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1. Introduction 
Despite having a population of over 1.4 billion people, China has not experienced the same 

level of impact from the COVID-19 pandemic as some other countries. According to Our World 

In Data, as of January 20, 2023, China has reported approximately 2 million cases and over 5,200 

deaths (Mathieu et al., 2020). When compared to countries with similar territorial and social 

dynamics, the disparity becomes evident. For instance, China's prevalence rate is 30 times lower 

than that of India (Mathieu et al., 2020). 

This situation has prompted concerns within the international medical community regarding 

the reliability of information provided by Chinese authorities (Power, 2023; Stanway & Lapid, 

2022). In response, the World Health Organization (WHO) has made explicit requests to China 

for detailed information regarding outpatient clinics, hospitalizations, emergency and intensive 

                                                      
© Brazilian Journal of Biometrics. This is an open access article distributed under the terms of the Creative Commons Attribution licence 
(http://creativecommons.org/licenses/by/4.0/)  

Abstract 

The COVID-19 pandemic has generated an unprecedented amount of epidemiological data. Yet, concerns regarding 

the validity and reliability of the information reported by health surveillance systems have emerged worldwide. In this 

paper, we develop a novel approach to evaluating data integrity by combining the Newcomb-Benford Law with outlier 

methods. We demonstrate the advantages of our framework using a case study from China. To ensure more robust 

findings, we employ multiple diagnostic procedures, including three conformity estimates, four goodness-of-fit tests, 

and two distance measures (Cook and Mahalanobis). To promote transparency, we have made all computational scripts 

publicly available. Our findings indicates a significant deviation in the distribution of new deaths from the theoretical 

expectations of Benford's Law. Importantly, these results remain accurate even when considering alternative model 

specifications and conducting various statistical tests. Furthermore, the procedures developed here are easily applicable 

in other areas of knowledge and can be scaled to assess data quality in both the public and private sectors.  

 
Keywords: COVID-19; Newcomb-Benford Law; Data quality; Epidemiological surveillance; China. 

mailto:lucas.silva@academico.uncisal.edu.br
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5013-6278
https://orcid.org/0000-0001-6982-2262


   Brazilian Journal of Biometrics           79 

 

care treatment, as well as COVID-19-related hospital deaths (WHO, 2023). 

In this paper, we develop a novel framework to evaluate data integrity by combining the 

Newcomb-Benford Law with outlier diagnosis methods. We show the advantages of our approach 

using a case study from COVID-19 data in China.  To ensure the accuracy of our findings, we 

employ three methods for measuring conformity (mean absolute deviation, distortion factor, and 

mantissa) and conduct four different tests to validate our results (Pearson chi-square, Kolmogorov-

Smirnov D statistic, Chebyshev distance m statistic, and the Euclidean distance), in addition to 

two distance measures (Mahalanobis and Cook).  

The NBL has found applications in various fields, including Economics (Kaiser, 2019), 

Political Science (Deckert et al., 2011; Mebane, 2011), Health (Balashov et al., 2021; Figueiredo 

Filho et al., 2022; Silva & Figueiredo Filho, 2020) and Natural Sciences (Sambridge & Jackson, 2020) 

(Sambridge et al., 2010). It has been used in forensic accounting (Nigrini, 2012) and fraud detection 

(Durtschi et al., 2004). Scholars have also explored its use in assessing the integrity of campaign 

finance data (Cho & Gaines, 2007) and electoral outcomes (Pericchi & Torres, 2011). There are also 

applications to academic dishonesty (Horton et al., 2020) and international trade (Cerioli et al., 

2018; Lacasa & Fernández-Gracia, 2019). Interestingly, even the citations to articles citing Benford 

Law follow a NBL distribution (Mir, 2014). Hill (1995) developed a rigorous proof of the law and 

Nigrini (2012) provides the most comprehensive review of both theory and applications of Benford 

Law in empirical research.   

Outlier detection has been a historically significant field of study in statistics (Figueiredo Filho 

et al., 2023). Its objective is to identify observations that exhibit substantial deviations from the 

expected theoretical patterns or trends in the data. Referred to as aberrant cases or anomalies, 

outliers can occur due to various factors such as measurement errors, sudden environmental 

changes, data entry mistakes, and even deliberate malicious actions (Hodge & Austin, 2004). To 

the best of our knowledge, there has been no prior use of the joint application of NBL and outlier 

techniques to assess data integrity. This paper advances our understanding of the role of statistical 

tools in assessing the accuracy and reliability of data reported by health surveillance systems. 

The remainder of the paper is structured as follows: the next section describes the materials 

and methods. Then we present the main findings. The fourth section interprets the results, and the 

final section concludes. 

 

2. Materials and Methods 
The Newcomb-Benford Law (NBL), also known as the First-Digit Law, is widely employed 

as a mechanism to identify atypical patterns in data (Figueiredo Filho et al., 2022; Nigrini, 2012). It 

accomplishes this by comparing the distribution of numbers in the data to the expected theoretical 

distribution (Hill, 1995).  More technically, the exact distribution for the NBL for the first digit is 

given by: 

 

𝑃(𝑑) = 𝑙𝑜𝑔10 (1 + 
𝟏

𝐝
) 𝑓𝑜𝑟 𝑑 ∈ {1, … ,9}                            (1) 

 

In accordance with the Newcomb-Benford Law (NBL), specific digits exhibit a higher 

likelihood of appearing as the first digit in a set of numbers (Benford, 1938; Newcomb, 1881). For 

instance, the digit 1 emerges as the most frequent first digit, occurring approximately 30% of the 

time. Conversely, the digit 9 stands as the least common first digit, appearing in less than 5% of 

cases. Table 1 shows the expected frequency of the first, second and third digits. 

 

 
Table 1. Probability of occurrence of the first, second and third digits 
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Source: Nigrini (2012). 

 

We used country level information from the Our World in Data (Mathieu et al., 2020), which is 

updated daily and provides accurate figures on COVID-19 confirmed cases, deaths, testing, and 

vaccinations. We collected time-series data from January 22, 2020 to December 31, 2022.  

Following the standard approach in the scholarly literature (Cho & Gaines, 2007), we compare 

the observed frequency of the first digit in the daily number of cases and deaths in China and the 

expected frequency based on the NBL. Furthermore, we employ three different methods, namely 

mean absolute deviation, distortion factor, and mantissa, to assess the degree of conformity to the 

NBL. Additionally, we apply four statistical tests, including Pearson chi-square, Kolmogorov-

Smirnov D statistic, Chebyshev distance m statistic, and Euclidean distance. The rationale behind 

employing multiple tests is to enhance the reliability of the results. The theoretical foundations of 

these tests are explained in Nigrini (2012). 

We used R Statistical 4.0.5 to perform all of the computational analyses and our significance 

tests were two-sided. We utilized the benford.analysis package developed by Cinelli (2018) and 

the BenfordTests package developed by Joenssen & Muellerleile (2015) to run our NBL model. For 

the purpose of replication, we have made the raw data and computational scripts readily available 

on <https://osf.io/vtfsz/>. 

 
3. Results 

Table 2 summarizes both conformity estimates and goodness of fit tests for COVID-19 cases 

and deaths in China from 2020 to 2022. 

Table 2. NBL goodness of fit and conformity tests for Chinese COVID-19 new cases and deaths (2020-2022) 

chi-square = Pearson chi-square; ks = Kolmogorov-Smirnov D statistic; md = Chebyshev distance; mantissa = Average 

mantissa; mad = Mean absolute deviation; mad conformity = Conformity classification according to mad value; df = 

Distortion factor 

Note: In the Mantissa Arc Test, the distortion factor is a statistical parameter that varies depending on the magnitude of 

the data. In the year 2021, there was a lot of repetition of zero daily deaths. This resulted from the statistical function a 

NaN value return of the df in that year. 

To ensure a strong correspondence between a distribution and the theoretical predictions of 

Digit First digit Second digit Third digit 

0  12 10.2 
1 30.1 11.4 10.1 
2 17.6 10.9 10.1 
3 12.2 10.4 10.1 
4 9.7 10 10 
5 7.9 9.7 10 
6 6.7 9.3 9.9 
7 5.8 9 9.9 
8 5.1 8.8 9.9 
9 4.6 8.5 9.8 

Variable Year N 
Conformity estimates Goodness of fit tests 

mantissa mad mad conformity df chi-square ks md 

Cases 2020 342 0.50 0.03 Nonconformity -10.99 
32.13  

(p < 0.001) 
1.55  

(p < 0.001) 
1.55  

(p < 0.001) 

Cases 2021 365 0.51 0.03 Nonconformity -1.60 
37.28  

(p < 0.001) 
1.35  

(p < 0.01) 
1.35  

(p < 0.001) 

Cases 2022 361 0.48 0.01 
Marginally acceptable  

conformity 
-2.32 

13.25  
(p = 0.1) 

0.70  
(p = 0.36) 

0.58  
(p = 0.4) 

Deaths 2020 127 0.33 0.04 Nonconformity -17.90 
22.34  

(p < 0.001) 
11.74  

(p < 0.001) 
2.31  

(p < 0.001) 

Deaths 2021 109 0.11 0.09 Nonconformity - 
103.97  

(p < 0.001) 
13.40  

(p < 0.001) 
2.37  

(p < 0.001) 

Deaths 2022 110 0.17 0.09 Nonconformity -21.00 
92.58  

(p < 0.001) 
13.35  

(p < 0.001) 
2.89  

(p < 0.001) 
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the NBL, specific characteristics must be met. These include an average mantissa of .5, a variance 

of 1/12, and a skewness close to zero (Shao & Ma, 2010). According to Nigrini (2012), a mean 

absolute deviation (MAD) exceeding .015 suggests a deviation from the NBL and a lack of 

alignment in the first digit test. Another useful measure is the distortion factor, which provides 

insights into potential tampering with the data, whether in an upward or downward direction 

(Nigrini, 2012). 

In the context of goodness-of-fit tests, statisticians often employ the chi-square test to compare 

an observed distribution with a theoretical distribution. In this case, the null hypothesis assumes 

that the data adheres to the NBL. Another commonly used test is the Kolmogorov-Smirnov test 

(K-S), which is based on the cumulative density function and is sensitive to the sample size. It is 

worth noting that the K-S test is particularly useful for assessing the fit between the observed and 

theoretical distributions. Additionally, the Chebyshev distance test, similar to the Euclidean 

distance test, is utilized to evaluate the similarity between two probability distributions. This test, 

as described by Druica et al. (2018), offers another approach to investigate the degree of agreement 

between the distributions under examination. 

In terms of the frequency of new COVID-19 cases, conformity estimates based on mean 

absolute deviation (MAD) and distortion factor (DF) suggest nonconformity for the years 2020 

and 2021, with marginally acceptable conformity observed for 2022. All goodness of fit tests 

indicate that we should reject the null hypothesis, which assumes that the observed distribution 

adheres to the NBL.  

Figure 1 shows the distribution of the first digit of the number of new COVID-19 cases and 

deaths. The observed distribution deviates from the expected distribution based on the NBL. 

Specifically, the data for deaths shows a significant deviation from the NBL. The distortion factor, 

a measure proposed by Nigrini (2012), indicates that both the cases and deaths are underreported. 

 

 
Figure 1. NBL distribution of the first digit for COVID-19 new cases and deaths in China (2020-2022). 

 

In order to strengthen the validity of our findings, we performed several supplementary tests. 

One of these tests involved assessing the distribution of the second significant digit in the number 

of new cases and deaths recorded in China. The outcomes of this analysis are presented in Figure 

2. 
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Figure 2. Second digit distribution in COVID-19 records for new cases and deaths in China (2020-2022). 

 

Both distributions exhibit noteworthy deviations from what is theoretically expected. Hicken 

& Mebane (2015) state that the anticipated mean for the second digit is 4.187. However, in 2020, 

the mean for new COVID-19 cases in China was 4.273. In 2021, the average rose to 4.510, and in 

2002, it dropped to 3.956, indicating substantial variability. Concerning deaths, the observed 

averages were 3.820 in 2020, zero in 2021, and 3.235 in 2022. The direct comparison between 

cases and deaths indicate that the integrity of COVID-19 mortality data is poor. 

The next step involved fitting a linear regression model to estimate the number of deaths using 

the number of new cases and the population size as explanatory variables. Subsequently, we 

examined the residuals in Figure 3. 

 

 
Figure 3. COVID-19 cases and deaths in China (on May 3, 2023). 

 
As expected, we find a positive and strong association between population, number of COVID-

19 cases and deaths. In particular, the correlation between total number of cases and deaths is .91 

(p-value < 0.01) and the relationship between population size and mortality is .7 (p-value < .01).  

Upon conducting an analysis of the residuals, we observed the presence of abnormal cases. To 

further investigate this, we computed the Mahalanobis distance for COVID-19 cases, deaths and 
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population variables across a sample of 194 countries. This multivariate estimate was combined 

with Cook's distance and leverage values, resulting in the creation of a new dataset. Figure 4 

presents the final results of this analysis. 

 

 
Figure 4. Mahalanobis distance, Cook distance and Leverage for COVID-19 data in China. 

 
The results consistently demonstrate that China stands out as an abnormal observation within 

the dataset, regardless of the statistical criteria employed to measure this distinction. With an 

exceptionally high score in Mahalanobis distance, China emerges as a multivariate outlier, 

displaying unusual values in terms of population, COVID-19 cases, and deaths. Furthermore, the 

magnitude of the Cook's distance indicates a stronger influence of individual data points on the 

regression model, suggesting that the inclusion of China would lead to biased inferences. Finally, 

the high leverage further confirms that China is an observation that deviates significantly from the 

rest of the sample, indicating that it is unlikely to be generated by the same process. In summary, 

we have strong reservations regarding the reliability of epidemiological data in China, to say the 

least. 

 

4. Discussion 
Wu et al. (2020) have highlighted several challenges associated with big data in public health, 

including lack of quality, delays in data sharing and concerns regarding privacy protection. In 

particular, the WHO has raised concerns about China's lack of transparency and failure to share 

essential data regarding the origin of COVID-19 (Cohen, 2023). The absence of crucial information 

poses significant challenges to scientific research and hampers the implementation of effective 

measures for pandemic prevention and control (Cohen, 2023). Alvarez et al. (2023) argue that 

during the initial stages of the pandemic, the recording of cases in the system was subject to 

approval from local government officials. Additionally, Mi et al. (2020) have identified that the 

fatality rate of COVID-19 in China may have been underestimated just due to this limited 

inclusion of cases in the early stages. 

Situations of this nature give rise to a series of inquiries concerning the veracity of information 

disseminated by governmental entities to researchers and the general population. Within this 

context, forensic statistical methods are frequently employed, with the NBL being the 

predominant procedure used to identify inconsistencies or irregular patterns within the data (Cho 
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& Gaines, 2007; Figueiredo Filho et al., 2022; Formann, 2010). Investigations into the manipulation 

of COVID-19 data have been undertaken in both advanced nations such as the United States 

(Campolieti, 2021) and the European Union (Kolias, 2022), as well as in developing countries like 

Brazil (Silva & Figueiredo Filho, 2020) and India (Natashekara, 2022). Additional studies have 

demonstrated that autocratic regimes are more prone to data manipulation when compared to more 

democratic societies (Annaka, 2021; Balashov et al., 2021; Neumayer & Plümper, 2022). 

Contrary to all these technical limitations in data quality provision, Idrovo & Manrique-

Hernández (2020) conducted a study that examined the integrity of Chinese data on COVID-19 

using the NBL. They gathered information from situation reports and applied first-digit tests to 

the cumulative cases reported by Chinese provinces, regions, and cities. They found that China's 

epidemiological surveillance system had an acceptable level of quality and suggested that further 

systematic analysis could provide a more comprehensive evaluation of China's healthcare services 

performance. In same view, Ivorra et al. (2020) have employed a new θ-SEIHRD model taking 

into account undetected infections and showed a good agreement between the reported Chinese 

data and the estimations given by their model. 

Despite these findings, Kennedy & Yam (2020) found that Chinese COVID-19 data deviated 

from the NBL, including both the first and second digits. They proposed three key factors to 

explain the outcome: a) China being the epicenter of the outbreak which would result in a backlog 

of reported cases and deaths, b) the lack of reliable tests to detect COVID-19 infection at the 

beginning of the epidemic, and c) strong intervention by the central government. 

 

5. Conclusions 
Our investigation reveals compelling evidence suggesting the compromised integrity of 

Chinese COVID-19 data. Specifically, the reported cases and death counts exhibit substantial 

deviations from the expected patterns predicted by the NBL. These results hold robust even when 

considering alternative conformity estimates, goodness of fit tests and conducting various 

statistical procedures. Furthermore, residual analysis shows that China does not follow the same 

data generating process that explains the remainder of the sample. This study contributes to our 

understanding of the application of forensic tools in evaluating the reliability and validity of 

epidemiological data. 
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