techniques. The objective of this work
is to use Bayesian inference with the weighted importance resampling technique in the estimation of pa-
rameters of double sigmoidal nonlinear regression models to the description of coffee fruit growth. The
double nonlinear logistic model was used in the description of the accumulation of fresh weight in coffee
fruits. All prioris used have Beta distribution and were obtained by the called prior of specialist technique.
Bayesian methodology was efficient, since it provided parameters with practical interpretation to coffee
fruit growth, consistent with the reality. Thus, Bayesian inference by weighted importance resampling
was a good alternative for the parameters estimation of nonlinear double sigmoid regression models. The
logistic model showed that the growth of coffee fruits is more intense in the first sigmoid (until 162 DAF)
of the growth curve and stabilizes in its final weight after 262 daf.
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1. Introduction
The importance of coffee in the world is highlighted, with great impact on the economy of

countries. Brazil is the world’s largest coffee producer and exporter, accounting for about 35% of
all coffee trade, and is the second largest consumer market (Voltolini et al., 2020). Studies describing
growth curves of fruits with identifications of his critical points can help the producer to identify
possible points of intervention during fruit development, thus obtaining a better final quality of the
product (Silva et al., 2021).

The growth pattern of coffee berries, considering the fresh mass accumulated over time, is double
sigmoid (Fernandes et al., 2017). The nonlinear regression models are able to describe diverse situ-
ations, providing a better fit quality and, mainly, present practical interpretation of the parameters.
Therefore are been widely used, especially in the study of growth curves (Allaman and Jelihovschi,
2022; Fernandes et al., 2019; Fruhalf et al, 2020; Mischan et al., 2015; Oliveira et al., 2021; Salles et
al., 2020; Silva et al., 2020).

Growth models are commonly estimated by frequentist approach, however the parameter esti-
mation process is based on asymptotic theory and, when there is small sample data, the obtention of
the estimates is very affected, generating atypical growth curves (Pereira et al., 2022; Martins Filho
et al., 2008; Salles et al., 2020). However, few longitudinal observations are common in the study of
fruit growth, due to the short fruiting period.

Another methodology for obtaining parameter estimates of these models is the Bayesian ap-
proach. In this methodology, already existing information about the growth is incorporated into
the parameter estimation process, thus reducing the effect of having few data. Monte Carlo via
Markov Chains (MCMC) algorithms are the most used computational tool in Bayesian statistics
(Peres et al., 2022). Thus, recent researches sought to improve its implementation, and propose
techniques to facilitate the convergence analysis (Liu et al., 2016; Pensar et al. 2020; Vanderwerken
and Schmidler, 2017; Witmer, 2017).

An alternative to the MCMC is the weighted importance resampling, that unlike MCMC, it
generates independent samples, requires a short computational time for implementation, and has a
more attractive theory (Pereira et al., 2022; Cole et al., 2012; Lopes et al., 2012).

The objective of this work is to use Bayesian inference with the weighted importance resampling
technique in the estimation of parameters of double sigmoidal nonlinear regression models to the
description of coffee fruit growth.

2. Matherials and Methods
2.1 Database

Fresh fruit weight (in grams) data of coffee (Coffea arabica cv. Obatã IAC 1669-20) extracted
from Cunha and Volpe (2011) were used. Fruit growth was monitored from 96 days after flowering
(DAF) to 293 DAF. Fourteen collections at 15-day intervals were performed.

2.2 Double sigmoidal model
The double sigmoidal expression was composed using the nonlinear logistic model, since it is

the most indicated for the description of characteristics that present sigmoidal growth, following the
parameterization suggested by Fernandes et al. (2017). Thus, the model was defined as:

Y |µ,σ2 ∼ N(µ, Iσ2),

where: Y is the fruit fresh weight; I is identity matrix; µ is mean and σ2 is variance of a normal
distribution. Here, µ is the expression of double logistic model:
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µ =
a1

1 + e–k1(DAF–b1)
+

a2 – a1

1 + e–k2(DAF–b2)
(1)

where DAF is the fruit age in which the fresh weight was measured; a1 is the maximum fresh weight
expected for the first growth stage; a2 is the final fruit fresh weight, or fruit weight at maturity; b1
and b2 represent the abscissa of the inflection point in the respective steps; k1 and k2 represent the
growth index in steps 1 and 2. The higher the k value the shorter the time the fruit takes to reach
its maximum fresh weight (a1 or a2) (Fernandes et al., 2017).

Thus, the parameter vector for the model is given by: θ′ = [a1, b1, k1, a2, b2, k2]. The next step
for implementing a Bayesian analysis is the specification of prior distributions.

2.3 Constructing the Prior and Posterior distributions
The basic idea in eliciting prior distributions for a parameter, based on practical knowledge, is

to establish descriptive statistics as a range of plausible values and some measure of position for it,
with the help of specialists. Then, distributions for the parameters can be established; this technique
is called prior of specialist (Garthwaite et al., 2005).

In the present work, all prior distributions used have Beta distribution since, according to Moala
and Penha (2016), this is one of the most used distributions to model prior of specialist. Thus, the
prior for each of the six parameters had the following expression:

P(θ) ∝ θα–1(1 – θ)β–1, (2)

where: α > 0 and β > 0 are (known) hyperparameters of the Beta distribution.
The parameters of the nonlinear models have practical interpretation, thus, based on previous

knowledge on the coffee fruit growth and information obtained from specialists to identify hyper-
parameters, the following prior distributions for vector θ′ were well established.

Table 1. Prior distributions with his hyperparameters (α,β) for all parameters of double sigmoidal model

Parameter Prior distribution

a1 Beta(2, 2)

b1 [104 ∗ Beta(2, 2) + 96]

k1 Beta(2, 10)

a2 2 ∗ Beta(2, 2)

b2 [200 ∗ Beta(2, 2) + 200]

k2 Beta(2, 20)

Assuming independence of the priors, the joint prior distribution is defined for the parameter
vector as the product of the individual prior distributions, denoted by P(θ). The likelihood is defined
under the assumption of normality of the model, thus, the expression of the posterior P(θ|Y) is:

P(θ|Y) ∝
(

2πσ2
) –n

2 exp
{

–(Y – µ)′(Y – µ)
2σ2

}
× P(θ)

P(θ|Y) ∝ exp
{

–(Y – µ)′(Y – µ)
2σ2

}
× P(θ)

where: Y is the observed data, µ, σ2 and θ were previously defined.
The expression presented above is the joint posterior distribution of the models. Information

about the posterior behavior of each parameter, average, and credibility interval for example, can
be obtained by calculating integrals, such as:
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E[h(θ)|Y] =
∫
D

h(θ)P(θ|Y)d(θ)

where h(θ) is a suitably chosen function.
However, due to the complexity of the expressions of the nonlinear double sigmoidal models,

these integrals are impossible to be solved analytically, and a modification of the weighted impor-
tance resampling technique presented in Smith and Gelfand (1992) will be used to generate samples
of the distributions of interest.

2.4 Weighted Importance Resample
The methodology proposed by Smith and Gelfand (1992) consists of the following idea. Suppose

it is necessary to generate samples from an unknown distribution with probability density function
f (θ), but it’s difficult to generate samples directly from it. Then consider a distribution g(θ) that is
known and consequently sampled, defined in the same domain (or parametric space) of f (·). Based
on the theory of importance sampling (RUBIN, 1987) expression of f (·) is multiplied and divided
the by the expression g(·), obtaining:

f (θ)
g(θ)

× g(θ)

Then, samples of g(θ) are generated and weighted by calculated weights based on f (θ)
g(θ)

. Then,

an approximate sample of f(θ) is found. The algorithm develops as follows:

i) generation of a sample of size M, (θ1,θ2, ...,θM ) of the distribution g(θ);
ii) calculation of the weights for each sample generated:

wj =
f (θj)
g(θj)

where 1 ≤ j ≤ M;
iii) normalization of these weights:

qj =
wj

M∑
t=1

wt

iv) removal a sample of size m making m ≤ M of the sample (θ1,θ2, ...,θM ) taking only the θj
with the highest values of qj, i.e, a weighted resampling with weights calculated based on the
distribution of interest, obtaining a new sample (θ∗

1 ,θ∗
2 , ...,θ∗

m).

Smith and Gelfand (1992) showed that the sample obtained in step iv) forms a sample of a dis-
tribution f (θ∗) that converges in distribution to f (θ) as m grows. The only requirement for the
candidate generating distribution g(θ) is that it is defined in the same parametric space as the distri-
bution of interest f (θ).

In Bayesian inference problems, f (θ) is the posterior distribution (P(θ|Y)) and a natural choice,
according to Smith and Gelfand (1992), is to consider g(θ) as the prior distribution. On the other
hand, the present work proposes to consider the distribution g(θ) as an approximation of the likeli-
hood, denoted by Q(θ). The candidate generating distribution Q(θ) is an approximate of the real
likelihood, created based on the maximum likelihood estimate and the Cholesky decomposition of
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the covariance matrix of the parameters. As we have already assuming a normal distribution for the
model, as M → +∞, Q(θ) converges in distribution for L(Y |θ).

Thus, a sample of size M of the likelihood is taken and the weights in step ii) are calculated as
follows:

wj =
f (θj)
g(θj)

=
P(θj |Y)
Q(θj)

=
L(Y |θj)P(θj)

Q(θj)
≃

L(Y |θj)P(θj)
L(Y |θj)

= P(θj)

and in the step iii) as:

qj =
wj

M∑
t=1

wt

=
P(θj)

M∑
t=1

P(θt)
= P(θj). (3)

The denominator of expression 3, tends to 1 as M grows, so the weights are obtained directly
in the prior distribution, which facilitates the calculations.

The estimation of Q(θ), requires getting the maximum likelihood estimate (θ̂) and the covari-
ance matrix (Σ̂) of the model parameters. They were estimated by the gnls function. Thus, the
algorithm for obtaining the samples of the posterior distribution was implemented as follows:

i) a sample of size M = 10000 of Q(θ) of the model was generated;

Q(θ)j values were generate considering Q(θ) ∼ N6(θ̂, Σ̂).

Then the Cholesky decomposition (L) of Σ̂, with Σ̂ = LL′ was performed and simulated a vector
Zj that follow a multivariate standard normal distribution N6(∅, I6). The desired vector was obtained
using the linear transformation Q(θ)j = θ̂ + LZj.This process was repeated ten thousand times, with
j = 1, 2, ..., 10000.

ii) the weights in the prior distribution P(θ), were calculated for each value generated;
iii) a resampling was performed, with replacement weighted by the weights obtained in the prior

distribution of size m=10000, from sample obtained in the first step.

Thus, the marginal density of each parameter was approximately recreated from samples. The
sample mean, standard deviation and highest posterior density interval (HPD - 95%) were calcu-
lated for each marginal distribution of the parameters to obtain a specific estimate to be used for
substitution in the expression of the model and thus obtain the estimated curve.

2.5 Markov chain Monte Carlo - MCMC
The MCMC algorithm, which is the consolidated form for the obtaining samples of marginal

posterior distributions, was also implemented to compare the results and mainly the computational
time required to obtain the samples of the marginal distributions of each parameter. The joint
posterior and complete conditional distributions were not known, thus, it’s necessary to use the
Metropolis-Hastings algorithm.

To implement the Metropolis-Hastings algorithm were used the same prior distributions P(θ),
same size of the chains (M=10000) and the likelihood approximation Q(θ) as candidate generating
distribution ensuring the parity of the comparison. The convergence analysis was done by using the
Raftery & Lewis and Geweke criteria. After verifying te convergence for each marginal distribution
of the parameters were calculated the sample mean, standard deviation and highest posterior density
interval (HPD - 95%).
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2.6 Computational Resources
All computational procedures involved, the processes of sampling and resampling to obtain the

estimates for the parameters and the analyses of the data were made using the statistical software R
(R Development Core Team, 2020). The maximum likelihood estimate and the covariance matrices
of the parameters were obtained by the gnls function of the nlme package (Pinheiro et al., 2022).
The coda package (Plummer et al., 2006) of the R program was used in the summary of the marginal
distributions and analysis of convergence of the chains generated by MCMC.

3. Results and Discussion
The algorithm was implemented to obtain samples of the marginal distributions of each pa-

rameter by weighted importance resample. Particularity on the MCMC, as observed by Blasco et
al. (2003), was used the Metropolis-Hastings algorithm in the process of obtaining samples of the
marginals distributions, due to the nonlinearity of the model. The sample means, standard devia-
tions are presented in Tables 2 and 3 together with the highest posterior density interval (HPD -
95%) for the parameters of the nonlinear double sigmoidal logistic model obtained by the weighted
importance resampling, and MCMC, respectively.

Table 2. Mean, standard deviation, and HPD interval for parameters of the double logistic model obtained by modified
weighted importance resampling in the description of coffee fruit growth curve

HPD
Parameter mean standard deviation 2.5% 97.5%

â1 0.6708 0.0421 0.5863 0.7494
b̂1 148.1257 1.5725 145.0599 151.1921
k̂1 0.1659 0.0284 0.1099 0.2194
â2 1.0817 0.0258 1.0316 1.1336
b̂2 225.6010 5.1857 215.1511 235.7878
k̂2 0.0631 0.0191 0.0239 0.0998

Table 3 shows the results of the marginal distributions obtained by MCMC. All chains reached
convergence by the criteria of Raftery and Lewis and Geweke, however, the results of the conver-
gence analysis are not presented because they are not the objective of this work.

A very low standard deviation of the estimates is shown in Table 2 and Table 3, indicating a high
reliability of the parameters estimated by the model. This denotes the efficiency of the Bayesian
methodology for the estimation of parameters of nonlinear regression models, as found by Blasco et
al. (2003), Martins Filho et al. (2008), Pereira et al. (2022), Salles et al. (2020) and Zheng and Zhu
(2008).

Table 3. Mean, standard deviation, and HPD interval for parameters of the double logistic model obtained by MCMC in the
description of coffee fruit growth curve

HPD
Parameter mean standard deviation 2.5% 97.5%

â1 0.6889 0.0402 0.6047 0.7632
b̂1 148.5727 1.5166 145.6022 151.4618
k̂1 0.1589 0.0276 0.1023 0.2104
â2 1.0763 0.0265 1.0268 1.1287
b̂2 227.0296 5.0265 217.2921 236.9215
k̂2 0.0695 0.0195 0.0317 0.1076
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The parameter a2, is the most interesting one because it represents the final weight of the fruit,
and coffee is marketed according to its weight. It was very well estimated, with credibility intervals
for a2 (Table 2 and 3) containing the latest fresh weight observations measured in practice by Cunha
and Volpe (2011). This reinforces the practical interpretation of the parameters and the quality of
the methodology in obtaining the estimates. Besides better precision, the Bayesian approach may
allow consistent inferences from few observations, like observed too by Salles et al. (2020).

Tables 2 and 3 also show that the estimates for the parameter k1 were always greater than those
of parameter k2, indicating that the development of coffee fruit is accelerated in the first growth
stage (or first sigmoid). This rapid expansion in the first stage of development of the coffee fruit can
be explained by the phenological scale proposed by Nunes et al. (2010), in which the authors point
out the rapid fruit growth in this first stage. This process is different in peach fruits, for example,
which have increased growth in the second stage (Fernandes et al., 2022).

Unlike what happens with coffee fruit, Silva et al. (2020) observed that in blackberry fruits the
difference in intensity between the growth stages depends on the cultivar under study. So that in
some cultivars k2 were greater than k1, but in others cultivars they are statistically equals.

As commented by several authors such as Allaman and Jelihovschi (2022), Silva et al. (2020) and
Teixeira et al. (2021), the identification of points of physiological importance in the growth curve
can be of fundamental importance for the most appropriate management. One of these points is
the asymptotic deceleration point (ADP), at this point, the characteristic under study stabilizes its
growth. As presented in Silva et al. (2020), for the Logistic model the ADP can be estimated by:(

k∗β+2.2924
k

)
. Based on the results of this work (Table 2), describing the growth of the coffee fruits,

the estimate of ADP was 162 and 262 DAF for the first and second sigmoid respectively. Which
means that at 162 daf the coffee fruit stops growing and after a few days it starts to grow again
(slowly, because k2<k1) and finally stabilizes in its final weight after 262 daf.

Figure 1 shows the sample histogram of the marginal distributions of each parameter for the
double logistic model, obtained by the weighted importance resampling method and by MCMC.
The solid line is the density of the normal distribution generated with the mean and variance infor-
mation obtained in the marginal distribution. These marginal distributions were very similar even
obtained by different methodologies.

The mean estimates of each parameter were similar for the two estimation methods (Tables 2 and
3). According to Smith and Gelfand (1992), the resampling method forces the obtaining of a greater
number of samples in the most important parts of the problem. Straub and Papaioannou (2015) claim
that this technique no need chain convergence analysis and is easy to understand. Thus, researchers
can focus on the main parts of Bayesian problems, which are the elicitation of priors and summary of
posterior information. However, in accord with Witmer (2017) the use of this technique in practical
courses of Bayesian inference for undergraduates is little emphasized.

One difficulty in using MCMC algorithms is the requirement of large number of samples to
control the Monte Carlo error and avoid generating nonsense values that can only be detected after
a careful analysis of convergence (Liu et al., 2016). After the convergence analysis and elimination
of burn-in and thin, the final effective size of the samples generated by MCMC was less than half
the final effective size obtained by weighted importance resampling. Since the weighted impor-
tance resampling uses all 10,000 values, the final chain when using MCMC had 4,897 values after
eliminating the burn-in (206 first values) and thin (lag 2).
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(a) Modified weighted importance resampling.
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(b) Markov chain Monte Carlo - MCMC.

Figure 1. Sample histogram with Normal density curves of the marginal distributions of each parameter of the double
logistic model obtained by the modified weighted importance resampling (a) and MCMC (b).
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The double sigmoid model studied was very efficient in describing the growth curve of coffee
fruits (Figure 2). The credibility intervals were obtained using the predictive distribution, contain
all observed data and were small (Figure 2), thus confirming the double sigmoidal growth pattern
of the coffee fruits, which is corroborated by Fernandes et al. (2017) and Nunes et al. (2010).

Figure 2. Double logistic model in description of fresh weight fruits growth versus days after flowering (DAF). Dotted lines
depict 95% credibility interval.

The fitting quality obtained was very high (Figure 2) with determination coefficient R2 =
99.54%. The estimated parameters are consistent with the literature, confirming the efficiency of
the weighted importance resampling method as an alternative for the estimation of parameters of
double sigmoid regression models. Therefore, this approach can be used to estimate parameters of
any growth curves (animal, vegetable and fruit). Specifically in fruits such as plum, peach, guava,
gabiroba and blackberry, which also present a double sigmoidal growth pattern, according to Fami-
ani et al. (2012), Fernandes et al. (2022), Nava et al. (2014), Santos et al. (2015) and Silva et al. (2020),
respectively.

It’s important to note that the efficiency of the Bayesian methodology is associated with the
“good quality” of the prior distribution, like commented too by Pereira et al. (2022) and Salles
et al. (2020). Thus, the weighted importance resampling is strongly indicated for the study of
growth curves, since the nonlinear models present practical interpretation for the parameters, thus
facilitating the obtaining of prior of specialist suggested by Garthwaite et al. (2005).

4. Conclusions
Bayesian inference by weighted importance resampling method was a good alternative for the

parameters estimation of nonlinear double sigmoid regression models, providing parameters for
coffee fruit growth that have practical interpretation and consistent with the literature.

The logistic model showed that the growth of coffee fruits is more intense in the first sigmoid
(until 162 DAF) of the growth curve and stabilizes in its final weight after 262 daf.
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Appendices
Software R codes to implement weighted importance resample
##############

library(nlme)

library(coda)

library(car)

rm(list=ls())

########### 81° 261° #############################################

daf=c(96,111,126,...,293)

freshWeight=c(0.016,0.031,0.03,...,1.040)

####### SIR #######################

## Weighted Importance Resampling

inicio<- proc.time()

##### LL model ##################

reg=gnls(freshWeight~alfa1/(1+exp(-k1*(daf-beta1)))+

(alfa2-alfa1)/(1+exp(-k2*(daf-beta2))),

start=list(alfa1=0.6, beta1=170, k1=0.2, alfa2=1, beta2=250, k2=0.15))

summary(reg)

round(coef(reg),2)

plot(daf,freshWeight)

lines(daf,fitted(reg))

###################### Sample Importance Resample ######################

## priors

lPriori <- function(theta){

dbeta(theta[1],2,2,log=TRUE)+

dbeta(theta[4]/2,2,2,log=TRUE)+

dbeta(theta[2]/200,4,4,log=TRUE)+

dbeta((theta[5]-theta[2])/200,2,2,log=TRUE)+

dbeta(theta[3],2,10,log=TRUE)+

dbeta(theta[6],2,20,log=TRUE)

}

### obtaining Q() aproximation

theta.v <- reg$coefficients

Sigma.v <- reg$varBeta

L <- t(chol(Sigma.v))

N <- 10000

n <- 10000

w <- 0*1:N

THETA <- matrix(0,N,6)

for(i in 1:N){

THETA[i,1:6] <- theta.v+L%*%rnorm(6)

w[i] <- lPriori(THETA[i,1:6])

}
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index <- sample(1:N,n,replace=TRUE,prob=exp(w)) # weighted positions of sampling

tail(index)

Posterior.Sample <- THETA[index,] # resampling

am <- mcmc(Posterior.Sample)

summary(am)

raftery.diag(am)

HPDinterval(am)

proc.time() - inicio

par(mfrow=c(3,2))

hist(am[,1],prob=T, xlab = "a_1", main = "")

curve(dnorm(x, mean(am[,1]), sd(am[,1])), add= TRUE)

hist(am[,4],prob=T, xlab = "a_2", main = "")

curve(dnorm(x, mean(am[,4]), sd(am[,4])), add= TRUE)

hist(am[,2],prob=T, xlab = "b_1", main = "")

curve(dnorm(x, mean(am[,2]), sd(am[,2])), add= TRUE)

hist(am[,5],prob=T, xlab = "b_2", main = "")

curve(dnorm(x, mean(am[,5]), sd(am[,5])), add= TRUE)

hist(am[,3],prob=T, xlab = "k_1", main = "")

curve(dnorm(x, mean(am[,3]), sd(am[,3])), add= TRUE)

hist(am[,6],prob=T, xlab = "k_2", main = "")

curve(dnorm(x, mean(am[,6]), sd(am[,6])), add= TRUE)
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