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Abstract
The present work reviews distributions for counting data: Poisson; Negative Binomial; COM-Poisson
and Generalized Poisson, and their regression models. Aspects such as parameter estimation and model
choice criteria are presented. And as an application example, we use the regression models of these distri-
butions to explain the relationship between tuberculosis notifications with the HDI Human Development
Index of the 102 cities in the state of Alagoas. The existing relationship between notifications of tubercu-
losis with HDI is significant and overdispersion at the level α = 5% of probability, and the COM-Poisson
distribution regression model was the best fit data, according to the Akaike AIC and Bayesian BIC infor-
mation criteria.
Keywords:Tuberculosis; Negative Binomial; COM-Poisson; Generalized Poisson.

1. Introduction
Counting data is common in areas of agriculture (Carvalho et al., 2018; Hall, 2000); educa-

tion Desjardins (2016); engineering Anastasopoulos & Mannering (2009); industry Lambert (1992);
psychology Atkins & Gallop (2007); public health Khan et al. (2011), among others. The linear
regression model of the Poisson distribution is one of the most used models in the areas of science,
since most of the phenomena meet the postulates of the Poisson distribution Shmueli et al. (2005).
However, in cases where the data are overdispersed, that is, when the data variance is greater than
the mean, the Poisson model is not indicated because it accommodates only equidispersion, when
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the variance is equal to the mean. In this case, the linear regression models of the Negative Bino-
mial, COM-Poisson and Generalized Poisson distributions are the most indicated because they have
a dispersion parameter that can accommodate overdispersion. Data overdispersion can be caused by
too many zeros; outliers; the way the sampling process was conducted; the use of inappropriate link
function in the model; non-linear effects considered as linear in the systematic component of the
model; omitted covariates in the model, among others (Ridout & Besbeas, 2004; Hilbe, 2011). In
any case, overdispersion cannot be neglected, otherwise the model estimates will be biased Ridout
& Besbeas (2004).

Underdispersion may also occur in the data, a less common situation when the data variance
is less than the mean. Works involving underdispersion data are found in (Shmueli et al., 2005;
Sellers & Morris, 2017; Barlow & Proschan, 1996; citeridout2004; Hayati et al., 2018). For these
types of data, the COM-Poisson and Generalized Poisson distribution models, as they have a more
flexible dispersion parameter to accommodate underdispersion, are more suitable than the Negative
Binomial distribution Santana (2019). Works involving these types of models are still scarce in
some literature, such as in the agricultural sciences. For example, in a search on the SciELO base
page in SciELO (2022a), of the 115,681 published articles, only 59 articles were found involving the
distribution Poisson, 15 papers involving the Negative Binomial distribution and no papers involving
the COM-Poisson and Generalized Poisson distributions. This problem, due to the lack of scientific
articles with statistical rigor in the agricultural sciences, is reported in Carvalho et al. (2019) in a
bibliographic review survey.

This problem also spreads to other areas, such as health case. In a search on the SciELO database
in SciELO (2022b), of the 506,199 published articles, no article was found involving the COM-
Poisson and Generalized Poisson distributions. This demonstrates the need to publish scientific
papers involving more sophisticated distributions in related areas of statistics.

In view of the above, this work makes a bibliographic review of Poisson distributions; Negative
Binomial; COM-Poisson and Generalized Poisson and their regression models, with the aim of
providing information to professionals in sciences related to statistics who are not familiar with
regression models and the criteria for choosing these distributions. As an application example, we
used health data from the profile of municipalities in 2020 on notifications of tuberculosis and the
Human Development Index of the 102 cities in the state of Alagoas, available at (de Saúde do Estado
de Alagoas (2017); BRASIL (2021); de Saúde Perfil dos Municípios Alagoanos (2022)).

This article is organized as follows: in Section 2, we review regression models for Poisson dis-
tributions; Negative Binomial; COM-Poisson and Generalized Poisson and selection criteria. In
Section 3, we present an application with these models to explain the relationship between tubercu-
losis notifications with the Human Development Index for all cities in the state of Alagoas. Finally,
we present the conclusion in Section 4.

2. Materials and methods
2.1 Poisson distribution model (Po)

We start counting models with the Poisson distribution model. Consider Yi as a random variable
with Poisson distribution and we write (Yi ∼ Po(λi)), if Yi has the following probability mass
function (fmp)

Pr(Yi = yi) =
e–λλyi

yi!
, yi = 0, 1, 2, . . . , (1)

where λi > 0 corresponds to the average number of occurrences of a given event, yi is the realization
of the random variable Yi, with mean E(Yi) = λi and variance Var(Yi) = λi. In the regression
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structure of the Poisson distribution, the parameter λi is related to the covariable xi through the
logarithmic link function (Paula, 2004) that is,

log(λi) = x⊤i β, (2)

where xi = (1, x1, . . . , xp) is a vector of explanatory variables and β = (β0,β1, ...,βp)⊤ is a vector of
unknown model parameters, both of dimension (p+1). Then, for a random sample (y1, x1), . . . , (yn, xn),
with n independent observations, the log-likelihood function of the Poisson model is given by

ℓ(λ; y) =
n∑

i=1

{
yi log(λi) – λi – log(yi!)

}
. (3)

For details on the log-likelihood function, and the various link functions of the Poisson distri-
bution, see (Nelder & Wedderburn, 1972; Cameron & Trivedi, 2013).

2.2 Negative Binomial Distribution Model (NB)
Let Yi be a random variable representing the number of trials before the rth success in n Bernoulli

trials. We say that the random variable Yi has a Negative Binomial distribution with parameters r
and p and we write (Yi ∼ NB(r, p)), if Yi has the following fmp

Pr(Yi = yi) =
(

yi + r – 1
yi

)
pr(1 – p)yi , yi = 0, 1, 2, . . . , (4)

where r>0 is a fixed integer; p is the probability of success on the rth success and yi is a realization of
the random variable Yi with E(Yi) = r(1 – p)/p and Var(Yi) = r(1 – p)/p2 (Bartko, 1960). Specifically,
the Negative Binomial distribution is equivalent to the Geometric distribution with parameter p,
that is, (Yi ∼ Geom(p)) when r = 1 (Hilbe, 2011).

There are several ways to represent the Negative Binomial distribution, depending on the pa-
rameterization to be used, one of them can be obtained through the parameterization p = µi/(ϕ+µi)
and ϕ = r used in Nelder & Wedderburn, 1972, and by replacing it in Equation (4) we obtain

Pr(Yi = yi) =
Γ (yi + ϕ)

Γ (ϕ)Γ (yi + 1)

(
µi

ϕ + µi

)yi ( ϕ

ϕ + µi

)ϕ

, yi = 1, 2, . . . , . (5)

Where µi > 0 and ϕ > 0 are distribution parameters NB(µi,ϕ), Γ (·) =
∫∞

0 xν–1e–νdx is the
gamma function, and yi is a realization of the random variable Yi with mean E(Yi) = µi and variance
Var(Yi) = µi + µ2

i /ϕ. Thus, the dispersion index Var(Yi)/E(Yi) > 1, that is, the NB distribution can
be used to model the overdispersion in the data and ϕ–1 corresponds to the dispersion parameter,
for details see (Hinde & Demétrio, 1998; Park & Lord, 2009; Nelder & Wedderburn, 1972; Hilbe,
2011). Specifically, the NB distribution is equivalent to the Poisson distribution when ϕ → ∞
(Cameron & Trivedi, 2013).

In the regression structure of the NB distribution with regression on the mean, the parameters
µi and ϕ are related to the covariate xi and to the parameter τ , through the logarithmic binding
function (Hilbe 2011), that is:

log(µi) = x⊤i β and log(ϕ) = τ, (6)

where β = (β0,β1, ...,βp)⊤ and xi = (1, x1, . . . , xp), are the vectors of parameters and explanatory
variables, both of dimension p + 1. Thus, for a random sample with n independent observations, the
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log-likelihood function of the NB distribution model is given by

ℓ(µ,ϕ; y) =
n∑

i=1

{
log(Γ (yi + ϕ)) – log(Γ (ϕ)) – log(Γ (yi + 1)) + yi log (µi) + ϕ log (ϕ) – (ϕ + yi) log (ϕ + µi)

}
.

(7)

For details on the log-likelihood function, and the various link functions of the Negative Bi-
nomial distribution, see(Paula, 2004, p. 306; Nelder & Wedderburn, 1972; Hilbe, 2011, p. 190;
Cameron & Trivedi, 2013; Ripley et al., 2013).

2.3 COM-Poisson distribution model (COMP)
The COM-Poisson distribution was proposed in the 1960s by Richard W. Conway and William

L. Maxwell in (Conway & Maxwell, 1962) to model service fees, and then forgotten. Four decades
later, COM-Poisson is revived with the paper by Shmueli et. al. in (Shmueli et al., 2005). Since
then, numerous works involving COM-Poisson extensions have been developed (Santana, 2019).
Thus, we say that the random variable Yi has a COM-Poisson distribution and we write Yi ∼
COMP(λi,ν), if it has the following fmp

Pr(Yi = yi) =
λ

yi
i

S(λi,ν)(y!)ν
, yi = 0, 1, 2, ..., (8)

where λi > 0 is a center parameter that is approximately the mean when ν ≈ 1 (Barriga & Louzada,
2014); ν ≥ 0 is the dispersion parameter of the COM-Poisson distribution with under-equi-
overdispersion when (ν > 1, ν = 1 and ν < 1), and S(λi,ν) is the COMP normalization constant
(Shmueli et al., 2005), which is given by

S(λi,ν) =
∞∑
j=0

(
λj

j!

)ν

. (9)

The COM-Poisson distribution has three distributions as particular cases, that is, it is equivalent to
Poisson when ν = 1, the geometric when (λi < 1 and ν = 0) , and the Bernoulli with probability of
success λi/(1 +λi) when ν → ∞, (Boatwright et al., 2006). The COM-Poisson distribution does not
have a closed expression for its moments concerning parameters λ and ν, Guikema & Goffelt (2008).
However, an approximation for its mean E(Yi) and its variance Var(Yi), is presented in Shmueli et al.
(2005), according to Equations10 and 11:

E(Yi) = λi
∂ log S(λi,ν)

∂λi
≈ λ1/ν

i –
ν – 1
2ν

(10)

Var(Yi) = λi
∂E(Yi)
∂λi

≈ 1
ν
λ1/ν

i , (11)

another structure for the COM-Poisson mean and variance is presented in Guikema & Goffelt (2008)
with the parameterization of COM-Poisson for the GLM structure. For details, see (Lord et al., 2008;
Huang, 2017; Ribeiro Junior, 2019).

In the regression structure of the COM-Poisson distribution, with regression on the mean, the
parameters λi and ν are related to the covariate xi and to the parameter ξ, through the logarithmic
binding function Sellers & Shmueli (2010), that is:

log(λi) = x⊤i β, and log(ν) = ξ, (12)
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where β = (β0,β1, ...,βp)⊤ and xi are vectors of parameters and covariates of dimensions p+1. For a
random sample with n independent observations, the log-likelihood function of the COM-Poisson
model is given by

ℓ(λ,ν; y) =
n∑

i=1

{
yi log(λi) – log S(λi,ν) – ν log(yi!)

}
. (13)

For details on the log-likelihood function and the linkage function of the COM-Poisson distribu-
tion, see (Sellers & Shmueli, 2013; Guikema & Goffelt, 2008; Sellers & Shmueli, 2010).

2.4 Generalized Poisson distribution model (GP)
Let Yi be a random variable with Generalized Poisson distribution (GP) in Consul (1989), and

denote Yi ∼ GP(λi,φ), if Yi has the following fmp

Pr(Yi = yi) =
λi(λi + φyi)yi–1e–(λi+φyi)

yi!
, yi = 0, 1, . . . , (14)

where λi > 0 and max(–1 – λi/4) < φ < 1 are the center and dispersion parameters of the GP
distribution, with sub-equi-overdispersion when (φ < 0, φ = 0 and φ > 0), specifically the GP
distribution is equivalent to the Poisson distribution when φ = 0. And yi is a realization of the
random variable Yi with mean E(Yi) = λi/(1 –φ) and variance Var(Yi) = λi/(1 –φ)3. For details, see
Ridout et al. (2001).

In the regression structure of the GP distribution, with regression on the mean, the parameters
λi and φ are related to the covariate xi and the parameter ζ , through the logarithmic binding
function (Consul, 1989), that is:

log(λi) = x⊤i β and log(φ) = ζ, (15)

where β = (β1, ...,βp)⊤ and xi = (1, x1, . . . , xp), are the vectors of parameters and explanatory
variables, both of dimension p + 1. ζ is one more parameter of the model to be estimated. For a
random sample (y1, x1), . . . , (yn, xn), with n independent observations the log-likelihood function
of the GP distribution model is given by

ℓ(λ,φ; y) =
n∑

i=1

{
log(λi) + (yi – 1) log(λi + φyi) – (λi + φyi) – log(yi!)

}
. (16)

For details on the log-likelihood function, and the various link functions of the Generalized Poisson
distribution, see (Yee, 2017; Consul, 1989).

2.5 Estimation
To obtain the estimates of the models’ parameters, we maximized the log-likelihood functions

of the Equations (3; 7; 13 and 16), concerning the parameters of proposed models. Due to the
complexity of the log-likelihood functions of the Equations (7, 13 and 16) estimators are obtained
via numerical methods, such as the Quasi-Newton used in BFGS method, implemented in the
optim function of software R Team et al. (2013). In implementing the codes for the NB, COMP and
GP models, we multiplied the log-likelihood functions by -1, since optim minimizes the objective
function, and as initial estimates, we used the Poisson model estimates for the vector of parameters
˛ and (τ = 1, ξ = 1 and ζ = 1) for the dispersion parameters of the NB, COMP and GP models. To
obtain the observed information matrix, we use the option hessian = TRUE of the optim function.
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A similar alternative to find the parameter estimates of the proposed models without implement-
ing codes is to use the glm function for the Poisson model, and the MASS packages for the Negative
Binomial; COMPoissonReg for COM-Poisson and VGAM for Generalized Poisson. For details, see
(Ripley et al., 2013; Yee, 2017; Sellers et al., 2019).

2.6 Confidence Interval
Let β̂ be the maximum likelihood estimator of the generic vector β of parameters for the re-

gression models, with θ = β; θ = (β,ϕ); θ = (β,ν) and θ = (β,φ) for Poisson models; Negative
Binomial; COM-Poisson and Generalized Poisson. The Asymptotic Confidence Interval (ICa) with
confidence level (1 – α)100% for the parameter vector θ, is given by

ICa1–α(θ) =
[
θ̂ – zα/2

√
[J(θ̂)]–1, θ̂ + zα/2

√
[J(θ̂)]–1

]
, (17)

where [J(θ̂)]–1 is the inverse matrix of the observed information, zα/2 is the α/2th quantile of
the standard normal distribution (Santana et al., 2022). The ICa in Equation 17 is recommended
for large sample sizes, that is, when the distribution of θ̂ approaches the normal distribution. For
small or moderate sample sizes, the ICa may not provide accurate results. The Bootstrap Confidence
Interval (ICb) can solve statistical inference problems related to sample size. There are several types
of bootstrap confidence intervals, however, in this work we restrict them only to the non-parametric
method, for details see (Efron, 1979).

Consider y = {y1 . . . , yn} a random sample of the variable Y with cumulative distribution F. And
let θ = h(F), a vector of unknown parameters of F and θ̂ = s(y), your estimator. Then by randomly
selecting B independent samples with replacement, y∗ = {y∗1 . . . , y∗n} of y, we get {θ̂

∗
}B

b=1 estimates
of θ̂. Consequently, the distribution θ̂ is obtained by the empirical distribution of θ̂

∗
. And then,

the standard error ep(θ̂), of θ̂ can be estimated by the standard deviation of { hatθ∗}B
b=1, (Efron &

Tibshirani, 1994, p. 45; Kehler, 2018, p. 22) this is,

êp(θ̂) =
{

1
B – 1

B∑
b=1

[θ̂
∗
b – (θ̂

∗
1 + · · · + θ̂

∗
B)/B]2

}1/2
. (18)

So, if the B bootstrap samples of {θ̂
∗
}B

b=1 have distribution close to normal the ICb (Liu & Tian, 2015,
p. 206; Alves, 2013, p. 43), with confidence level (1 – α)100% for θ is given by

ICb1–α(θ) = [θ̂ – zα/2êp(θ̂), θ̂ + zα/2êp(θ̂)]. (19)

2.7 Choosing the Best Model
To choose the best model that fits the data, we used the Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC), which are given by AIC = –2ℓ(θ̂; y) + 2k

BIC = –2ℓ(θ̂; y) + 2k log(n).
(20)

where ℓ(θ̂; y) is the maximized log-likelihood function of the model; k is the number of parameters
of the proposed model and n the number of observations in the sample. For details, see (Akaike,
1974; Schwarz, 1978). The best model will be the one that presents the lowest value for the AIC
and BIC criteria (Paula, 2004).



280 Brazilian Journal of Biometrics

3. Application
The variables under study correspond to confirmed cases of tuberculosis (all forms) for the year

2020 and the Human Development Index (HDI) for the 102 municipalities in the state of Alagoas.
Data were collected by the authors in the statistical yearbook of the state of Alagoas for the year
2020 and on the Datasus page available at (BRASIL, 2021; de Saúde do Estado de Alagoas, 2017;
Tabnet 2022). Figure 1 presents the map of the state of Alagoas with notifications of tuberculosis for
its 102 municipalities.

Figure 1. Map of the state of Alagoas with tuberculosis notifications for the year 2020.

In Figure 1, we can observe that the data are scattered and asymmetrical, for example, the class
>50 corresponds to the 584 cases of tuberculosis for the capital Maceió, with an estimated population
of 1,031,597 inhabitants and HDI of 0.721 (IBGE 2022).

3.1 Results and discussion
In order to better in undertand the cases of tuberculosis, we performed a descriptive analysis,

which presented a mean of 10.83; variance 3340.38 and asymmetry coefficient 9.70 which corrob-
orates the visual analysis of Figure 1, and the same can be observed in Figure 2.

It can be seen in the column chart in Figure 2 that the data clearly do not have normality because
they are counting data, and due to the large dispersion in the data and the asymmetry, probably the
Negative Binomial, COM-Poisson and Generalized Poisson will fit the data better than Poisson, as
they have a dispersion parameter.

Thus, we fit the regression models of Poisson distributions; Negative Binomial; COM-Poisson
and Generalized Poisson to explain the relationship between tuberculosis notifications and the HDI.
In Table 1, we present the parameters; their maximum likelihood estimators (MLE); their asymptotic
confidence intervals ICa(95%) and bootstrap ICb(95%) both with 95% confidence, for the confidence
interval ICb(95%) 5,000 replicates were performed bootstrap, in addition to the (AIC) and (BIC)
criteria for four models considered in the study.

We observe in Table 1 that the parameter β1 that corresponds to the regression coefficient was
significant at the level α = 5% for all models, since their respective intervals of confidence ICa(95%)
and ICb(95%), did not include the zero term, that is, the relationship of tuberculosis notifications with
the HDI is significant α = 5%, and was identified by the four models.
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Figure 2. Column chart of tuberculosis notifications in the state of Alagoas for the year 2020.

Likewise, the models of the NP, COMP and GP distributions were also able to capture the
overdispersion caused by the high tuberculosis notifications as shown in Figure 2, since the estimates
of their respective dispersion parameters, presented the values: 1/ϕ̂ = 1/1.016 ̸= 0, ν̂ = 0.046 < 1 and
φ̂ = 0.847 > 0. This overdispersion is also significant at the α = 5% level, since their respective con-
fidence intervals ICa(95%) and ICb(95%), did not include the zero term for ϕ and φ and term one
for ν. The same did not occur for the Poisson model because it does not have a dispersion parameter,
part of the overdispersion went to its mean, corroborating the eigenvalue of β̂1 = 26.490. The GP
distribution presented the value for β̂1 intermediate to that of the NB and COMP distributions, in
hypothesis this occurred because the GP distribution is limited by the NB distribution.

The COMP distribution regression model was the one that showed the lowest value for the
estimates of the AIC and BIC criteria, followed by the NB distribution model. This fact occurred
because the NB and COMP distributions have the geometric distribution as a particular case, which
corroborates the values of the parameters ϕ̂ = 1.016 ≈ 1 for the NB model and ν̂ = 0.046 ≈ 0
and λ̂i < 1 for the COMP model. In hypothesis, the Geometric distribution regression model
would fit the data better because it has a smaller number of parameters than the NB and COMP
models. However, when considering the AIC and BIC criteria, we chose the COMP distribution
regression model to represent the relationship between tuberculosis notifications and the HDI of each
municipality in the state of Alagoas.

In Figure 3, we present the graph of the observed values versus the values predicted by the COM-
Poisson distribution regression model, in order to verify the prediction quality of tuberculosis cases
in the state of Alagoas.

The model managed to predict the data well according to the R2 = 0.98 of the observed val-
ues versus those predicted in Figure 3. The outlier point corresponds to the capital Maceió, whose
prediction by the model was #580 against the #584 notifications registered in that year. Thus, the
COM-Poisson distribution regression model emerges as a great analysis option for health data with
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Table 1. Maximum likelihood estimators (MLE), confidence intervals ICa(95%) and ICb(95%), and the Akaike (AIC) and
Bayesian (BIC) Informativity Criteria for four adjusted models in the study of tuberculosiswith the HDI

Models Parameters EMV ICa(95%) ICb(95%) AIC BIC

β0 -5.423 (-6.802; -4.044) (-5.870; -4.976)
NB β1 15.668 (12.679; 18.657) (14.070; 17.266) 549.280 566.400

ϕ 1.016 (0.656; 1.376) (0.858; 1.174)

β0 -1.145 (-1.424; -0.866) (-1.380; -0.910)
COMP β1 2.260 (1.617; 2.901) (1.778; 2.740) 531.097 538.972

ν 0.046 (0.046; 0.046) (0.045; 0.047)

β0 -10.737 (-11.202; -10.271) (-11.090; -10.384)
Po β1 26.490 (25.667; 27.313) (24.993; 27.987) 1,056.700 1,071.200

β0 -2.440 (-4.438; -0.442) (-2.813; -2.067)
GP β1 6.498 (2.019; 10.977) (5.003; 7.993) 589.705 611.454

φ 0.847 (0.805; 0.889) (0.784; 0.910)

the HDI. An explanation by the model can be given as follows

log(λ̂i) = β̂0 + β̂1 × IDH

= –1.145 + 2.260 × IDH

λ̂i = exp(–1.145 + 2.260 × IDH)

E(Yi) ≈ λ̂1/ν̂
i – ν̂–1

2ν̂

E(Yi) ≈ exp(–1.145 + 2.260 × IDH)1/0.046 + 10.44.

(21)

This means that for each variation in the HDI, the expected number of tuberculosis cases for each
city in the state of Alagoas is given by the Equation (21).
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Figure 3. Predicted versus observed values.

4. Conclusion
In the 102 cities in the state of Alagoas, there is a relationship between tuberculosis notifications

and the HDI human development index, which is overdispersed and significant at the probability
level α = 5%, and can be explained by the COM-Poisson distribution regression model.
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