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1. Introduction 
Exploratory factor analysis (EFA) is a multivariate statistical method, whose objective is to determine 

the number and core of latent variables or factors that best represent the variances and covariances among 

the observed variables (Brown, 2015). 

Otherwise, it can be stated that the EFA is a statistical method of interdependence that reproduces the 

relationships between the variables observed in a smaller group of factors, where each observed variable 

defined as their linear combination, in such a way that this combination represents the decomposition of 

variances and covariances between these variables. This means that each factor represents a set of observed 

variables that are highly correlated with each other, so that they incorporate the latent dimensions of the 

variables in their group, returning a parsimonious model. Therefore, the objective of EFA is to simplify 

the dataset in order to the interpretation of the original variables and the relationships between them clearer 

and more accurate. 

EFA is one of the most used multivariate statistical methods for data analysis in several areas of 

knowledge, such as agronomy, zootechnics, ecology, forestry, medicine, and social sciences (Hongyu, 

2018). 
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In Agricultural Sciences, some works have been carried out to determine the combining ability of l 

broiler breeder lines (Abreu et al., 1999), to assist in the genomic selection of pigs (Teixeira et al., 2015), 

to assess the spatial dependence of chemical attributes of the soil (Almeida & Guimarães, 2016) and to 

characterize the factors inherent to the occurrence of dwarf pequi (Almeida, 2021). In this field of 

knowledge, EFA is widely applied among breeders for the use of an orthogonal factorial model, that is, of 

uncorrelated factors that enable a solution to the problem of multicollinearity (Ferreira et al., 2005). 

The solution of an EFA depends on the covariance matrix and, therefore, is not invariant to scale 

changes. Furthermore, it is not unique, that is, there are different solutions capable of reproducing the same 

matrix, and this will depend on the number of factors in the model, the estimation method, and the rotation 

used in the analysis. According to Ferreira (2018), the non-uniqueness of the parameters of the factorial 

model can be used favorably to improve the interpretation of the factors. On the other hand, it can generate 

doubts because it allows different results for the same data set. 

It should be observed that EFA is often confused with principal component analysis (PCA). This fact 

occurs because one of the methods of extracting factors is the method of principal components. In addition, 

PCA also aims to reduce data, but EFA is not limited to this purpose only (Hauck Filho & Valentini, 2020; 

Rogers, 2022). 

The mathematical complexity and diversity of options for each EFA procedure make understanding 

this technique difficult. On the other hand, with the advancement of technology and software, the 

popularity of using EFA has increased, as it has become more accessible. 

According to Costello and Osborne (2005), in a survey of over 1,700 works that used some form of 

EFA, well over half reported the use of principal components and varimax rotation for data analysis. 

Moreover, in a large part of the published works in which the EFA is performed, the estimation method 

used is not reported, but only the performance or not of the rotation and the rotation method applied. This 

suggests, therefore, that in these works, the principal components estimation method was used, given that 

for EFA, it is the simplest (Ferreira, 2018) and is usually the standard configuration of the software that 

contemplates this analysis (Costello; Osborne, 2005). 

In practice, the varimax criterion is the most used and usually produces factors that are not correlated 

with each other and simpler solutions than the other methods (Mingoti, 2013).  

Consequently, the objective of this work was to evaluate the performance of the principal components 

method used in EFA, with and without varimax rotation, in providing adequate estimates of the parameters 

of the orthogonal factorial model according to different configurations of relationships between four 

normally distributed random variables. 

 
1.1 Exploratory Factor Analysis  

 

To start an EFA, the interdependence structure of the data set must be verified. It can be represented 

by the covariance matrix between the original variables Y1, Y2, ..., Yp (Y) or standardized Z1, Z2, ..., Zp 

(Z). It is noteworthy that when the standardization of the original variables is based on their respective 

means and standard deviations, new variables centered on zero and with variances equal to one are 

obtained. In this case, the matrix of covariances between the standardized variables (Z) coincides with the 

matrix of correlations between the original variables (Y).  

Usually, it is decided to analyze the variables on a standardized scale, that is, to work with the 

correlation matrix between the original variables (Z  Y) to minimize the effect of the difference between 

the measurement units or of the scales of the original variables.  

Thus, the factorial model with k (k  p) factors is defined, as follows: 

 

Z1  11F1  12F2  …   1kFk  1; 

Z2  21F1  22F2  …   2kFk  2; 

... 

Zp  p1F1  p2F2  …   pkFk  p. 
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In matrix terms, this definition can be expressed by: 

z  F    [

Z1
Z2
⋮
Zp

]   [


11


12

… 
1k


21


22

… 
2k

⋮ ⋮ ⋱ ⋮

p1


p2

… 
pk

] [

F1
F2
⋮
Fk

]   [

1
2
⋮
p

], where: 

 

 = matrix (p  k) of the factor loadings referring to the correlations between the original variables 

and the factors; 

F  vector (k x 1) of common factors (factors); and 

 vector (p x 1) of random errors (specific factors).  

Thus, it results in: 

Var(Zw)  w1
2   

w2
2   …   

wk
2   

w
= hw

2 + 
w
  1, where: 

Zw =
Yw  w

w
; 

w = average of the original variable Yw; 

w standard deviation of the original variable Yw; 

wj factor loading or correlation between the original variable Yw and the factor Fj; 

hw
2   ∑ 

wj
2k

j=1 = commonality or proportion of the variance of the standardized variable Zw explained 

by the k common factors (factors); and 

w  1  h2w  specificity or variance explained by the specific factor w (w  1, 2, ..., p and j  1, 2, 

..., k). 

To proceed with the estimation of the factorial model, some assumptions are necessary: 

E(F)  E()  0; 

Cov(F)  E(FF) = I; 

Cov()  E()  𝚿  

[
 
 
 
 

1

0 … 0

0 
2
… 0

⋮ ⋮ ⋱ ⋮
0 0 … 

p]
 
 
 
 

; and 

Cov(F,)  E(F)  0. 

If such properties are observed in the model, it is denominated an orthogonal factorial model and, in 

this case, the matrix Z  Y () can be decomposed, as follows: 

    . 

The principal components estimation method is based on the spectral decomposition of the matrix , 

which guarantees that every symmetric matrix can be decomposed as follows: 

  𝐏𝐏  𝐏𝟏 𝟐⁄⏟  
𝚪


𝟏 𝟐⁄ 𝐏⏟  
𝚪

  , where: 

 = matrix (p x p) diagonal with the eigenvalues of the matrix (p  p) ; 

P = matrix (p x p) with the normalized eigenvectors of the matrix (p  p) , in its columns, associated 

with each eigenvalue; and 

  P1/2 = matrix (p x k) of factor loadings. 

Therefore, the matrices  and  are estimated as follows: 

𝐑  ̂̂  ̂, where: 

R = matrix (p x p) of sample covariances between standardized variables or sample correlations 

between original variables; 
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̂  

[
 
 
 
 
 
 
 √λ̂1ê11 √λ̂2ê12  … √λ̂kê1k

√λ̂1ê21 √λ̂2ê22  … √λ̂kê2k

⋮           ⋮         ⋱        ⋮

√λ̂1êp1 √λ̂2êp2  … √λ̂kêpk]
 
 
 
 
 
 
 

; 

 

̂  diag [𝐑  ̂̂] = matrix (p x p) of sample variances of specific factors; 

ĥw
2   ∑ ̂

wj
2k

j=1 = estimate of the commonality hw
2  of the standardized variable Zw; 

λ̂j  ∑ ̂
wj
2p

w1  = estimate of the eigenvalue j; 

̂
jw
  √λ̂jêwj = estimate of the factor loading wj; and  

êwj  estimate of the ewj coefficient of the normalized eigenvector (p  1) ej (w  1, 2, ..., p and j  1, 

2, ..., k). 

So ̂  diag [𝐑  ̂̂], an approximation of the matrix 𝛒 is obtained, such that: 𝐑  ̂̂  ̂. 

This occurs because the random variation not common to the factors and the contribution of the last p 

 k normalized eigenvectors and eigenvectors of R are disregarded. 

Thus, one of the methods to assess the goodness of fit of the factorial model estimated by the principal 

components method consists of calculating the residual sample matrix given by: 𝐌𝐑𝐞𝐬  𝐑  (̂̂  ̂). 

The closer the values of the MRes matrix are to zero, the more the  ̂̂  ̂  approached the R matrix 

and, consequently, the greater its representativeness (MINGOTI, 2013). 
It is also known that the total variance can be calculated by tracing the matrix R. Therefore, the 

estimate of the proportion of the total variation explained by the Fj factor is defined as: 
∑ ̂wj

2p
w=1

tr(𝐑)
  
∑ ̂wj

2p
w=1

p
, towards j  1, 2, ..., k. 

The principal components estimation method received this name because it is based on the use of 

eigenvalues and normalized eigenvectors of the R matrix to estimate the factor loadings.  

Thus, the estimate of the factor model with the factors F1, F2, ..., Fk (k  p) is defined, as:  

 

Z1  ̂11F1  ̂12F2  …   ̂1kFk; 

Z2  ̂21F1  ̂22F2  …   ̂2kFk; 

... 

Zp  ̂p1F1  ̂p2F2  …   ̂pkFk. 

 

To facilitate the interpretation of the factors and seek a simpler structure for the matrix  of the factor 

loadings, it is possible to perform an orthogonal rotation of the factors, to preserve the original orientation 

between them. The objective of the factorial rotation is to simplify the lines and columns of this matrix, to 

make a maximum of only one factor in each line, and to try to reduce or approximate, as much as possible, 

the other factors to the zero values, as many times, the analyzed variables present high factor loadings in more 

than one factor (Damásio, 2012). 

A square matrix T is said to be an orthogonal matrix if and only if TT  TT  I. Thus, the orthogonal 

transformation results from the multiplication of any orthogonal matrix T by the matrix  of parametric factor 

loadings, as follows: 

*  T, where: 

*  matrix (p x k) of rotated and parametric factor loadings. 

The varimax criterion provides estimates of the rotated factor loadings that maximize the following 

expression: 

v∗ =
1

p2
∑ [∑ ̂

wj
4   

1

p
(∑ ̂

wj
2p

w=1 )
2

p
w=1 ]k

j=1 , where: 
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̂
wj
∗ =

̂jw 

ĥw
  estimate of the rotated factor loading or the correlation between the original variable Yw 

and the rotated factor Fj
∗; and 

ĥw  estimate of the square root of the commonality or the proportion of the standard deviation of 

the standardized variable Zw explained by the k common factors (factors) (w = 1, 2, ..., p and j = 1, 2, ..., k). 

According to Johnson and Wichern (2002), all factor loadings obtained from an orthogonal 

transformation of the initial factor loadings have the same ability to reproduce the matrix . Mingoti (2013) 

says that orthogonal rotation does not change the fit of the factorial model determined from the  e , 

matrices, as the MRes matrix, the estimates of commonalities and specific variances remain unchanged. 

Consequently, only the estimates of the eigenvalues, factor loadings, and normalized eigenvectors will change 

with rotation. Likewise, the matrix  is estimated as follows:  

𝐑  ̂
∗
̂
∗
  ̂, where: 

̂
∗
  

[
 
 
 
 
 
 
 √λ̂1

∗ ê11
∗  √λ̂2

∗ ê12
∗  … √λ̂k

∗ ê1k
∗

√λ̂1
∗ ê21
∗  √λ̂2

∗ ê22
∗  … √λ̂k

∗ ê2k
∗

⋮            ⋮         ⋱        ⋮

√λ̂1
∗ ê11
∗  √λ̂2

∗ êp2
∗  … √λ̂k

∗ êpk
∗

]
 
 
 
 
 
 
 

; 

λ̂j
∗  ∑ ̂

wj
∗2p

w1   estimate of the rotated eigenvalue j
∗
; 

̂
wj
∗   √λ̂j

∗êwj
∗   estimate of the rotated factor loading 

wj
∗ ; e 

êwj
∗   estimate of the rotated coefficient ewj

∗  of the rotated normalized eigenvector (p  1) 𝐞𝐣
∗ (w  1, 2, ..., 

p and j  1, 2, ..., k). 

Thus, the estimate of the factorial model with the rotated factors F1
∗, F2

∗, ..., Fk
∗ (k  p) defined as follows: 

Z1  ̂11
∗ F1

∗  ̂
12
∗ F2

∗   …   ̂
1k
∗ Fk

∗; 

Z2  ̂21
∗ F1

∗  ̂
22
∗ F2

∗   …   ̂
2k
∗ Fk

∗; 

... 

Zp  ̂p1
∗ F1

∗  ̂
p2
∗ F2

∗   …   ̂
pk
∗ Fk

∗. 

 

2. Materials and Methods 
 

2.1 Factor model 
Based on the theory of factor analysis, it was decided in this work to determine criteria to theoretically 

establish some EFA parameters, namely: matrices  and , which allowed the calculation of different 

correlation matrices and with a priori specific characteristics, to evaluate a posteriori, the results obtained by 

the EFA. 

Thus, it was stipulated four original and random variables with a distribution of multivariate normal 

probabilities, such as: 

Y1, Y2, Y3 e Y4  N4 (Y; Y), where: 

Y = vector (4  1) of parametric means of the four original variables; and 

Y = matrix (4  4) of parametric covariances between the four original variables. 

To avoid scale problems, the study of the original variables Y1, Y2, Y3, and Y4, was carried out based 

on the respective standardized variables Z1, Z2, Z3, and Z4 where: 

Zw =
Yw  w

w
, towards w  1, 2, 3 e 4. 

Once defined, the four standardized and random variables followed a multivariate normal probability 

distribution: 
        Z1, Z2, Z3 e Z4  N4 (Z; Z), where: 

Z  0  vector (4  1) of parametric means equal to zero of the four standardized variables; and 
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Z  Y  matrix (4  4) of parametric covariances between the four standardized variables or of the 

parametric correlations between the four original variables. 

It is important to emphasize that for the factorial model to be useful in practice, a number of factors 

smaller than the number of original variables must be considered. Thus, in order to obtain a parsimonious 

factorial model, two factors (F1 and F2) were constructed, thus defining the orthogonal factorial model based 

on the four standardized variables, as follows: 

Z1  11F1  12F2  1; 

Z2  21F1  22F2  2; 

Z3  31F1  32F2  3; and 

Z4  41F1  42F2  4, where: 

wj  parametric factor loading or parametric correlation between the original variable Yw and the 

common factor (factor) Fj; and 

w  specific parametric factor associated with the standardized variable Zw (w = 1, 2, 3 and 4 and j = 

1 and 2). 

In matrix form, it is observed: 

z  F    [

Z1
Z2
Z3
Z4

]   [


11


12


21


22


31


32


41


42

] [
F1
F2
]   [

1
2
3
4

], where: 

  matrix (4  2) of parametric factor loadings. 

 

2.2 Factors  
 

To obtain the  matrices, defined by the first two orthogonal factors (F1 e F2), six different parametric 

commonalities (0.49; 0.56; 0.64; 0.72; 0.81 and 0.90) associated with the four standardized variables (Z1, Z2, 

Z3, and Z4) were equally (h1
2  h2

2  h3
2  h4

2) established.  

hw
2   

w1
2   

w2
2  , for w = 1, 2, 3 and 4, where: 

h 2w = parametric commonality of the standardized variable Zw; 

w1 = parametric factor loading or parametric correlation between the original variable Yw and the 

factor F1; and 

w2 = parametric factor loading or parametric correlation between the original variable Yw and the F2 

factor. 

In addition, for the selection of the eight parametric factor loadings or the eight parametric correlations 

between the original variable Yw (w = 1, 2, 3 and 4) and the factors F1 (w1) and F2 (w2), three proportions of 

the distances between the parametric factor loadings of the two factors (0.20; 0.45; and 0.81), for each of the 

six parametric commonalities hw
2 , respectively, were established. These three distances were chosen to 

represent proportions of distances defined as small, medium, and large, respectively. In addition, they quantify 

how much the F1 and F2 factors present cross-loads. Thus, each distance proportion was obtained through the:  

dw =
|w1  w2| 

√hw
2

, towards w  1, 2, 3 e 4. 

The three proportions of the distances between the parametric factor loadings of the F1 and F2 factors 

and defined in each of the six different parametric commonalities hw
2 , were aimed at establishing different 

degrees of separation of the four standardized variables (Z1, Z2, Z3, and Z4) in the first two factors. 

In addition, it was possible to define, using the absolute magnitudes of the parametric factor loadings, 

the representation of the standardized variables Z1 and Z2 by F1 and, of Z3 and Z4, by F2, setting at: 

(11  21  32  42)  (12  22  31  41). 

Subsequently, the matrix  (4  4) of the parametric variances of the specific (1  2  3  4), 

was calculated, as follows: 
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𝚿  

[
 
 
 
 

1
  1  h1

2 0 0 0

0 
2
  1  h2

2 0 0

0 0 
3
  1  h3

2 0

0 0 0 
4
  1  h4

2
]
 
 
 
 

. 

Therefore, 18 matrices (4    2) of the parametric factor loadings () and 18 matrices (4 x 4) of the 

parametric variances of the specific factors (), were obtained, as shown in Tables 1, 2, 3, 4, 5 and 6, with 

the parametric eigenvalues obtained through the following formula: 

λj = ∑ 
wj
24

w=1 , towards j  1 e 2. 

 
Table 1. Matrices  and  according to dw, for hw

2   =  0.49 (w  1, 2, 3 e 4)  and 1  2  0.98 

Matrix dw  0.81 dw  0.45 dw  0.20 

 [

0.69 0.12

0.69 0.12

0.12 0.69

0.12 0.69

] [

0.628 0.31

0.628 0.31

0.31 0.628

0.31 0.628

] [

0.56 0.42

0.56 0.42

0.42 0.56

0.42 0.56

] 

 [

0.51 0 0 0

0 0.51 0 0

0 0 0.51 0

0 0 0 0.51

] [

0.51 0 0 0

0 0.51 0 0

0 0 0.51 0

0 0 0 0.51

] [

0.51 0 0 0

0 0.51 0 0

0 0 0.51 0

0 0 0 0.51

] 

 
Table 2. Matrices  and  according to dw,  for hw

2   0.56 (w  1, 2, 3 e 4) and 1  2  1.13 

Matrix dw  0.81 dw  0.45 dw  0.20 

 [

0.738 0.134

0.738 0.134

0.134 0.738

0.134 0.738

] [

0.672 0.333

0.672 0.333

0.333 0.672

0.333 0.672

] [

0.6 0.45

0.6 0.45

0.45 0.6

0.45 0.6

] 

 [

0.44 0 0 0

0 0.44 0 0

0 0 0.44 0

0 0 0 0.44

] [

0.44 0 0 0

0 0.44 0 0

0 0 0.44 0

0 0 0 0.44

] [

0.44 0 0 0

0 0.44 0 0

0 0 0.44 0

0 0 0 0.44

] 

 
Table 3. Matrices  and  according to dw, for hw

2   0.64 (w  1, 2, 3 e 4) and 1  2  1.28 

Matrix dw  0.81 dw  0.45 dw  0.20 

 [

0.788 0.138

0.788 0.138

0.138 0.788

0.138 0.788

] [

0.715 0.359

0.715 0.359

0.359 0.715

0.359 0.715

] [

0.64 0.48

0.64 0.48

0.48 0.64

0.48 0.64

] 

 [

0.36 0 0 0

0 0.36 0 0

0 0 0.36 0

0 0 0 0.36

] [

0.36 0 0 0

0 0.36 0 0

0 0 0.36 0

0 0 0 0.36

] [

0.36 0 0 0

0 0.36 0 0

0 0 0.36 0

0 0 0 0.36

] 

 
Table 4. Matrices  and  according to dw, for hw

2   0.72 (w  1, 2, 3 e 4) and 1  2  1.45 

Matrix dw  0.81 dw  0.45 dw  0.20 

 [

0.837 0.148

0.837 0.148

0.148 0.837

0.148 0.837

] [

0.76 0.38

0.76 0.38

0.38 0.76

0.38 0.76

] [

0.68 0.51

0.68 0.51

0.51 0.68

0.51 0.68

] 

 [

0.28 0 0 0

0 0.28 0 0

0 0 0.28 0

0 0 0 0.28

] [

0.28 0 0 0

0 0.28 0 0

0 0 0.28 0

0 0 0 0.28

] [

0.28 0 0 0

0 0.28 0 0

0 0 0.28 0

0 0 0 0.28

] 
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Table 5. Matrices  and  according to dw, for hw
2   0.81 (w  1, 2, 3 e 4) and 1  2  1.62 

Matrix dw  0.81 dw  0.45 dw  0.20 

 [

0.886 0.158

0.886 0.158

0.158 0.886

0.158 0.886

] [

0.805 0.402

0.805 0.402

0.402 0.805

0.402 0.805

] [

0.72 0.54

0.72 0.54

0.54 0.72

0.54 0.72

] 

 [

0.19 0 0 0

0 0.19 0 0

0 0 0.19 0

0 0 0 0.19

] [

0.19 0 0 0

0 0.19 0 0

0 0 0.19 0

0 0 0 0.19

] [

0.19 0 0 0

0 0.19 0 0

0 0 0.19 0

0 0 0 0.19

] 

 

Table 6. Matrices  and  according to dw, for hw
2   0.90 (w  1, 2, 3 e 4) and 1  2  1.81 

Matrix dw  0.81 dw  0.45 dw  0.20 

 [

0.935 0.168

0.935 0.168

0.168 0.935

0.168 0.935

] [

0.852 0.42

0.852 0.42

0.42 0.852

0.42 0.852

] [

0.76 0.57

0.76 0.57

0.57 0.76

0.57 0.76

] 

 [

0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

] [

0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

] [

0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

] 

 

2.3 Correlations Matrices 
 

According to the orthogonal factorial model, the matrix (4  4) Z  Y () was obtained by:  

    . 

Thus, from the 18 matrices (4 x 2) of the parametric factor loadings () and the 18 matrices (4 x 4) of the 

parametric variances of the specific factors (), 18 matrices (4 x 4) of parametric correlations were obtained (), 

all of them positive, among the four original variables (Y1, Y2, Y3 e Y4), as shown in Tables 7, 8, 9, 10, 11 and 12, 

in which: 

  

[
 
 
 
 
1  

12
  
13
  
14


12
  1 

23
 
24


13
  
23
  1  

34


14
 
24
 
34
  1 ]
 
 
 
 

, for: (12  34)  (13  14  23  24). 

 
Table 7. Matrix  represented by the elements on the diagonal and above it according to dw, for hw

2  = 0.49 (w  1, 2, 3 and  

4) and 1  2  0.98 

dw  0.81 dw  0.45 dw  0.20 

1 0.49 0.17 0.17 1 0.49 0.39 0.39 1 0.49 0.47 0.47 

 1 0.17 0.17  1 0.39 0.39  1 0.47 0.47 

  1 0.49   1 0.49   1 0.49 

   1    1    1 

 
Table 8. Matrix  represented by the elements on the diagonal and above it according to dw, for hw

2  = 0.56 (w  1, 2, 3 and 4) and 

1  2  1.13 

dw  0.81 dw  0.45 dw  0.20 

1 0.56 0.20 0.20 1 0.56 0.45 0.45 1 0.56 0.54 0.54 

 1 0.20 0.20  1 0.45 0.45  1 0.54 0.54 

  1 0.56   1 0.56   1 0.56 

   1    1    1 
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Table 9. Matrix  represented by the elements on the diagonal and above it according to dw, for hw
2

 = 0.64 (w  1, 2, 3 and 4) and 

1  2  1.28 

dw  0.81 dw  0.45 dw  0.20 

1 0.64 0.22 0.22 1 0.64 0.51 0.51 1 0.64 0.61 0.61 

 1 0.22 0.22  1 0.51 0.51  1 0.61 0.61 

  1 0.64   1 0.64   1 0.64 

   1    1    1 

 
Table 10. Matrix  represented by the elements on the diagonal and above it according to dw, for hw

2 = 0.72 (w  1, 2, 3 and 4)  and 

1  2  1.45 

dw  0.81 dw  0.45 dw  0.20 

1 0.72 0.25 0.25 1 0.72 0.58 0.58 1 0.72 0.70 0.70 

 1 0.25 0.25  1 0.58 0.58  1 0.70 0.70 

  1 0.72   1 0.72   1 0.72 

   1    1    1 

 
Table 11. Matrix  represented by the elements on the diagonal and above it according to dw, for hw

2  = 0.81 (w  1, 2, 3 and 4) and 

1  2  1.62 

dw  0.81 dw  0.45 dw  0.20 

1 0.81 0.28 0.28 1 0.81 0.65 0.65 1 0.81 0.78 0.78 

 1 0.28 0.28  1 0.65 0.65  1 0.78 0.78 

  1 0.81   1 0.81   1 0.81 

   1    1    1 

  
Table 12. Matrix  represented by the elements on the diagonal and above it according to dw, for hw

2
 = 0.90 (w  1, 2, 3 and 4) and 

1  2  1.81 

dw  0.81 dw  0.45 dw  0.20 

1 0.90 0.31 0.31 1 0.90 0.72 0.72 1 0.90 0.87 0.87 

 1 0.31 0.31  1 0.72 0.72  1 0.87 0.87 

  1 0.90   1 0.90   1 0.90 

   1    1    1 

 
2.4 Principal Method Components 

The principal components estimation method was used to perform 36 factor analyses, fixing the 

estimation of the first two orthogonal factors of each of the 18 matrices (44) of parametric correlations 

(), according to the following approximation:  

 

𝐑  ̂̂  ̂, where: 

R  [

1  r12  r13  r14
r12  1 r23 r24
r13  r23  1  r34
r14 r24 r34  1

]  (4 x 4) sample correlation matrix; 

̂  

[
 
 
 
 
̂
11

̂
12

̂
21

̂
22

̂
31

̂
32

̂
41

̂
42]
 
 
 
 

  (4 x 2) sample factor loadings;  

�̂�  

[
 
 
 
 
̂
1

0 0 0

0 ̂
2

0 0

0 0 ̂
3

0

0 0 0 ̂
4]
 
 
 
 

  matrix (4 x 4) of sample variances of specific factors. 

 
2.4.1 Without Rotation  
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For the first two factors (F1 and F2), the following matrix (4  2) of sample factor loadings was obtained: 

̂  

[
 
 
 
 
 
 
 
 √λ̂1ê11 √λ̂2ê12

√λ̂1ê21 √λ̂2ê22

√λ̂1ê31 √λ̂2ê32

√λ̂1ê41 √λ̂2ê42]
 
 
 
 
 
 
 
 

, where: 

êwj  estimate of the coefficient ewj of the normalized eigenvector (4  1) ej; 

̂
jw
  √λ̂jêwj  estimate of the wj factor loading  wj; 

λ̂j  ∑ ̂
wj
24

w1   estimate of the j eigenfactor; and 

ĥw
2   ∑ ̂

wj
2k

j=1   estimation of commonality hw
2  (w  1, 2, 3 and 4, j  1 and 2). 

 

 Besides the ( 4 x 2) ̂ matrix, the following ( 4 x 4) sample matrix was obtained: 

𝐌𝐑𝐞𝐬  𝐑  (̂̂  ̂), where: 

SQRes  tr [(MRes)2]. 

 

With the aid of the openxlsx (Schauberger et al., 2019) and psych (Revelle, 2020) packages of the R 

software, 18 factor analyses were performed using the principal component estimation method, without 

rotation, according to the 18 correlation matrices () stored in the data files cor1.xlsx, cor2.xlsx, ..., 

cor18.xlsx, respectively. Each data file, generically represented by cor_.xlsx, was composed of five lines 

and four columns, whose column names arranged in the first line were defined, respectively, by z1, z2, z3, 

and z4. Thus, the estimation through the principal components method, without rotation, was obtained 

according to the following script: 
library (openxlsx) 

dados = read.xlsx ("cor_.xlsx") 

attach (dados) 

cor = cbind (z1, z2, z3, z4) 

library (psych) 

analise.cp = principal (cor, nfactors = 2, rotate = "none") 

comu = analise.cp$communality 

a = analise.cp$loadings 

at = t (a) 

gg = a%*%at 

varexp = diag (1 - comu) 

corest = gg + varexp 

autovalor = analise.cp$values 

e = cor - gg - varexp 

e2 = e%*%e 

sqres = tr (e2) 

sqres 

 
2.4.2 With Rotation  
 

For the first two orthogonal rotated factors (F1
∗ and F2

∗) by the varimax criterion, the following matrix (4  2) 
of rotated and sampling factor loadings was obtained: 

 

Para os dois primeiros fatores rotacionados (F1
∗ e F2

∗) ortogonais pelo critério varimax, foi obtida a 

seguinte matriz (4  2) das cargas fatoriais rotacionadas e amostrais: 
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̂
∗
  

[
 
 
 
 
 
 
 
 √λ̂1

∗ ê11
∗ √λ̂2

∗ ê12
∗

√λ̂1
∗ ê21
∗ √λ̂2

∗ ê22
∗

√λ̂1
∗ ê31
∗ √λ̂2

∗ ê32
∗

√λ̂1
∗ ê41
∗ √λ̂2

∗ ê42
∗

]
 
 
 
 
 
 
 
 

, where: 

êwj
∗   estimate of the rotated coefficient and ewj

∗  of the rotated normalized eigenvector (4 x 1) 𝐞𝐰𝐣
∗ ; 

̂
wj
∗   √λ̂jêwj

∗   estimate of the rotated factor loading 
wj
∗ ; and 

λ̂j
∗  ∑ ̂

wj
∗24

w1   estimate of the rotated eigenvalue j
∗
 (w = 1, 2, 3 and 4 and j = 1 and 2) . 

On the other hand, the script used for the estimation using the principal components method, with varimax rotation 

and according to the 18 matrices (4  4) of parametric correlations (), has suffered only a change in the command 

line, as follows: 
 ... 
analise.cp = principal (cor, nfactors = 2, rotate = "varimax") 

 
2.5 Statistical Analysis 

In order to evaluate the effects of the parametric commonality (hw
2 ) and the proportion of the distance 

between the parametric factor loadings of the F1 and F2 (dw)on the qualities of the estimates of the 

commonalities of the standardized variables Z1 (h1
2), Z2 (h2

2), Z3 (h3
2) and Z4 (h4

2), as well as the estimation 

of the matrix (4  4) ,  a response surface analysis of a 6  3 factorial experiments was carried out under 

a completely randomized design (DIC) with no repetition. So, three evaluated variables were obtained: 

h2  
1

4
(∑

| hw
2  − ĥw

2 |

 hw
2

4
w=1 ); 

SQRes  tr {[𝐑  (̂̂  ̂)]2}  tr [(MRes)2]; and 

  
1

8
(∑ ∑

|wj  ̂jw|

wj

2
j=1

4
w=1 ). 

In this case, the following largest first-order model was adopted: 

y  0  1h  2d  3hd  , where: 

y = observed value of the evaluated variable (h2, SQRes e ); 

h = parametric commonality (hw
2 ) (0.49; 0.56; 0.64; 0.72; 0.81; 0.90); 

d = proportion of the distance between the parametric factor loadings of factors F1 and F2 (dw) (0.20; 

0.45; and 0.81); and  

  N (0; 2). 

In addition, to evaluate the effects of the parametric commonality (hw
2 ),  the proportion of the distance 

between the parametric factor loadings of F1 and F2 (dw)  and the varimax rotation on the qualities of the 

estimates of the first two parametric eigenvalues and the eight parametric factor loadings of the first two 

factors, a response surface analysis of a 6 3  2 factorial experiments was performed under DIC without 

repetition. So, two other evaluated variables were obtained: 

1  
|λ1  λ̂1|

λ1
; and 

2  
|λ2  λ̂2|

λ2
. 

And in this case, the following largest first-order model was adopted: 

y = 0  1h  2d  3r  4hd  5hr  6dr  , where: 

y = observed value of the evaluated variable (1 and 2); 

h = parametric commonality (hw
2 ) (0.49; 0.56; 0.64; 0.72; 0.81; and 0.90); 

d = proportion of the distance between the parametric factor loadings of factors F1 and F2 (dw) (0.20; 

0.45; and 0.81); 

r = varimax rotation (r = 0 = without and r = 1 = with); and  
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  N (0; 2). 

In both models, the non-significant coefficients were removed from the model, one by one, and starting 

with the interactions, according to Student's t-test at 5% significance. Finally, the adjusted model was 

composed only of the significant effects, except the linear effects that showed significant interactions. 

Statistical analyses were performed using the R software (version 3.3.1) and Microsoft Excel 2016. 

 
3. Results and Discussion 

 
3.1 Effects of Commonality and Proportion of Distance 

The evaluated variables, h2 and SQRes, presented decreases in their values due to the increase (P  
0.05) of the parametric commonality (hw

2 ), but were not influenced (P  0.05) by the proportion of the 

distance between the parametric factor loadings of the first two factors (dw). On the other hand,  

decreased due to the reduction (P  0.05) in dw and without interference (P  0.05) of hw
2  (Table 13). 

 

Table 13. Estimates of h2, SQRes, and  as a function of parametric commonality (hw
2 ) and the proportion of the distance 

between the parametric factor loadings of the F1 and F2 (dw) 

Variable Model Adjusted R2 

h2 1.02331 – 1.11124*h 0.97 

SQRes 0.53537 – 0.60782*h 0.96 

 0.0535 + 2.4886*d 0.82 
*: significant by Student's t-test (P  0.05); h = hw

2 ; 0.49  h  0.90; d  dw; 0.20  d  0.81.  

 

As h2  was inversely related to hw
2  , the error in estimating the parametric commonality of the 

standardized variable Zw (w  1, 2, 3 and 4) due to the principal components method increased as it 

decreased. Therefore, the greater the parametric commonality of a variable, the better its estimate and, 

consequently, the better its interpretation based on factor analysis. 

In this work, the estimation error based on hw
2 − ĥw

2  was negative, given that the estimates of hw
2  

equal to 0.49; 0.56; 0.64; 0.72; 0.81; and 0.90 were, respectively, equal to: 0.75; 0.78; 0.82; 0.86; 0.91 

and 0.95. This means that the principal components estimation method overestimates the parametric 

commonality. 

In addition, SQRes also helps in assessing the goodness of fit of the orthogonal factorial model. The 

greater the hw
2  of the standardized variable Zw, the smaller its specific variance and, consequently, the 

smaller the difference between  and   , as the diagonal of the matrix  is equivalent to 1  hw
2  

(Ferreira, 2018). Thus, as the SQRes decreases as the hw
2  increases, the better the fit quality of the factorial 

model when higher estimates of hw
2  continually occur. 

Mingoti (2013) and Cruz et al. (2014) reported values greater than 0.64 as acceptable estimates of hw
2 . 

On the other hand, Hair et al. (2014) stated that variables with commonalities below 0.50 do not have 

sufficient explanations by the factor analysis. Therefore, such conclusions were supported, given that as 

the parametric commonality increased, its estimation error decreased. 

On the other hand, contrary to expectation,  decreased only as the dw was reduced.  It was first 

believed that  would increase as a function of increases in hw
2  and dw as the  increases in the latter would 

characterize greater relationships between the variables grouped in the respective factors. The greater the 

proportion of the distance between the parametric factor loadings of factors F1 and F2, the further from 

each other will be the parametric correlations of Yw and Fj, thus facilitating the grouping of variables in 

the respective factors. Therefore, the lack of this result suggested that the principal components estimation 

method was not adequate, in relation to the estimates of parametric factorial loads when applied without 

the aid of rotation. 

In all sample matrices of factor loadings (̂), regardless of hw
2  and dw, the principal components 

estimation method provided the same absolute estimates of the parametric factor loadings of F1 and F2, 

separately. Also, as the absolute estimates of the parametric factor loadings of F1 were greater than those 

of F2, the standardized variables Z1, Z2, Z3 and Z4 were grouped in the F1 factor. This would lead to an 

incorrect interpretation that all four standardized variables present positive correlations with each other 
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and that they can be represented by only a single factor, even for cases with hw
2   0.64 (Table 14). 

Parametrically, Z1 and Z1 are associated with the F1 factor, and Z3 and Z4 are not correlated with Z1 and Z2, 

with F2. 

Em todas as matrizes amostrais de cargas fatoriais (̂), independentemente de hw
2  e dw, o método de 

estimação dos componentes principais proporcionou as mesmas estimativas absolutas das cargas fatoriais 

paramétricas de F1 e de F2, separadamente. E como as estimativas absolutas das cargas fatoriais 

paramétricas de F1 foram maiores do que as de F2, as variáveis padronizadas Z1, Z2, Z3 e Z4 foram 

agrupadas no fator F1. Isso induziria em uma interpretação incorreta de que todas as quatro variáveis 

padronizadas apresentam correlações positivas entre si e que podem ser representadas por apenas um único 

fator, mesmo para os casos com hw
2   0,64 (Table 14). De forma paramétrica, Z1 e Z2 associam-se ao fator 

F1 e, Z3 e Z4, não correlacionadas com Z1 e Z2, ao F2. 

 

Table 14. ̂ and ̂
∗
 matrices according to dw and hw

2  (w  1, 2, 3 and 4) 

 dw  0.81 dw  0.45 dw  0.20 

hw
2  ̂ ̂

∗
 ̂ ̂

∗
 ̂ ̂

∗
 

0.49 [

𝟎. 𝟔𝟖 0.54
𝟎. 𝟔𝟖 0.54
𝟎. 𝟔𝟖 0.54
𝟎. 𝟔𝟖 0.54

] [

𝟎. 𝟖𝟎 0.32
𝟎. 𝟖𝟎 0.32
0.49 𝟎. 𝟕𝟏
0.49 𝟎. 𝟕𝟏

] [

𝟎. 𝟕𝟓 0.42
𝟎. 𝟕𝟓 0.42
𝟎. 𝟕𝟓 0.42
𝟎. 𝟕𝟓 0.42

] [

0.26 𝟎. 𝟖𝟐
0.26 𝟎. 𝟖𝟐
𝟎. 𝟖𝟒 0.21
𝟎. 𝟖𝟒 0.21

] [

𝟎. 𝟕𝟖 0.37
𝟎. 𝟕𝟖 0.37
𝟎. 𝟕𝟖 0.37
𝟎. 𝟕𝟖 0.37

] [

0.58 𝟎. 𝟔𝟒
0.58 𝟎. 𝟔𝟒
𝟎. 𝟖𝟔 0.05
𝟎. 𝟖𝟔 0.05

] 

0.56 [

𝟎. 𝟕𝟎 0.54
𝟎. 𝟕𝟎 0.54
𝟎. 𝟕𝟎 0.54
𝟎. 𝟕𝟎 0.54

] [

𝟎. 𝟕𝟏 0.53
𝟎. 𝟕𝟏 0.53
𝟎. 𝟔𝟗 0.55
𝟎. 𝟔𝟗 0.55

] [

𝟎. 𝟕𝟖 0.41
𝟎. 𝟕𝟖 0.41
𝟎. 𝟕𝟖 0.41
𝟎. 𝟕𝟖 0.41

] [

𝟎. 𝟖𝟖 0.02
𝟎. 𝟖𝟖 0.02
0.53 𝟎. 𝟕𝟏
0.53 𝟎. 𝟕𝟏

] [

𝟎. 𝟖𝟏 0.35
𝟎. 𝟖𝟏 0.35
𝟎. 𝟖𝟏 0.35
𝟎. 𝟖𝟏 0.35

] [

𝟎. 𝟖𝟏 0.35
𝟎. 𝟖𝟏 0.35
𝟎. 𝟖𝟐 0.34
𝟎. 𝟖𝟐 0.34

] 

0.64 [

𝟎. 𝟕𝟐 0.55
𝟎. 𝟕𝟐 0.55
𝟎. 𝟕𝟐 0.55
𝟎. 𝟕𝟐 0.55

] [

0.62 𝟎. 𝟔𝟕
0.62 𝟎. 𝟔𝟕
𝟎. 𝟖𝟎 0.42
𝟎. 𝟖𝟎 0.42

] [

𝟎. 𝟖𝟐 0.39
𝟎. 𝟖𝟐 0.39
𝟎. 𝟖𝟐 0.39
𝟎. 𝟖𝟐 0.39

] [

0.58 𝟎. 𝟕𝟎
0.58 𝟎. 𝟕𝟎
𝟎. 𝟗𝟏 0.02
𝟎. 𝟗𝟏 0.02

] [

𝟎. 𝟖𝟓 0.32
𝟎. 𝟖𝟓 0.32
𝟎. 𝟖𝟓 0.32
𝟎. 𝟖𝟓 0.32

] [

0.43 𝟎. 𝟖𝟎
0.43 𝟎. 𝟖𝟎
𝟎. 𝟖𝟓 0.32
𝟎. 𝟖𝟓 0.32

] 

0.72 [

𝟎. 𝟕𝟓 0.55
𝟎. 𝟕𝟓 0.55
𝟎. 𝟕𝟓 0.55
𝟎. 𝟕𝟓 0.55

] [

𝟎. 𝟕𝟖 0.51
𝟎. 𝟕𝟖 0.51
𝟎. 𝟕𝟏 0.60
𝟎. 𝟕𝟏 0.60

] [

𝟎. 𝟖𝟓 0.38
𝟎. 𝟖𝟓 0.38
𝟎. 𝟖𝟓 0.38
𝟎. 𝟖𝟓 0.38

] [

𝟎. 𝟗𝟐 0.13
𝟎. 𝟗𝟐 0.13
𝟎. 𝟕𝟏 0.59
𝟎. 𝟕𝟏 0.59

] [

𝟎. 𝟖𝟖 0.29
𝟎. 𝟖𝟖 0.29
𝟎. 𝟖𝟖 0.29
𝟎. 𝟖𝟖 0.29

] [

𝟎. 𝟗𝟏 0.20
𝟎. 𝟗𝟏 0.20
𝟎. 𝟖𝟓 0.38
𝟎. 𝟖𝟓 0.38

] 

0.81 [

𝟎. 𝟕𝟕 0.56
𝟎. 𝟕𝟕 0.56
𝟎. 𝟕𝟕 0.56
𝟎. 𝟕𝟕 0.56

] [

𝟎. 𝟗𝟏 0.29
𝟎. 𝟗𝟏 0.29
0.55 𝟎. 𝟕𝟕
0.55 𝟎. 𝟕𝟕

] [

𝟎. 𝟖𝟖 0.36
𝟎. 𝟖𝟖 0.36
𝟎. 𝟖𝟖 0.36
𝟎. 𝟖𝟖 0.36

] [

𝟎. 𝟖𝟗 0.33
𝟎. 𝟖𝟗 0.33
𝟎. 𝟖𝟕 0.39
𝟎. 𝟖𝟕 0.39

] [

𝟎. 𝟗𝟐 0.25
𝟎. 𝟗𝟐 0.25
𝟎. 𝟗𝟐 0.25
𝟎. 𝟗𝟐 0.25

] [

𝟎. 𝟗𝟓 0
𝟎. 𝟗𝟓 0
𝟎. 𝟖𝟐 0.49
𝟎. 𝟖𝟐 0.49

] 

0.90 [

𝟎. 𝟖𝟎 0.56
𝟎. 𝟖𝟎 0.56
𝟎. 𝟖𝟎 0.56
𝟎. 𝟖𝟎 0.56

] [

𝟎. 𝟖𝟑 0.51
𝟎. 𝟖𝟑 0.51
𝟎. 𝟕𝟔 0.62
𝟎. 𝟕𝟔 0.62

] [

𝟎. 𝟗𝟏 0.34
𝟎. 𝟗𝟏 0.34
𝟎. 𝟗𝟏 0.34
𝟎. 𝟗𝟏 0.34

] [

𝟎. 𝟗𝟑 0.31
𝟎. 𝟗𝟑 0.31
𝟎. 𝟗𝟎 0.38
𝟎. 𝟗𝟎 0.38

] [

𝟎. 𝟗𝟓 0.21
𝟎. 𝟗𝟓 0.21
𝟎. 𝟗𝟓 0.21
𝟎. 𝟗𝟓 0.21

] [

𝟎. 𝟗𝟔 0.20
𝟎. 𝟗𝟔 0.20
𝟎. 𝟗𝟓 0.22
𝟎. 𝟗𝟓 0.22

] 

 

On the other hand, for 44.4% of the sample matrices of rotated factor loadings (̂
∗
), the method of 

estimating the principal components enabled to separate Z1 and Z2 from Z3 e Z4 in the first two factors, 

however, without an explanation pattern (Table 14). This meant that the varimax rotation was not able, at 

first, to improve the estimates of the parametric factor loadings obtained according to the method of 

principal components. Ideally, it is desired that each variable has a high factor loading, in the module, in 

a single factor, therefore should present small or moderate absolute loads in the other factors (Johnson; 

Wichern, 2002). 

According to Rogers (2022), the principal components estimation method overestimates the factor 

loads and the variance explained by the factors, which is in line with the results obtained in this 

experiment. In addition, Hauck Filho and Valentini (2020) stated that when performing an EFA using this 

estimation method, a typical EFA is not truly being developed. 

 

3.2 Effects of Commonality, Distance Proportion, and Varimax Rotation 
 

The evaluated variable, 1 had their values decreased due to the increases (P  0.05) in parametric 

commonality (hw
2 ) and in the proportion of the distance between the parametric factor loadings of factors 

F1 and F2 (dw)  and varimax rotation (P  0.05). On the other hand, 2 showed the lowest values when 

the lowest values of hw
2  and dw were combined (Table 15). 
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Table 15. - Estimates of  1 and 2  as a function of the parametric commonality (hw
2 ), the proportion of the distance between 

the parametric factor loadings of the F1 and F2 factors (dw), and the varimax rotation 

Variable Model Adjusted R2 

1 1.88082 – 0.72695*h – 0.86473*d – 0.16009*r 0.71 

2 –0.4207 + 1.7789*h + 0.3836d – 1.6882*hd 0.80 

*: significant by Student's t-test (P  0.05); h = hw
2 ; 0.49  h  0.90; d  dw; 0.20  d  0.81; r = varimax rotation; r = 0 = 

without and r = 1 = with. 

 

As 1 was inversely related to hw
2  and dw, the estimation error of the first parametric eigenvalue due 

to the principal components method increased as they decreased. Therefore, the greater the parametric 

commonality of a variable and the proportion of the distance between the parametric factor loadings of the 

same variable in different factors, the better its estimate. In addition, to improve it a little more, it is 

recommended to use the varimax rotation. 

In this work, the estimation error based on  λ1  λ̂1was negative (Table 16). This means that the 

principal components method overestimates the first parametric eigenvalue (1). 
 

Table 16. Estimates of 1, without (λ̂1) and with (λ̂1
∗) the varimax rotation according to dw and 1 

 dw  0.81 dw  0.45 dw  0.20 

1 λ̂1 λ̂1
∗  λ̂1 λ̂1

∗  λ̂1 λ̂1
∗  

0.98 1.82 1.77 2.27 1.53 2.43 2.16 

1.13 1.96 1.96 2.46 2.12 2.64 2.64 

1.28 2.07 2.05 2.67 2.31 2.87 1.80 

1.45 2.22 2.22 2.88 2.71 3.11 3.08 

1.62 2.37 2.26 3.11 3.10 3.36 3.14 

1.81 2.53 2.52 3.33 3.33 3.63 3.63 

 

As there was an overestimation of 1, the estimate of the second parametric eigenvalue (2) was also 

compromised and, particularly underestimated (Table 17). 
 

Table 17. Estimates of 2, without (λ̂2) and with (λ̂2
∗ ) the varimax rotation according to dw and 2  

 

 
dw  0.81 dw  0.45 dw  0.20 

2 λ̂2 λ̂2
∗  λ̂2 λ̂2

∗  λ̂2 λ̂2
∗  

0.98 1.16 1.22 0.71 1.45 0.55 0.82 

1.13 1.17 1.17 0.67 1.01 0.48 0.48 

1.28 1.21 1.23 0.62 0.97 0.41 1.48 

1.45 1.23 1.23 0.57 0.74 0.34 0.36 

1.62 1.25 1.36 0.52 0.52 0.25 0.47 

1.81 1.27 1.28 0.47 0.48 0.17 0.17 

 

According to Kaiser's (1958) criterion for choosing the number of orthogonal factors (j  1), the first 

two factors, with or without varimax rotation, would be correctly used in the factor analysis only for dw = 

0.81 (Tables 16 and 17), reinforcing the 1 overestimation. Therefore, the principal components estimation 

method seems to have a characteristic of overestimating the variability present in the correlation matrix in 

the first eigenvalue. 

In general, despite improving the interpretation of the factors and the estimates of the parametric 

eigenvalues, the varimax rotation was not sufficient to fully enable the use of the principal components 

estimation method.  

Corroborating the results obtained, Lloret et al. (2017) stated that the combination of the principal 

components estimation method with varimax rotation is probably the worst way to develop an EFA. 
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4. Conclusions 
 

The principal components estimation method used in the orthogonal factor analysis does not provide 

adequate estimates of its parameters, even when performed under parametric commonalities greater than 

0.64. 

Varimax rotation poorly improves the quality of the EFA estimates. On the other hand, considering 

that the principal components estimation method does not provide reliable results, the varimax rotation 

associated with this method would not be valid. 

Therefore, the use of varimax rotation associated with the principal components estimation method 

for performing the EFA is not recommended, as they return results that do not represent the original data 

and, therefore, promote interpretations. 
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