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Abstract
An interesting measure of variability in multivariate populations is the determinant of the covariance
matrix Σp×p, denoted as |Σ|, commonly referred to as generalized variance. This measure succinctly cap-
tures the dispersion of a multivariate population into a single value, while accounting for inter-variable
dependencies. Consequently, it finds applications across various domains concerned with assessing disper-
sion within multivariate populations of interest. In this study, we introduce a likelihood ratio test for the
generalized variance of multivariate normal distributions, accompanied by a theoretical exposition on the
distribution theory of sample generalized variances. We propose both the Likelihood Ratio Test (LRT)
and the Bartlett-Corrected Likelihood Ratio Test (BCLRT) for assessing the hypothesis that the gener-
alized variance equals a parameter η, where η ∈ R. The development of these tests is purely theoretical.
Our recommendation is to employ the BCLRT test primarily in scenarios where p = 2, particularly when
n > 30. As for the LRT test, we suggest its application in cases where p = 2 or p = 3, provided that n > 30,
and for p = 5 when n > 50.
Keywords: Monte Carlo; Standardized generalized variance; Variability measure.

1. Introduction
An interesting measure of variability in a multivariate population is the determinant of the p× p

covariance matrix Σ, denoted as |Σ|, known as generalized variance. As highlighted by Najarzadeh
(2019), this measure finds extensive usage across various domains, such as multivariate control chart
analysis (Bersimis et al., 2007; Djauhari, 2005; Djauhari et al., 2008; Lee & Khoo, 2017; Noor &
Djauhari, 2014; Yeh et al., 2006, 2003), reliability modeling (Tallis & Light, 1968), signal processing
(Bhandary, 1996), clustering (Gupta, 1982), optimal design (Pukelsheim, 2006), and optimal alloca-
tion in stratified sampling Arvanitis & Afonja, 1971. Generalized variance serves as a measure of the
hypervolume occupied by the distribution of random variables in the p-dimensional space. Another
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noteworthy measure is the standardized generalized variances, allowing comparisons among sets of
different dimensions, which is defined by the geometric means of the eigenvalues of Σ, represented
as |Σ|1/p (Sengupta, 1987a,b).

Various procedures for constructing confidence intervals and hypothesis tests were described
by Jafari & Kazemi (2014), who evaluated their performance through Monte Carlo simulations.
Eaton (1967) demonstrated that the sample generalized variance has an monotone likelihood ratio
property, consequently allowing for the derivation of a UMP invariant test. However, there appears
to be a gap in the literature regarding the likelihood ratio test for the generalized variance of a
normal population. Conversely, tests for comparisons and confidence intervals for the product of
several (standardized) generalized variances are proposed by Najarzadeh (2017, 2019). Our focus
is on constructing the likelihood ratio test (LRT) for the null hypothesis H0 : |Σ| = η, assuming
multivariate normality.

Additionally, we provide a detailed step-by-step explanation of the LRT and present the theory
of the distribution of the multivariate normal sample generalized variance developed thus far. Monte
Carlo simulations were conducted to compare the performance of our test with others considered
in this study. Finally, we illustrate the effectiveness of our method using real data.

2. Matherials and Methods
2.1 Normal sample generalized variance distribution

The theorem by Bartlett (1934) pertains to the transformation of Wishart matrices through
the Cholesky decomposition. This result holds significant importance as it constitutes the most
commonly employed method for generating realizations of Wishart random variables, denoted as
W (p × p). Let T be an upper triangular matrix, which represents the Cholesky factor of W,
and consider the transformation W = T⊤T. The subsequent result will be demonstrated directly
utilizing the Wishart density. An alternative proof can be found in Kollo & von Rosen (2005).

Theorem 1 (Bartlett’s theorem). Let W ∼ Wp(ν, I) (ν ≥ p) and W = T⊤T , where T is an upper
triangular matrix p × p with positive diagonal entries, then the elements tij (1 ≤ i ≤ j ≤ p) of T are
independents and tij ∼ N(0,1) (1 ≤ i < j ≤ p) and t2ii ∼ χ2

ν–i+1 (i = 1, 2, · · · , p).
Proof. The density of W, when Σ = I is given by

fW (w; n,I) =
|w|(ν–p–1)/2

2νp/2Γp
(ν

2

) exp

{
–

1
2
tr(w)

}
, (1)

where

Γp
(ν

2

)
=πp(p–1)/4

p∏
i=1
Γ

(
ν – i + 1

2

)
.

We should note that when using the Jacobian transformation method, we essentially have p(p +
1)/2 variables in W (since it is symmetric). Therefore

W =T⊤T

=


T11 0 0 · · · 0
T12 T22 0 · · · 0

...
...

...
. . .

...
T1p T2p T3p · · · Tpp




T11 T12 T13 · · · T1p
0 T22 T23 · · · T2p
...

...
...

. . .
...

0 0 0 · · · Tpp

 .
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Considering the vec operator and ignoring the lower triangular matrix elements of this product,
we obtain

vec
(
T⊤T

)
=



T2
11

T11T12
...

T11T1p

T2
12+T2

22
T12T13+T22T23

...
T12T1p+T22T2p

...
T2

1p+T2
2p+···+T2

pp


.

Taking the first derivative in respect to vec(T⊤), the following p(p + 1)/2 × p(p + 1)/2 lower
triangular Jacobian matrix is obtained. This,

∂ vec
(
T⊤T

)
∂ vec

(
T⊤) =



2t11 0 · · · 0 0 · · · 0
t12 t11 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

t1p 0 · · · t11 0 · · · 0
0 2t12 · · · 0 2t22 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 2tpp


.

This matrix has on its diagonal an element equal to 2t11 and other p – 1 equal to t11, an element
equal to 2t22 and other p – 2 equals t22 and so on. So the Jacobian of transformation is

J =2t11

p–1∏
i=1

t11 × 2t22

p–2∏
i=1

t22 × 2t33

p–3∏
i=1

t33 × · · · × 2tpp = 2p
p∏

i=1
tp–i+1
ii .

Also,

tr(w) = tr(t⊤t) =
p∑

i≤j
t2ij

and

|w| =|t⊤t| = |t|2 =
p∏

i=1
t2ii.

Using the Jacobian transformation method, we obtain
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fT (t;ν) =fW (w; n)|J |

=

( p∏
i=1

t2ii

)(ν–p–1)/2

2νp/2πp(p–1)/4
p∏

i=1
Γ

(
ν – i + 1

2

)×

× exp

–
1
2

p∑
i≤j

t2ij

 2p
p∏

i=1
tp–i+1
ii

=

p∏
i=1

(
tν–p–1
ii tp–i+1

ii

)
2νp/22–pπp(p–1)/4

p∏
i=1
Γ

(
ν – i + 1

2

) p∏
i≤j

exp

{
–

t2ij
2

}

=
1

2νp/22–p2p/2–p/22–p(p–1)/4

p∏
i<j

[
(2π)–1/2e–t2ij/2

]
×

×
p∏

i=1

 1

Γ

(
ν – i + 1

2

) (t2ii
)(ν–i+1–1)/2

e–t2ii/2


=

p∏
i<j

[
(2π)–1/2e–t2ij/2

]
×

×
p∏

i=1

 1

2(ν–i+1)/2Γ

(
ν – i + 1

2

) (t2ii
)(ν–i+1–1)/2

e–t2ii/2

 ,

that correspond to the product of independent chi-square variables T2
ii ’s with ν – i + 1 degrees of

freedom and standard normal variables Tij’s, i.e., N(0, 1). Since the joint probability density of the
T2

ii ’s and Tij’s (i < j) is the product of their marginal densities, they are independently distributed.

The moment generating function of a chi-square variable X with ν degrees of freedom is given
by MX (t) = (1 – 2t)–ν/2 (Mittelhammer, 2013; Mood et al., 1974). Therefore, the rth moment about
the origin can be deduced, as shown in the following theorem.

Theorem 2 (Chi-square moments about the origin). Let X ∼ χ2
ν with ν > 0 degrees of freedom

and moment generating function of MX (t) = (1 – 2t)–ν/2, then the rth moment about the origin from the
distribution of X is

E [Xr] =ν(ν + 2)(ν + 4)(ν + 6) × · · · × (ν + 2r – 2) = 2r Γ
(
ν
2 + r

)
Γ
(
ν
2
) . (2)
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Proof. We can observe that

M(1)
X (t) =

dMX (t)
dt

=
d(1 – 2t)–ν/2

dt
= ν(1 – 2t)–ν/2–1,

evaluating it at t = 0 results in

M(1)
X (0) =ν.

Repeating this procedure, to obtain the second derivative, we obtain

M(2)
X (t) =

d2MX (t)
dt2

=
dν(1 – 2t)–ν/2–1

dt
= ν(ν + 2)(1 – 2t)–ν/2–2,

that simplifies to

M(2)
X (0) =ν(ν + 2).

Similarly, for the third derivative, we have

M(3)
X (t) =

d3MX (t)
dt3

=
dν(ν + 2)(1 – 2t)–ν/2–2

dt
= ν(ν + 2)(ν + 4)(1 – 2t)–ν/2–3,

that gives

M(3)
X (0) =ν(ν + 2)(ν + 4).

Thus, repeating this procedure several times until the rth derivative, we arrive at the final result,
which is given by

M(r)
X (0) =ν(ν + 2)(ν + 4) × · · · × (ν + 2r – 2)

=2r(ν/2)(ν/2 + 1)(ν/2 + 2) × · · · × (ν/2 + r – 1)

= = 2r Γ
(
ν
2 + r

)
Γ
(
ν
2
) = E [Xr] ,

by the gamma function properties.

The generalized variance serves as a single-value summary of the covariance matrix, encompass-
ing p variances and p(p – 1)/2 covariances. It is defined by |Σ| for the population covariance matrix
and |S| for the sample covariance matrix. The determinant of the covariance matrix has a geometric
interpretation, where the vectors of deviations of each observation from the mean form a hyper-
parallelogram in a p-dimensional space. The length of each side is proportional to the variance, and
the angle between each pair of vectors is determined by a quantity proportional to the covariance
(or correlation) between the two variables in the pair. The maximum volume is achieved when the
angles are 900, and the variances of the p variables are equal. Thus, in the sample case with a sample
size of n, we have |S| = V2(n – 1)–p, where V represents the volume of this hyperparallelogram.

The generalized variance plays a significant role in the statistics of many multivariate hypothesis
tests. While obtaining the probability density function of its exact distribution in the normal multi-
variate case is challenging in practice, Bartlett’s theorem provides an effective means of determining
its distribution. The next theorem is presented by Muirhead (1982).
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Theorem 3 (Distribution of |W | from the Wishart distribution). Let W ∼ Wp(ν, Σ) (ν ≥ p), then
the distribution of the random variable |W |/|Σ| is the same of the

∏p
i=1 χ

2
ν–i+1, where χ2

ν–i+1, i = 1, 2, · · · ,
p are independent random chi-square variables with ν – i + 1 degrees of freedom, for i = 1, 2, · · · , p.

Proof. Consider that |W |/|Σ| = |W ||Σ|–1 = |Σ|–1/2|W ||Σ|–1/2 = |Σ–1/2WΣ–1/2|. Since W follows
a Wp(ν,Σ) distribution, by the linear transformation of Wishart random variables, Σ–1/2WΣ–1/2

follows a Wp(ν, Ip) distribution (Johnson & Wichern, 1998). Thus,

Σ–1/2WΣ–1/2 =T⊤T,

where T is an upper triangular matrix. According to Bartlett’s theorem 1, we have |Σ–1/2WΣ–1/2| =∏p
i=1 T2

ii , where T2
ii follows a chi-square distribution with ν– i + 1 degrees of freedom. Additionally,

by the same theorem, the T2
ii variables, for i = 1, 2, . . . , p, are independent random variables. Hence,

|Σ–1/2WΣ–1/2| =
p∏

i=1
T2

ii =
p∏

i=1
χ2
ν–i+1.

as expected.

We understand that the distribution of |W |/|Σ| is the product of independent chi-square vari-
ables, which does not necessarily imply that we know its probability density function. As Muirhead
(1982) points out, determining the probability density function in this case is not a straightforward
task, despite the knowledge that it is the product of independent chi-square variables. This result
holds significant importance, particularly when employing Monte Carlo simulation in inference
processes. Moreover, it is crucial for determining various distributional properties, such as moments
and asymptotic approximations.

Theorem 4 (Moments of |W |). Let W ∼ Wp(ν, Σ) (ν ≥ p), then the rth (r ≥ 1) moment about the
origin from the distribution of |W | is

E [|W |r] =|Σ|r
p∏

i=1

(
2rΓ [((ν – i + 1)/2) + r]
Γ [(ν – i + 1)/2]

)
. (3)

Proof. Considering that |W |/|Σ| follows the distribution of the product of independent chi-square
variables, then

E
[(

|W |
|Σ|

)r]
=E

[( p∏
i=1
χ2
ν–i+1

)r]

=E

[ p∏
i=1

(
χ2
ν–i+1

)r
]

=
p∏

i=1
E
[(
χ2
ν–i+1

)r]
(by the independence)

=
p∏

i=1

2rΓ ((ν – i + 1)/2 + r)
Γ ((ν – i + 1)/2)

, (by theorem 2, expression (2)).
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But E
[
(|W |/|Σ|)r

]
by the expectation linearity is |Σ|–rE [|W |r]. Hence

E [|W |r] =|Σ|r
p∏

i=1

2rΓ ((ν – i + 1)/2 + r)
Γ ((ν – i + 1)/2)

,

as pointed out.

The mean and variance of the determinant of a Wishart matrix can be provided considering the
results of theorem 4.

Corollary 4.1 (Mean and variance of |W |). Let W ∼ Wp(ν, Σ), then the mean and variance of |W |
are, respectively, given by

E [|W |] =|Σ|
p∏

i=1
(ν – i + 1) (4)

and

V (|W |) =|Σ|2
p∏

i=1
(ν – i + 1)

 p∏
k=1

(ν – k + 3) –
p∏

k=1

(ν – k + 1)

 . (5)

Proof. For r = 1, utilizing (3), we have

E [|W |] =|Σ|1
p∏

i=1

21Γ ((ν – i + 1)/2 + 1)
Γ ((ν – i + 1)/2)

=|Σ|
p∏

i=1

2(ν – i + 1)/2Γ ((ν – i + 1)/2)
Γ ((ν – i + 1)/2)

=|Σ|
p∏

i=1
(ν – i + 1).

Similarly, for r = 2, we have

E
[
|W |2

]
=|Σ|2

p∏
i=1

22Γ ((ν – i + 1)/2 + 2)
Γ ((ν – i + 1)/2)

=|Σ|2
p∏

i=1

22[(ν – i + 1)/2 + 1](ν – i + 1)/2Γ ((ν – i + 1)/2)
Γ ((ν – i + 1)/2)

=|Σ|2
p∏

i=1
(ν – i + 3)(ν – i + 1).
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Thus,

V
(

|W |2
)

=E
[
|W |2

]
– E2 [|W |] |

=|Σ|2
p∏

i=1
(ν – i + 3)(ν – i + 1) –

[
|Σ|

p∏
i=1

(ν – i + 1)

]2

=|Σ|2
p∏

i=1
(ν – i + 3)(ν – i + 1) – |Σ|2

p∏
i=1

(ν – i + 1)2

=|Σ|2
p∏

i=1
(ν – i + 1)

 p∏
k=1

(ν – k + 3) –
p∏

k=1

(ν – k + 1)

 ,

as stated.

Considering the sample covariance matrix S from a multivariate normal random sample of size
n, we have S = W/ν, where ν = n – 1, and the distribution of |S| is the same as that of |W |ν–p,
utilizing determinant properties, where W ∼ Wp(ν,Σ). The distribution of S from a sample of the
multivariate normal distribution is Wp(ν,Σν–1), as demonstrated in the following result.

Theorem 5 (Distribution of |S|). Let S ∼ Wp(ν, Σν–1) (ν ≥ p), then |S| ∼ |Σ|ν–p ∏p
i=1 χ

2
ν–i+1, where

χ2
ν–i+1, i = 1, 2, · · · , p are independent random chi-square variables with degrees of freedom of ν – i + 1 to

the ith factor of the product.

Proof. The proof is immediate, as S ∼ Wp(ν,Σν–1). Therefore, by replacing |Σ| with |Σν–1| in
theorem 3, and utilizing the fact that |Σν–1| = |Σ|ν–p, the result follows immediately.

Anderson (2003) demonstrates the exact distribution for two particular cases,. The first case, for
p = 1, is trivial, while the second case, for p = 2, results in the distribution of the product of two
independent chi-square variables, which, according to the author, is also a chi-square distribution.
The following corollary presents these two cases.

Corollary 5.1 (Distribution of |S| for p = 1 and p = 2). Let S ∼ Wp(ν, Σν–1), then the distribution of
|S| for p = 1 is σ2χ2

νν
–1 and for p = 2 is |Σ| (χ2

2(ν–1))
2(4ν2)–1.

Proof. For p = 1, according to theorem 5 we have Σ = σ2, ν–p = ν–1, and
∏1

i=1 χ
2
ν–i+1 = χ2

ν. There-
fore, the result follows immediately, i.e., the distribution is scaled chi-square with ν degrees of
freedom and a scale factor of σ2/ν. The proof for p = 2 is left for the reader to consult the afore-
mentioned author’s publication.

The exact distribution of |S| is very complex to compute in real data, as it involves the distribution
of products of independent chi-square variables. Therefore, it is advisable to employ some approx-
imations for this distribution. An asymptotic normal approximation of this distribution is provided
in Muirhead (1982) and Anderson (2003). The derivation of this approximation utilizes the delta
method. Alternatively, Muirhead (1982) presents a method based on the characteristic function.

Theorem 6 (Asymptotic distribution of |S|). Let S ∼ Wp(ν, Σν–1) (ν ≥ p), then
√

ν
2p

(
|S|
|Σ| – 1

)
has

an asymptotically standard normal distribution, N(0,1).
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Proof. Considering the delta method, let |S|/|Σ| =
∏p

i=1 χ
2
ν–i+1/ν, as shown in theorem 5. Note,

by the properties of a chi-square variable, that E
[
χ2
ν–i+1/ν

]
= 1 – (i – 1)/ν and V

(
χ2
ν–i+1/ν

)
=

2ν–1 – 2(i – 1)ν–2. Let χ2
ν–i+1 denote the sum of squares of ν– i + 1 standard normal variables N(0,1),

for ν ≥ p. By the central limit theorem, the asymptotic distribution of χ2
ν–i+1/ν is approximately

normal with mean 1 and variance 2ν–1, since (i – 1)ν–1 and 2(i – 1)ν–2 approach zero as ν → ∞.
Considering the random vector, whose components are independently distributed as follows:

U =


χ2
ν/ν

χ2
ν–1/ν
· · ·

χ2
ν–p+1/ν

 ,

we notice that U has an asymptotic multivariate normal distribution given by Np(1p, 2ν–1I).
Consider a real-valued function defined as h(U) =

∏p
i=1 Ui =

∏p
i=1 χ

2
ν–i+1/ν = |S|/|Σ|. Then, we

obtain h′(u) = [
∏p

j ̸=i=1 Uj]i (p × 1), for i = 1, 2, · · · , p. Applying the delta method, we get

E
[
h(U)

]
≃h(µU ) = 1

and

V (h(U)) ≃h′⊤(µU )ΣUh′(µU ) = 2ν–11⊤p 1p = 2pν–1.

Considering that Ui is asymptotically normal, the first-order approximation of h(U) in the Tay-
lor series will also be asymptotically normal. Consequently, the asymptotic distribution of |S|/|Σ|
is N1(1, 2pν–1). Additionally, we can deduce that

√
ν|S|/|Σ| has an asymptotic normal distribu-

tion N1(
√
ν, 2p). Therefore, the desired result is immediately obtained using the transformation√

ν
2p (|S|/|Σ| – 1).

The normal approximation outlined in Theorem 5 is attributed to Anderson (2003). It is apparent
that the random variable |W |/|Σ| follows a distribution represented by the product of chi-square
random variables. Thus,

U =
νp|S|
|Σ|

=
|W |
|Σ|

∼
p∏

i=1
χ2
ν–i+1. (6)

Two additional normal approximations of the U distribution are reported in the literature. One
of these necessitates the following result:

ln(χ2
ν) ∼ N

(
ψ(ν/2) + ln(2), ψ′(ν/2)

)
, (7)

where ψ() and ψ′() represent the digamma (the logarithmic derivative of the gamma function) and
trigamma (the first derivative of the digamma function) functions, respectively. Hence, let Y = ln(U)
= p ln(ν) + ln(|S|) – ln(|Σ|), thus we obtain

Y ∼ N

( p∑
i=1
ψ((ν – p + 1)/2) + p ln(2),

p∑
i=1
ψ′((ν – p + 1)/2)

)
. (8)

This normal approximation is attributed to Sarkar (1989) and is recommended for p > 3.
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The second normal approximation was developed by Djauhari (2009), and it is presented as:

|S| ∼ N
(

b1|Σ|, b2|Σ|2
)

, (9)

where

b1 =
1
νp

p∏
i=1

(ν – i + 1) and b2 =
b1
νp

p∏
i=1

(ν – i + 3) – b2
1.

2.2 Inferences on Normal sample generalized variance
Considering the exact and approximate distributions for some functions of the |S| presented

previously, we can consider the hypothesis tests for |Σ| from normal populations. The null and
alternative hypotheses are

H(a)
0 : |Σ| = η against H(a)

1 : |Σ| ̸= η

H(b)
0 : |Σ| ≤ η against H(b)

1 : |Σ| > η

H(c)
0 : |Σ| ≥ η against H(c)

1 : |Σ| < η,

(10)

where η > 0 is a previously specified real value derived from some real problem of interest. For an
exact test, a similar Monte Carlo version to the one proposed by Jafari & Kazemi (2014) was used.
Thus, in the three hypothesis cases (10), we initially computed the value of the test statistic by

Uc =
νp|S|
|Σ0|

=
νp|S|
η

, (11)

that under H0 has distribution of
∏p

i=1 χ
2
ν–i+1, where ν = n – 1.

We considered a computational alternative to avoid overflow issues. Hence, the following Monte
Carlo algorithm was used to obtain p-values for testing the above null hypotheses on Σ:
Algorithm 1: Given p, n, and |s|:

1. Generate ln(U) =
∑p

i=1 ln(χ2
ν–i+1), simulating χ2

ν–i+1 for each i = 1, 2, · · · , p.
2. Calculate V0 = p ln(ν) + ln(|s|) – ln(U) and V = exp(V0).
3. Repeat steps 1 – 2 for a large number os times, i.e., m = 5000 and obtain m values of V , denoting

them by Vj, j = 1, 2, · · · , m.
4. Calculate the pvalue for each case of (10), respectively, by

q =
1
m

m∑
j=1

I[0,η](Vj), p-value = 2min(q, 1 – q) for H(a),
0

q =
1
m

m∑
j=1

I[0,η](Vj), p-value = q for H(b),
0

q =
1
m

m∑
j=1

I[0,η](Vj), p-value = 1 – q for H(c)
0 ,

(12)

where I[0,η](Vj) is the indicator function that é a função indicadora that returns 1 if V ≤ η and
0, otherwise.
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We can also apply the test using any of the three normal approximations shown. We will start
by presenting Anderson’s approach (Anderson, 2003) in full detail. Subsequently, we will present
only essential results for the other two approaches. Thus, in the case of the normal approximation
of Anderson, for testing one of the three cases of the null hypothesis in (10), we initially compute
the test statistic by

Zc =
√
ν

2p

(
|S|
η

– 1
)

, (13)

where ν = n – 1. The corresponding p-value depends on the hypothesis being tested. For H(a)
0 , we

have

p-value =2(1 –Φ(|Zc|)), (14)

where Φ(x) is the cumulative distribution function of the standard normal distribution evaluated at
x. For H(b)

0 and H(c)
0 , we have

p-value =1 –Φ(Zc) and p-value =Φ(Zc), (15)

respectively. If the p-value was less or equal to the nominal significance level α, the null hypothesis
H0 should be rejected.

A similar approach was used for the Sarkar (1989)’s test, with p > 3. Initially, the test statistic,
given by

Zc =
p ln(ν) + ln(|S|) – ln(η) – µY

σY
(16)

should be computed, where µY =
∑p

i=1ψ((ν – p + 1)/2) + p ln(2) and σ2
Y =

∑p
i=1ψ

′((ν – p + 1)/2). The

corresponding p-value depends on the null hypothesis being tested. For H(a)
0 , we have

p-value =2(1 –Φ(|Zc|)) (17)

where Φ(x) is the cumulative distribution function of the standard normal distribution evaluated at
x. For H(b)

0 and H(c)
0 , we have

p-value =1 –Φ(Zc) and p-value =Φ(Zc), (18)

respectively. If the p-value is less or equal to the nominal significance level α, the null hypothesis
H0 should be rejected.

Again for the Djauhari (2009)’s approach, the process is similar to the previous cases. The test
statistic is given by

Zc =
|S| – b1η

η
√

b2
, (19)

where

b1 =
1
νp

p∏
i=1

(ν – i + 1) and b2 =
b1
νp

p∏
i=1

(ν – i + 3) – b2
1.
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For H(a)
0 , the p-value is given by

p-value =2(1 –Φ(|Zc|)). (20)

For H(b)
0 and H(c)

0 , the p-values are

p-value =1 –Φ(Zc) and p-value =Φ(Zc), (21)

respectively.

2.3 Likelihood ratio test on normal generalized variance
The likelihood ratio test for the null hypothesis H0: |Σ| = η, where η > 0, is developed in this

study under multivariate normality. Let X ∼ Np(µ,Σ), and let X1,X2, . . . ,Xn be a random sample
from this distribution. It is known that the unrestricted maximum likelihood estimators of µ and Σ
are well-established and given by X̄. and Σ̂ = n–1∑n

j=1(Xj – X̄.)(Xj – X̄.)⊤, respectively (Muirhead,
1982). Moreover, the unrestricted likelihood function is given by:

LΩ(X;µ,Σ) = (2π)–np/2|Σ|–n/2 exp

{
–

1
2

tr

[
Σ–1
[
W + n (X̄. – µ) (X̄. – µ)⊤

]]}
, (22)

and its maximum is

LΩ(X; µ̂, Σ̂) =(2π)–np/2|Σ̂|–n/2 exp

{
–

np
2

}
. (23)

Under H0, where |Σ| = η, and denoting Σ by Σ0 to differentiate it from the unrestricted case,
the restricted likelihood function is given by:

LΩ0 (X;µ,Σ0,η) = (2π)–np/2η–n/2 exp

{
–

1
2

tr

[
Σ–1

0

[
W + n (X̄. – µ) (X̄. – µ)⊤

]]}
. (24)

The log-likelihood function is given by

gΩ0 (X;µ,Σ0,η) = –
np
2
ln(2π) –

n
2
ln(η) –

1
2

tr

[
Σ–1

0

[
W + n (X̄. – µ) (X̄. – µ)⊤

]]
. (25)

Taking the first derivative of the log-likelihood function (25) concerning µ and equating it to
zero, we will have the µ estimator that maximizes (24), for Σ0 fixed. Therefore, the derivative is

∂gΩ0 (X;µ,Σ0,η)
∂µ

=Σ–1
0 (X̄. – µ) ,

where the solution when equated to 0 results in the maximum likelihood estimator given by

µ̂ =
1
n

n∑
j=1

Xj = X̄.. (26)
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Therefore, the function

LΩ0 (X; µ̂,Σ0,η) =(2π)–np/2η–n/2 exp

{
–

1
2
tr
(
Σ–1

0 W
)}

(27)

is such that LΩ0 (X; µ̂,Σ0,η) ≥ LΩ0 (X;µ,Σ0,η).
The corresponding log-likelihood function is

gΩ0 (X; µ̂,Σ0,η) = –
np
2
ln(2π) –

n
2
ln(η) –

1
2
tr
(
Σ–1

0 W
)

. (28)

We should maximize the function (27) or (28) in respect to the only remaining parameter, which
is Σ0. This is equivalent to minimizing tr

(
Σ–1

0 W
)

subject to the restriction imposed by H0 given
by |Σ0| = η, η > 0. Using Lagrange multipliers, we have the Lagrangian function, denoted by Φ
and given by

Φ(Σ0;η) = tr
(
Σ–1

0 W
)

+ λ (|Σ0| – η) . (29)

The partial derivatives by respect to Σ0 and λ are

∂Φ(Σ0;η)
∂Σ0

= – Σ–1
0 WΣ–1

0 + λ|Σ0|Σ–1
0 and

∂Φ(Σ0;η)
∂λ

=|Σ0| – η,

that when equal to zero, we have from the second part that

|Σ̂0| =η.

Replacing this result in the first part, we get

–Σ̂
–1
0 WΣ̂

–1
0 + λ|Σ̂0|Σ̂

–1
0 =0

λ|Σ̂0|Σ̂0 =W (after some algebra)

ληΣ̂0 =W (replacing ˆ|Σ0| = η). (30)

Taking the determinant on both sides of the last equation, we have

λpηp|Σ̂0| =|W | = np|Σ̂|,

that results in

λ =
p√|W |
η(p+1)/p

(replacing ˆ|Σ0| = η)

=
n p
√

|Σ̂|
η(p+1)/p

.

Replacing this solution of λ in (30), we get

n p
√

|Σ̂|
η(p+1)/p

ηΣ̂0 =nΣ̂ = W,
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resulting in the maximum likelihood estimator of Σ0, given by

Σ̂0 =
p√η

p
√

|Σ̂|
Σ̂ =

p√η
p√|W |

W. (31)

Therefore, the maximum of the restricted likelihood function is

LΩ0 (X; µ̂, Σ̂0,η) =(2π)–np/2η–n/2 exp

{
–

p p√|W |
2 p√η

}

=(2π)–np/2η–n/2 exp

{
–

np p
√

|Σ̂|
2 p√η

}
. (32)

The likelihood ratio test statistic is given by

Λ =
LΩ0 (X; µ̂, Σ̂0,η)

LΩ(X; µ̂, Σ̂)
=
(
η

|Σ̂|

)–n/2
exp

–
np
2

 p

√
|Σ̂|
η

– 1

 . (33)

In the unrestricted model, we have a dimension given by p + p(p + 1)/2 and in the constrained
model we have a dimension given by p + p(p + 1)/2 – 1. Therefore, under H0: |Σ| = η, we have, using
the general theory of likelihood ratio tests, that –2 ln(Λ), given by

χ2
c =n

[
ln(η) – ln(|Σ̂|)

]
+ np

 p

√
|Σ̂|
η

– 1

 ,

has asymptotic chi-square distribution with ν = 1 degree of freedom.

Example 1. Use the example data where six hematological variables were measured at n = 103 individuals
Jafari & Kazemi, 2014; Royston, 1983 and apply the test for the null hypothesis H0: |Σ| = 6.0 against H1:
|Σ| ̸= 6.0 considering a confidence coefficient of 95%. The sample estimate was |s| = 6.2453.

The unrestricted maximum likelihood estimate of |Σ| is obtained by

|Σ̂| =
(n – 1)p

np |s| = 5.890213.

Thus, the test statistic is

χ2
c =n

[
ln(η) – ln(|Σ̂|)

]
+ np

 p

√
|Σ̂|
η

– 1


=103

[
ln(6) – ln(5.890213)

]
+ 103 × 6 ×

[
6

√
5.890213

6
– 1

]
= 0.00292,

whose p-value is 0.9569, which leads to non-rejection of H0 at the 5% significance nominal level.
The tests outlined in Section 2.2 provide the same conclusions and showcase the following results:

• Monte Carlo exact test: p-value = 0.474.
• Anderson Test: Zc = 0.11919 and p-value = 0.9051.
• Sarkar Test: Zc = 0.7172 and p-value = 0.47324.
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• Djauhari Test: Zc = 0.5869 and p-value = 0.55724.

By the general theory of LRTs, this testing procedure is not appropriate for small sample sizes.
Najarzadeh (2017) points out the standard approach to this problem, which consists of modifying
the LRT statistic using Bartlett’s correction. In this approach, to adjust the LRT, we use statistics
–2ϕ ln(Λ), where ϕ = n–1

E[–2 ln(Λ)] is Bartlett correction factor. Using the 4th order Taylor polyno-

mial approximation on the functions |S|1/p and ln (|S|) centered about the point E [|S|], we find the
following results

E
[
–2 ln(Λ)

]
= E

n ln(η) – n ln(|Σ̂|) + np

(
|Σ̂|
η

)1/p

– np


= n ln(η) – nE

[
ln(|Σ̂|)

]
+

np
η1/pE

[
|Σ̂|

1/p
]

– np

= n ln(η) – np +
np
η1/pE

[
|Σ̂|

1/p
]

– nE
[
ln(|Σ̂|)

]
= n ln(η) – np +

np
η1/pE

[(
(n – 1)p

np |S|
)1/p]

– nE
[
ln

(
(n – 1)p

np |S|
)]

= n ln(η) – np +
np
η1/p

(n – 1)
n

E
[
|S|1/p

]
– np ln

(
n – 1

n

)
– nE [ln (|S|)] ,

where

E
[
|S|1/p

]
≃ (E [|S|])

1
p +

1
2p

(
1
p

– 1
)
E [|S|]

1
p –2 V (|S|) +

+
1
6p

(
1
p

– 1
)(

1
p

– 2
)
E [|S|]

1
p –3 E

[
(|S| – E|S|)3

]
+

1
24p

(
1
p

– 1
)(

1
p

– 2
)(

1
p

– 3
)
E [|S|]

1
p –4 E

[
(|S| – E|S|)4

]
and

E [ln (|S|)] ≃ ln (E [|S|]) –
V (|S|)

2 (E [|S|])2
+

2
6 (E [|S|])3

E
[
(|S| – E [|S|])3

]
–

–
6

24 (E [|S|])4
E
[
(|S| – E [|S|])4

]

Here, we can use the fact that E [|S|] =
E [|W |]
νp and the theorem 4 to calculate E [|W |r], r ≥ 1.

Furthermore, all the central moments needed to find Taylor’s approximation were expanded to
non-central moments in which it was possible to apply theorem 4 directly. Thus, we can find

Bartlett’s correctionϕ =
n – 1

E
[
–2 ln(Λ)

] . Therefore, we reject the null hypothesis of H0 at the nominal

significance level α, if the value of the modified Bartlett correction statistic –2ϕ ln(Λ), is greater than
the upper-tail α critical value of the chi-square distribution with 1 degrees of freedom.
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3. Results and Discussion
3.1 Monte Carlo performance evaluation

Monte Carlo simulations were used to compare the actual sizes and powers of the following tests:
i) Monte Carlo exact test (MCET) using algorithm 1, with m = 2000 replications, ii) Anderson test
(AT), iii) Sarkar test (ST), iv) Djauhari test (DT), v) the proposed likelihood ratio test (LRT), and vi)
Bartlett corrected likelihood ratio test (BCLRT). The two-sided hypothesis

H(a)
0 : |Σ| = η against H(a)

1 : |Σ| ̸= η

were considered values of η, as 0.2 and 1.0, sample sizes n (15, 30, 50) and dimensions p (2, 3, 5, 10).
Also, they were considered in 10000 Monte Carlo replications, in the same cases of Jafari & Kazemi
(2014). Samples of size n and dimension p were generated from the multivariate normal distribution
with mean vector 0 and covariance matrix Σ. The six tests were applied in each case at the nominal
significance level of α (0.01, 0.05 0.10). In the two cases concerning η (0.2 and 1), the samples were
generated from multivariate normal populations with actual |Σ| ranging from 0.01 to 5.00 with a
step size of 0.05. The empirical test powers and sizes were computed in each configuration for each
set of 10000 simulations.

The evaluation of the tests will be performed graphically, more precisely through the empirical
graph of the power function for each evaluated test. Three figures will be presented, each containing
4 graphs. In the first figure, the sample for the test is n = 15, with the number of p variables chosen
being 2, 3, 5 and 10. The level of significance was set at 5%. N = 10,000 normal p-varied samples
were generated for each p described and for each covariance matrix Σ such that their |Σ| values form
a sequence between the numbers 0.01 and 5.00 in increments of 0.05. All analysis was built using R
software (R CORE TEAM, 2019).

Figure 1. Performance evaluation of hypothesis tests at the 5% significance level for η = 0.2, n = 15 and p = 2, 3, 5 and 10.

Under H0, |Σ| = 0.2 was considered, so the type I error rate will be estimated when the sample of
the normal p-varied is generated from a normal p-varied with covariance matrix, whose determinant
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is equal to 0.2. In Figure 1, we show the performance of the tests when the sample is of size 15 and
η = 0.2.

It is evident from Figure 1 that when p = 2, all tests effectively control the type I error rate.
Additionally, the power functions of all tests exhibit similar behavior. Concerning power, the AT
and DT tests demonstrate superior performance compared to others, whereas the proposed LRT and
BCLRT tests generally exhibit lower power across various scenarios.

In the case of p other than 2, the BCLRT test significantly deviated from controlling the type I
error rate. Consequently, while considering the test’s power, it should not be prioritized. Notably,
the LRT test for p = 3 and p = 5 variables can be deemed liberal, as its estimated type I error
rate surpasses the 5% significance level. However, despite its liberal nature, the LRT test generally
exhibits lower power compared to alternative tests.

In scenarios where p = 10, the LRT test failed to control the type I error rate, whereas the AT and
BCLRT tests consistently maintained it close to zero across all situations. Despite not displaying high
power, the DT, MCET, and ST tests effectively controlled the type I error rate, with ST exhibiting
slightly lower power compared to other tests.

Figure 2 illustrates the test performance for a sample size of 30 and η = 0.2. When p = 2 and
p = 3, all tests successfully controlled the type I error rate, and their power functions exhibited
similar behavior. Notably, the DT and MCET tests demonstrated superior power compared to
others, while the proposed LRT and BCLRT tests generally exhibited lower power across various
scenarios. However, for other values of p, the BCLRT test notably failed to control the type I error
rate, and the LRT test for p = 3 and p = 5 variables can be considered liberal due to its estimated type
I error rate exceeding the 5% significance level.

Figure 2. Performance evaluation of hypothesis tests at the 5% significance level for η = 0.2, n = 30 and p = 2, 3, 5 and 10.

For p = 10, the LRT test failed to control the type I error rate, while the AT and BCLRT tests
consistently maintained it close to zero across all scenarios. Despite not exhibiting high power, the
DT, MCET, and ST tests effectively controlled the type I error rate, with ST displaying slightly
lower power compared to the other tests. Figure 3 depicts the performance of the tests for a sample
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size of 50 and η = 0.2.

Figure 3. Performance evaluation of hypothesis tests at the 5% significance level for η = 0.2, n = 50 and p = 2, 3, 5 and 10.

For p = 2, 3, and 5, all tests effectively controlled the type I error rate, and their power functions
exhibited similar behavior. Notably, the DT and MCET tests outperformed others in terms of
power, while the proposed LRT and BCLRT tests generally exhibited lower power across most
scenarios. However, for p = 10, both the LRT and BCLRT tests failed to control the type I error
rate. In terms of power, the DT, ST, and MCET tests yielded the most favorable results.

Under the null hypothesis H0, where |Σ| = 1, the type I error rate was estimated by generating
samples from a multivariate normal distribution with a covariance matrix determinant equal to 1.

Figure 4 illustrates the test performance for a sample size of 15 and η = 1. For p = 2, both the
LRT and BCLRT tests may be deemed liberal, while the ST and MCET tests effectively controlled
the type I error rate. When p = 3, the BCLRT test failed to control the type I error rate, and the
LRT test exhibited liberal behavior, with the ST and MCET tests achieving the best performance.
Regarding p = 5, the AT, LRT, and BCLRT tests performed poorly. Among the tests considered for
p = 10, only the ST and MCET tests managed to control the type I error rate, although their power
was not particularly high.
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Figure 4. Performance evaluation of hypothesis tests at the 5% significance level for η = 1, n = 15 and p = 2, 3, 5 and 10.

Figure 5 illustrates the performance of the tests for a sample size of 30 and η = 1. For p equal to
2 and 3, the ST and MCET tests effectively controlled the type I error rate, while the AT, DT, and
BCLRT tests were conservative, and the LRT test exhibited liberal behavior. Among these, the AT,
DT, and MCET tests yielded the best results in terms of power. In the case of p = 5, the DT test
displayed higher power, and the ST and MCET tests successfully controlled the type I error rate.
However, for p = 10, the AT, LRT, and BCLRT tests performed worse than the others.
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Figure 5. Performance evaluation of hypothesis tests at the 5% significance level for η = 1, n = 30 and p = 2, 3, 5 and 10.

Figure 6 depicts the performance of the tests for a sample size of 50 and η = 1. For p equal to 2,
3, and 5, the ST and MCET tests effectively controlled the type I error rate, while the AT, DT, and
BCLRT tests exhibited conservative behavior, and the LRT test was liberal. In the case of p = 10,
the ST and MCET tests outperformed others.

Figure 6. Performance evaluation of hypothesis tests at the 5% significance level for η = 1, n = 50 and p = 2, 3, 5 and 10.
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The remaining results, along with details on test implementation and evaluation, can be found
in the supplementary materials.

4. Conclusions
We proposed the LRT and BCLRT tests to examine the hypothesis that the generalized variance

equals a parameter η, where η ∈ R. The development of these tests was purely theoretical.
However, as the number of variables p increases, both the LRT and BCLRT tests fail to control

the type I error rate adequately and exhibit low power. They also perform inferiorly compared
to existing tests in the literature, particularly the ST and MCET tests. Nevertheless, the LRT test
effectively controls the type I error rate for p = 2 and p = 3, and demonstrates good power per-
formance even with small sample sizes. It also maintains type I error rate control for p = 5 when
n ≥ 50. On the other hand, the BCLRT test performs well only for p = 2. Both tests show improved
performance with increasing sample size.

Therefore, we recommend using the BCLRT test primarily for scenarios where p = 2, especially
when n > 30. As for the LRT test, we suggest its application in situations where p = 2 and p = 3 for
n > 30, and p = 5 when n > 50.
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Complementary material

Script used in R

# Exac t t e s t f o r t h e no rma l g e n e r a l i z e d v a r i a n c e − MCET
# H_ 0 : | S i g | = De l t a _0 and c o n f i d e n c e i n t e r v a l
exactGV . Tes t <− function ( De l t a _ 0 , n , p , detS , a l pha = 0 . 0 5 ,

a l t e r n a t i v e = " two . s i d e d " , m = 5000)
{
j <− 1 : p
nu <− n − j
n u l l D i s t <− function ( n , p , nu )
{
lnU <− sum ( log ( rchi sq ( p , nu ) ) )
V <− p * log ( n − 1) − lnU + log ( de tS )
return ( exp (V) )
}
V <− matrix ( n , m, 1 )
V <− apply (V, 1 , n u l l D i s t , p , nu )
# h i s t (V)
p . v a l ue <− length (V[V <= Del t a _ 0 ] ) / m
i f ( a l t e r n a t i v e == " two . s i d e d " ) {
p . v a l ue <− 2 * min ( p . va lue , 1 − p . v a l ue )
LL <− quanti le (V, a l pha / 2)
UL <− quanti le (V, 1 − a l pha / 2)
} e l s e
i f ( a l t e r n a t i v e == " l e s s " ) {
p . v a l ue <− 1 − p . v a lu e
LL <− 0
UL <− quanti le (V, 1 − a l pha )
} e l s e
i f ( a l t e r n a t i v e == " g r e a t e r " ) {
LL <− quanti le (V, a l pha )
UL <− I n f
}
return ( l i s t ( p . v a l u e = p . va lue , LL = LL , UL = UL) )
}

# AT
# Ande r s on a p p r o x i m a t i o n t e s t f o r t h e no rma l g e n e r a l i z e d v a r i a n c e
# H_ 0 : | S i g | = De l t a _0 and a p p r o x i m a t e d c o n f i d e n c e i n t e r v a l
andersonGV . Tes t <− function ( De l t a _ 0 , n , p , detS , a l pha = 0 . 0 5 ,
a l t e r n a t i v e = " two . s i d e d " )
{
Zc <− sq r t ( ( n − 1) / (2 * p ) ) * ( de tS / Del t a _0 − 1)
i f ( a l t e r n a t i v e == " two . s i d e d " ) p . v a l ue <− 2 * (1 − pnorm ( abs ( Zc ) ) )
e l s e
p . v a l ue <− pnorm ( Zc , lower . t a i l = ( a l t e r n a t i v e == " l e s s " ) )
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aux1 <− 2 * p * qnorm (1 − a l pha / 2)^2 + 1
aux2 <− 2 * p * qnorm (1 − a l pha )^2 + 1
i f ( a l t e r n a t i v e == " two . s i d e d " ) {
z <− qnorm (1 − a l pha / 2)
LL <− ( ( n − 1 ) ^ 0 . 5 * detS ) / ( ( n − 1 ) ^ 0 . 5 + sq r t (2 * p ) * z )
i f ( n > aux1 )
UL <− ( ( n − 1 ) ^ 0 . 5 * detS ) / ( ( n − 1 ) ^ 0 . 5 − sq r t (2 * p ) * z ) e l s e
UL <− I n f
} e l s e
i f ( a l t e r n a t i v e == " l e s s " ) {
z <− qnorm (1 − a l pha )
LL <− 0
i f ( n > aux2 )
UL <− ( n − 1 ) ^ 0 . 5 * detS / ( ( n − 1 ) ^ 0 . 5 − sq r t (2 * p ) * z ) e l s e
UL <− I n f
} e l s e
i f ( a l t e r n a t i v e == " g r e a t e r " ) {
z <− qnorm (1 − a l pha )
LL <− ( n − 1 ) ^ 0 . 5 * detS / ( ( n − 1 ) ^ 0 . 5 + sq r t (2 * p ) * z )
UL <− I n f
}
return ( l i s t ( Zc = Zc , p . v a l ue = p . va lue , LL = LL , UL = UL) )
}

# S a r k a r a p p r o x i m a t i o n t e s t f o r t h e no rma l g e n e r a l i z e d v a r i a n c e − ST
# H_ 0 : | S i g | = De l t a _0 and a p p r o x i m a t e d c o n f i d e n c e i n t e r v a l
sarkarGV . Tes t <− function ( De l t a _ 0 , n , p , detS , a l pha = 0 . 0 5 ,
a l t e r n a t i v e = " two . s i d e d " )
{
j <− 1 : p
muy <− sum (digamma ( ( n − j ) / 2 ) ) + p * log ( 2 )
s i g y <− sq r t ( sum ( trigamma ( ( n − j ) / 2 ) ) )
Zc <− ( p * log ( n − 1) + log ( de tS ) − log ( De l t a _ 0) − muy) / s i g y
i f ( a l t e r n a t i v e == " two . s i d e d " ) p . v a l ue <− 2 * (1 − pnorm ( abs ( Zc ) ) )
e l s e
p . v a l ue <− pnorm ( Zc , lower . t a i l = ( a l t e r n a t i v e == " l e s s " ) )
i f ( a l t e r n a t i v e == " two . s i d e d " ) {
z <− qnorm (1 − a l pha / 2)
LL <− exp ( p * log ( n − 1) + log ( de tS ) − muy − s i g y * z )
UL <− exp ( p * log ( n − 1) + log ( de tS ) − muy + s i g y * z )
} e l s e
i f ( a l t e r n a t i v e == " l e s s " ) {
z <− qnorm (1 − a l pha )
LL <− 0
UL <− exp ( p * log ( n − 1) + log ( de tS ) − muy + s i g y * z )
} e l s e
i f ( a l t e r n a t i v e == " g r e a t e r " ) {
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z <− qnorm (1 − a l pha )
LL <− exp ( p * log ( n − 1) + log ( de tS ) − muy − s i g y * z )
UL <− I n f
}
return ( l i s t ( Zc = Zc , p . v a l ue = p . va lue , LL = LL , UL = UL) )
}

# DT
# Djauha r i a p p r o x i m a t i o n t e s t f o r t h e no rma l g e n e r a l i z e d v a r i a n c e
# H_ 0 : | S i g | = De l t a _0 and a p p r o x i m a t e d c o n f i d e n c e i n t e r v a l
djauhariGV . Tes t <− function ( De l t a _ 0 , n , p , detS , a l pha = 0 . 0 5 ,
a l t e r n a t i v e = " two . s i d e d " )
{
j <− 1 : p
b1 <− exp ( sum ( log ( n − j ) ) − p * log ( n − 1 ) )
rb2 <− sq r t ( exp ( sum ( log ( n − j + 2 ) ) −

p * log ( n − 1) + log ( b1 ) ) − b1 ^2)
Zc <− ( de tS / Del t a _0 − b1 ) / rb2
aux1 <− qnorm (1 − a l pha / 2)^2 * rb2 ^2
aux2 <− qnorm (1 − a l pha )^2 * rb2 ^2
i f ( a l t e r n a t i v e == " two . s i d e d " ) p . v a l ue <− 2 * (1 − pnorm ( abs ( Zc ) ) )
e l s e

p . v a l ue <− pnorm ( Zc , lower . t a i l = ( a l t e r n a t i v e == " l e s s " ) )
i f ( a l t e r n a t i v e == " two . s i d e d " ) {
z <− qnorm (1 − a l pha / 2)
LL <− detS / ( b1 + rb2 * z )
i f ( b1^2 > aux1 ) UL <− detS / ( b1 − rb2 * z ) e l s e
UL <− I n f
} e l s e
i f ( a l t e r n a t i v e == " l e s s " ) {
z <− qnorm (1 − a l pha )
LL <− 0
i f ( b1^2 > aux2 ) UL <− detS / ( b1 − rb2 * z ) e l s e
UL <− I n f
} e l s e
i f ( a l t e r n a t i v e == " g r e a t e r " ) {
z <− qnorm (1 − a l pha )
LL <− detS / ( b1 + rb2 * z )
UL <− I n f
}
return ( l i s t ( Zc = Zc , p . v a l ue = p . va lue , LL = LL , UL = UL) )
}

# LRT f o r t h e no rma l g e n e r a l i z e d v a r i a n c e − LRT
# H_ 0 : | S i g | = De l t a _0 and a p p r o x i m a t e d c o n f i d e n c e i n t e r v a l
LRT. Tes t <− function ( De l t a _ 0 , n , p , detS , a l t e r n a t i v e = " two . s i d e d " )
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{
detS igHat <− detS * ( ( n − 1) / n )^ p
nu <− n − 1
ch i2c <− n * ( log ( De l t a _ 0) − log ( de tS igHat ) ) + n * p *
( ( de tS igHat / Del t a _ 0 ) ^ ( 1 / p ) − 1)
i f ( a l t e r n a t i v e == " two . s i d e d " ) p . v a l ue <− 1 − pchisq ( chi2c , 1 ) e l s e
p . v a l ue <− pchisq ( chi2c , 1 , lower . t a i l = FALSE )
return ( l i s t ( ch i2c = chi2c , p . v a l ue = p . v a l ue ) )
}

BCLRT4. Tes t <− function ( x , De l t a _ 0 , a l t e r n a t i v e = " two . s i d e d " ) − BCLRT
{
n <− nrow ( x )
p <− ncol ( x )
de tS <− de t ( var ( x ) )
de tS igHat <− detS * ( ( n − 1) / n )^ p
nu <− n − 1
EdetW <− detS igHat * prod ( nu : ( nu−p + 1 ) )
EdetW2 <− detS igHat ^2 * prod ( nu : ( nu−p + 1 ) ) * prod ( ( nu + 2 ) : ( nu−p + 3 ) )
EdetW3 <− detS igHat ^3 * prod (2^3 *
gamma ( ( nu : ( nu−p + 1 ) ) / 2 + 3) / gamma ( ( nu : ( nu−p + 1 ) ) / 2 ) )
EdetW4 <− detS igHat ^4 * prod (2^4 *
gamma ( ( nu : ( nu−p + 1 ) ) / 2 + 4) / gamma ( ( nu : ( nu−p + 1 ) ) / 2 ) )

mc2 <− EdetW2 − EdetW^2
mc3 <− 1 / ( nu ^(3 * p ) ) * ( EdetW3 − EdetW^3 − 3 *EdetW * mc2 )
mc4 <− 1 / ( nu ^(4 * p ) ) * ( EdetW4 − 5 *EdetW^4 − 4 * EdetW * EdetW3 +

6 * EdetW^2 * EdetW2 )
EdetS <− EdetW / ( nu^p )
ElogDetS <− −p * log ( nu ) + log ( EdetW ) −0.5 * ( EdetW2 /EdetW^2 − 1) +
1 / 3 * mc3 / EdetS ^3 − 0 .25 *mc4 / EdetS ^4
EDetS1p <− 1 /nu * ( EdetW^(1 / p ) + 0 .5 * prod (1 / p − 0 : 1 ) *

EdetW^(1 / p − 2) * mc2 ) +
1 / (6 *nu ^(1 − 3 * p ) ) * ( prod (1 / p − 0 : 2 ) * EdetW^(1 / p − 3) * mc3 ) +
1 / (24 *nu ^(1 − 4 * p ) ) * ( prod (1 / p − 0 : 3 ) * EdetW^(1 / p − 4) * mc4 )
Eminus2logLamb <− n * log ( De l t a _ 0) − n * p − n * p * log ( ( n−1) /n ) −
n * ElogDetS + n * p / Del t a _ 0^(1 / p ) * ( n − 1) / n * EDetS1p
phi <− nu / Eminus2logLamb
chi2c <− phi * ( n * ( log ( De l t a _ 0) − log ( de tS igHat ) ) + n * p *
( ( de tS igHat / Del t a _ 0 ) ^ ( 1 / p ) − 1 ) )
i f ( a l t e r n a t i v e == " two . s i d e d " ) p . v a l ue <− 1 − pchisq ( chi2c , 1 ) e l s e
p . v a l ue <− pchisq ( chi2c , 1 , lower . t a i l = FALSE )
return ( l i s t ( ch i2c = chi2c , p . v a l ue = p . v a l ue ) )
}
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# Monte Ca r l o S i m u l a t i o n F u n c t i o n t o e v a l u a t e t h e
# t e s t p e r f o r m a n c e . Dep end en c e : MASS
l i b r a ry (MASS)
evalMC <− function (N = 10000 , n = 15 , p = 2 , e t a = 0 . 2 , m = 10000)
{
Rej <− matrix ( 0 , 101 , 18)
colnames ( Rej ) <− c ( "MCET10" , "AT10" , "ST10" , "DT10" , "LRT10" , "BCLRT10" ,
"MCET5" , "AT5" , "ST5" , "DT5" , "LRT5" , "BCLRT5" ,
"MCET1" , "AT1" , "ST1" , "DT1" , "LRT1" , "BCLRT1" )

rDetSig <− seq ( 0 . 0 1 , 5 . 0 0 , by = 0 . 0 5 )
rDetSig <− c ( rDetSig [ rDetSig < e t a ] , e t a , rDetSig [ rDetSig > e t a ] )
Rej <− cbind ( rDetSig , Rej )
mu <− rep ( c ( 0 ) , t ime s = p )
a l t e r n a t i v e <− " two . s i d e d "
s t <− 1 .0 / N
c t <− 1
a l pha <− 0 .05
for (D in rDetSig )
{
# p r i n t (D)
Sigma <− D^(1 / p ) * diag ( p )
# p r i n t ( d e t ( Sigma ) )
r e j 1 0 <− rep ( 0 . 0 , t ime s = 6 )
r e j 0 5 <− rep ( 0 . 0 , t ime s = 6 )
r e j 0 1 <− rep ( 0 . 0 , t ime s = 6 )
for ( i in 1 :N)
{
X <− mvrnorm ( n , mu, Sigma )
detS <− de t ( cov (X) )
MCET <− exactGV . Tes t ( e t a , n , p , detS , a lpha , a l t e r n a t i v e , m)
AT <− andersonGV . Tes t ( e t a , n , p , detS , a lpha , a l t e r n a t i v e )
ST <− sarkarGV . Tes t ( e t a , n , p , detS , a lpha , a l t e r n a t i v e )
DT <− djauhariGV . Tes t ( e t a , n , p , detS , a lpha , a l t e r n a t i v e )
LRT <− LRT. Tes t ( e t a , n , p , detS , a l t e r n a t i v e )
BCLRT <− BCLRT4. Tes t (X, e ta , a l t e r n a t i v e = " two . s i d e d " )
i f (MCET$p . v a l ue <= 0 . 1 0 ) r e j 1 0 [ 1 ] <− r e j 1 0 [ 1 ] + s t
i f (MCET$p . v a l ue <= 0 . 0 5 ) r e j 0 5 [ 1 ] <− r e j 0 5 [ 1 ] + s t
i f (MCET$p . v a l ue <= 0 . 0 1 ) r e j 0 1 [ 1 ] <− r e j 0 1 [ 1 ] + s t
i f (AT$p . v a l ue <= 0 . 1 0 ) r e j 1 0 [ 2 ] <− r e j 1 0 [ 2 ] + s t
i f (AT$p . v a l ue <= 0 . 0 5 ) r e j 0 5 [ 2 ] <− r e j 0 5 [ 2 ] + s t
i f (AT$p . v a l ue <= 0 . 0 1 ) r e j 0 1 [ 2 ] <− r e j 0 1 [ 2 ] + s t
i f (ST$p . v a l ue <= 0 . 1 0 ) r e j 1 0 [ 3 ] <− r e j 1 0 [ 3 ] + s t
i f (ST$p . v a l ue <= 0 . 0 5 ) r e j 0 5 [ 3 ] <− r e j 0 5 [ 3 ] + s t
i f (ST$p . v a l ue <= 0 . 0 1 ) r e j 0 1 [ 3 ] <− r e j 0 1 [ 3 ] + s t
i f (DT$p . v a l ue <= 0 . 1 0 ) r e j 1 0 [ 4 ] <− r e j 1 0 [ 4 ] + s t
i f (DT$p . v a l ue <= 0 . 0 5 ) r e j 0 5 [ 4 ] <− r e j 0 5 [ 4 ] + s t
i f (DT$p . v a l ue <= 0 . 0 1 ) r e j 0 1 [ 4 ] <− r e j 0 1 [ 4 ] + s t
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i f (LRT$p . v a lu e <= 0 . 1 0 ) r e j 1 0 [ 5 ] <− r e j 1 0 [ 5 ] + s t
i f (LRT$p . v a lu e <= 0 . 0 5 ) r e j 0 5 [ 5 ] <− r e j 0 5 [ 5 ] + s t
i f (LRT$p . v a lu e <= 0 . 0 1 ) r e j 0 1 [ 5 ] <− r e j 0 1 [ 5 ] + s t
i f (BCLRT$p . v a l ue <= 0 . 1 0 ) r e j 1 0 [ 6 ] <− r e j 1 0 [ 6 ] + s t
i f (BCLRT$p . v a l ue <= 0 . 0 5 ) r e j 0 5 [ 6 ] <− r e j 0 5 [ 6 ] + s t
i f (BCLRT$p . v a l ue <= 0 . 0 1 ) r e j 0 1 [ 6 ] <− r e j 0 1 [ 6 ] + s t
}
r e j <− c ( r e j10 , re j05 , r e j 0 1 )
Rej [ ct , 2 : 1 9 ] <− r e j
c t <− c t + 1
}
return ( Rej )
}

Graphics

Figure 7. Performance evaluation of hypothesis tests at the 1% significance level for η = 0.2, n = 15 and p = 2, 3, 5 and 10.
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Figure 8. Performance evaluation of hypothesis tests at the 1% significance level for η = 0.2, n = 30 and p = 2, 3, 5 and 10.

Figure 9. Performance evaluation of hypothesis tests at the 1% significance level for η = 0.2, n = 50 and p = 2, 3, 5 and 10.
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Figure 10. Performance evaluation of hypothesis tests at the 10% significance level for η = 0.2, n = 15 and p = 2, 3, 5 and
10.

Figure 11. Performance evaluation of hypothesis tests at the 10% significance level for n = 30 and p = 2, 3, 5 and 10.
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Figure 12. Performance evaluation of hypothesis tests at the 10% significance level for η = 0.2, n = 50 and p = 2, 3, 5 and
10.

Figure 13. Performance evaluation of hypothesis tests at the 1% significance level for η = 1, n = 15 and p = 2, 3, 5 and 10.
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Figure 14. Performance evaluation of hypothesis tests at the 1% significance level for η = 1, n = 30 and p = 2, 3, 5 and 10.

Figure 15. Performance evaluation of hypothesis tests at the 1% significance level for η = 1, n = 50 and p = 2, 3, 5 and 10.
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Figure 16. Performance evaluation of hypothesis tests at the 10% significance level for η = 1, n = 15 and p = 2, 3, 5 and 10.

Figure 17. Performance evaluation of hypothesis tests at the 10% significance level for η = 1, n = 30 and p = 2, 3, 5 and 10.
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Figure 18. Performance evaluation of hypothesis tests at the 10% significance level for η = 1, n = 50 and p = 2, 3, 5 and 10.
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