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Abstract
Survival medical data in presence of covariates and censored data usually are analyzed assuming non-
parametric or parametric regression modeling approaches as the popular proportional hazards models,
the proportional odds models and the accelerated failure time models. In medical studies, it is usual the
use of the popular proportional hazards models introduced by Cox, 1972 in the data analysis. Maximum
likelihood estimation methods assuming the partial likelihood function introduced by Cox, 1975 are used
to get the inferences of interest. In many applications, the assumption of proportional hazards could be
non-verified which makes the use of the Cox model unfeasible. In this way, the use of semiparametric or
transformation models recently introduced in the literature could be a good alternative in the analysis of
lifetime data in presence of censoring and covariates. This class of models generalizes the popular class of
proportional hazards models proposed by Cox, 1972 without the need to assume a parametric probability
distribution for the survival times. In this study, we present a hierarchical Bayesian analysis considering
semiparametric models to a data set consisting of the survival times of cancer patients admitted to the
intensive treatment unit of the INCA health institute (Instituto Nacional de Câncer - INCA) in Rio de
Janeiro, Brazil. The posterior summaries of interest are obtained using existing MCMC (Markov Chain
Monte Carlo) simulation methods.

Keywords: semiparametric models; censored data; covariates; hierarchical Bayesian analysis; MCMC
methods; cancer survival times.

1. Introduction
In the statistical analysis of medical survival data (time until the occurrence of a event of inter-

est, for example, death) in presence of censored observations and covariates (Lawless, 1982; Klein &
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Moeschberger, 1997; Cox & Oakes, 1984), usually medical researchers use standard non-parametric
techniques, such as Kaplan & Meier, 1958 estimators for the survival function, log-rank or Wilcoxon
non-parametric tests in the comparison of two or more treatments (Bradburn et al., 2003) and the
popular proportional hazards (PH) model (Cox, 1972), although this class of semiparametric mod-
els could be not suitable in many cases, with crossing survival curves. Other possibility is the use
of proportional odds (PO) models (Bennett, 1983). As alternative to non-parametric methods, not
much common in medical applications, we could use some standard parametric regression mod-
els (Kalbfleisch & Prentice, 2002) assuming some existing lifetime probability distributions as the
exponential, Weibull, log-normal, gamma probability distributions or generalizations of these prob-
ability distributions (Bradburn et al., 2003).

The literature introduced some generalized forms of the semipametric models including the
PH and PO models to be used in lifetime data analysis as the semiparametric two sample strategy
(Yang & Prentice, 2005) denoted as YP model and an unified approach introduced by Demarqui
et al., 2019 using Bernstein polynomials to model the baseline unknown hazard under both the
frequentist and Bayesian frameworks. Li et al., 2021 introduced a semiparametric model averag-
ing prediction (SMAP) method which approximates the underlying unstructured nonparametric
regression function by a weighted sum of low-dimensional nonparametric submodels. Race & Pen-
nell, 2021 introduced a semi-parametric survival analysis via Dirichlet process mixtures of the First
Hitting Time model considering several random effects specifications of the FHT model under a
Bayesian approach. Yang & Niu, 2021 introduced semi-parametric models for longitudinal data
analysis. Zhou et al., 2017 considered semiparametric transformation models for interval-censored
data. The use of semi-parametric models is becoming of great interest in different areas of applica-
tions.In this direction Ramos et al., 2024 introduced a study related to the power-law distribution in
pieces under a semi-parametric approach with change point detection.

In this study, we consider the statistical analysis of a data set assuming semiparametric models
(data set in (Carvalho et al., 2019)) and analyzed by Soares et al., 2006, related to the survival times
of cancer patients admitted to the intensive treatment unit of the INCA health institute (Instituto
Nacional de Câncer - INCA) in Rio de Janeiro, Brazil.

The main goal of this study is to present a hierarchical Bayesian analysis considering the INCA
cancer survival times data set assuming semiparametric models where the elicitation of prior distri-
butions for the regression parameters of the model and for the unknown baseline hazard function
is based on prior information obtained using standard non-parametric methods in a preliminary
data analysis, that is, using empirical Bayesian methods (Carlin & Louis, 2000).The use of empirical
Bayesian methods is becoming very popular in applications, although the use of the data twice lead-
ing to great debate within the statistical community due to potential biases introduced by reusing
data. Some recent studies have focused in empirical Bayesian methods: Armstrong et al., 2022 intro-
duces the construction of robust empirical Bayesian confidence intervals in a normal means problem;
Achcar et al., 2017 introduced a empirical Bayesian approach in the elicitation of prior distributions
for the parameters of the generalized gamma distribution; Efron, 2024 introduced the concepts and
methods for the Empirical Bayes approach.

From now, the paper is prepared as follows: section 2 introduces the proportional (PH) hazards
model; section 3 presents the semiparametric transformation models; section 4 introduces the likeli-
hood function; section 5 introduces a hierarchical Bayesian approach for the class of semiparametric
models; section 6 presents a statistical analysis of a INCA cancer survival time under the class of
semiparametric models; finally section 7 introduces some concluding remarks.

2. The proportional (PH) hazards model
The proportional hazards (PH) model introduced by Cox, 1972 is a semi-parametric model

where the hazard function is given by,
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h(t; z) = h0(t)eβ
′z (1)

where t > 0 denotes the lifetime of a patient, h0(t) is the baseline hazard function defined as the
limit of the probability of a individual to failure in the interval [t, t +∆t] given that this individual is
surviving until time t, that is,

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t | t ≥ T)
∆t

(2)

β a vector of regression coefficients and Z a vector of covariates associated to each patient.
Under model (1), the hazard ratio for two different individuals with fixed covariate vectors is

constant, that is, not dependent on time. It is observed two multiplicative components in model (1):
one is non-parametric and the other is parametric, that is, we have a semi-parametric model. The
covariates affect the hazard function in a multiplicative way according to the factor exp(β′z). Cox,
1972 proposed a likelihood function that does not depend on the baseline hazard function h0(t), thus
allowing inferences on β without the need to specify h0(t).

Considering n individuals under study and k distinct moments of observation of the event of
interest (e.g., deaths), such that t1 < t2 < · · · < tk, where k ≤ n, the partial (or marginal) likelihood
function, proposed by Cox, 1972 is given by,

L(β) =
k∏

i=1

eβ′zi∑
l∈Ri

eβ′zl
(3)

where Ri is the set of individuals in risk at time ti, and zi is the vector of explanatory variables
(covariates) associated with the individual having the event of interest at time ti. Cox, 1975 showed
that, although (3) is not a likelihood function in the usual sense, under very general conditions, it is
verified the usual properties of the maximum likelihood estimators as the usual asymptotic properties
of likelihood-based inference. The likelihood function (3) proposed by Cox, 1975 does not depend
on the unknown hazard function h0(t).

3. Semiparametric transformation models
A generalization of the popular PH and PO models is given by the class of semiparametric

transformation models (Zeng & Lin, 2009).
Under the semiparametric transformation model, the cumulative hazard function for the survival

time T conditional on the covariate vector Z is given by,

Λ(t; z) = G
{∫ t

0
eβzh(u)du

}
(4)

where G(·) is a specific transformation function that is strictly increasing and Λ(·) is an unknown

increasing function defined by Λ(t) =
∫ t

0
h(u)du denoting the usual cumulative hazard function not

considering the presence of the covariate vector Z.
That is,

Λ(t; z) = G
{

eβzΛ0(t)
}

(5)

where Λ0(t) is the baseline cumulative hazard function.
Further generalizations of the semiparametric transformation models were also introduced in

the literature. Chen & Lu, 2012 introduced semiparametric transformation models in presence of a
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cure fraction. Gao et al., 2018 and Zeng et al., 2016 introduced semiparametric regression analysis
for interval-censored data. Other generalizations of the semiparametric model (or transformation
models) could be seen in the literature (Chen et al., 2002; Chen & Lu, 2012; Sun & Sun, 2005).

Achcar et al., 2023 presented a hierarchical Bayesian approach for semiparametric models (or
transformation models) assuming the unknown hazards as latent factors for semiparametric models;
Achcar & Barili, 2023 introduced a hierarchical Bayesian approach for semiparametric models (or
transformation models) in presence of cure fraction. Achcar & Barili, 2024. introduced a Bayesian
approach for semiparametric models considering multivariate lifetime data in presence of censoring
and covariates.

Some special cases of the semiparametric model (4) are given by,

(a) If G(x) = x, Λ(t; z) = eβzΛ0(t) , where Λ0(t) =
∫ t

0 h0(u)du (h0 is unknown), that is, we have the
proportional hazards model since h(t; z) = eβzh0(t). In this case, two individuals denoted by i
and j with covariates zi and zj have hazard ratio, h(t; zi)/h(t; zj) = eβzih0(t)/eβzj h0(t) = eβzi /eβzj

(does not depend on t, that is, we have a proportional hazards model).
(b) If G(x) = log(1 + x), we have Λ(t; z) = log{1 + eβzΛ0(t)}, S(t; z) = exp[–Λ(t; z)] = exp{– log[1 +

eβzΛ0(t)]} = 1/[1 + eβzΛ0(t)] and 1 – S(t; z) = eβzΛ0(t)/[1 + eβzΛ0(t)], (S(t) = P(T > t) is the
survival function) leading to the proportional odds ratio model since, ORi/ORj = {S(t; zi)/[1 –
S(t; zi)]}/{S(t; zj)/[1 – S(t; zj)]} = eβzjΛ0(t)/eβziΛ0(t) = eβzj /eβzi (a proportional odds model).

(c) If G(x) = log(1 + rx)/r(r ≥ 0), the logarithmic transformation family, with G(x) = x if r = 0 and
G(x) = log(1 + x) if r = 1 (Zeng et al., 2016). In this case we have Λ(t; z) = log{1 + reβzΛ0(t)}/r
and S(t; z) = exp[–Λ(t; z)] = exp{– log[1 + reβzΛ0(t)]/r} = 1/[1 + eβzΛ0(t)] .

Remarks:

• The accumulated hazard function Λ(t) can be given by Λ(t) =
∫ t

0
h(u)du = – log[S(t)], that is,

S(t) = exp[–Λ(t)].
• The hazard function h(t) can be given by h(t) = dΛ(t)/dt = –S′(t)/S(t).
• The density function f (t) can be given by f (t) = dF(t)/dt where F(t) = 1 – S(t).
• (Abramowitz & Stegun, 1968): log(1+x) ≈ x–x2/2+x3/3–· · · . (| x |≤ 1 and x ̸= –1). In this way,
λ(t; z) = log{1 + eβzΛ0(t)} ≈ eβzΛ0(t) (the PH model) and Λ(t; z) = log{1 + reβzΛ0(t)}/r ≈
eβzΛ0(t) (the PH model).

4. The likelihood function
The likelihood function in the presence of right-censored data and a vector of covariates Z is

given by,

L(·) =
n∏

i=1
f (ti; zi)δiS(ti; zi)1–δi (6)

where zi is a vector of covariates; δi = 1 (complete observation) and δi = 0 (censored observation).
Since h(t) = f (t)/S(t), we have f (t) = h(t)S(t). Thus, the likelihood function (6)) based in a sample of
size n is given by,

L(·) =
n∏

i=1
h(ti; zi)δiS(ti; zi) (7)

4 Braz. J. Biom., v.43, e-43722, 2025.
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4.1 The transformation G(x) = x (a proportional hazards model)
In this case, we have Λ(t; z) = eβzΛ0(t) that is, h(t; z) = eβzh0(t) (hazard function). Thus,

S(t; z) = e–Λ(t;z) = e–eβzΛ0(t), and f (t; z) = h(t; z)S(t; z) = eβzh0(t)e–eβzΛ0(t). Thus, the likelihood
function (in the presence of right-censored data and covariate) is given by,

L(·) =
n∏

i=1
h(ti, zi)δiS(ti; zi)

=
n∏

i=1

[
eβzih0(ti)

]δi
e–eβziΛ0(ti)

= e

n∑
i=1

δiβzi { n∏
i=1

[
h0(ti)

]δi

}
e
–

n∑
i=1

eβziΛ0(ti)

(8)

4.2 The logarithmic transformation family G(x) = log(1 + rx)/r
In this case we have,

Λ(t; zi) = log
{

1 + reβzΛ0(t)
}

/r and

S(t, z) = exp(–Λ(t, z)) = exp

(
–
log(1 + reβziΛ0(t))

r

)

That is,

S(t; z) = 1/[1 + reβzΛ0(t)]1/r (9)

where Λ0(t) =
∫ t

0
h0(u)du and the probability density function f (t; z) = –dS(t; z)/dt is given by,

f (t; z) = eβzh0(t)/[1 + reβzΛ0(t)]1/r+1 (10)

Also, h0(t) = f (t; z)/S(t; z) = eβzh0(t)/[1 + reβzΛ0(t)].
From (6) the likelihood function based on the ith observation is given by,

L(r,β) =
{

eβzih0(t)/[1 + reβziΛ0(ti)]
}δi {

1/[1 + reβziΛ0(ti)]1/r
}

(11)

A special case of (11) is obtained when r =1 (proportional odds model).

5. A Bayesian approach
The use of Bayesian methods is becoming very popular in medical and epidemiology studies

(Martinez & Achcar, 2014). A hierarchical Bayesian approach (Gelman et al., 2004) is considered
for the statistical analysis of semiparametric models assuming the unknown baseline hazard h0(t)
as a latent factor (a non observed random variable). That is, we assume di = h0(ti) as a random
effect with a uniform probability distribution U(a, b), with known hyperparameters a and b. The
cumulative hazard function is given by, Λ0(ti) = diti, since h0(ti) is the derivative of the cumulative
hazard function Λ0(ti), that is, h0(ti) = dΛ0(ti)/dt. In presence of only one covariate, we assume
a gamma prior distribution for the parameter θ = exp(β), that is, θ ∼ G(c, d) where c and d are

Braz. J. Biom., v.43, e-43722, 2025. 5
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known hyperparameters and G(c, d) denotes a gamma probability distribution with mean c/d and
variance c/d2. We assume the reparameterization θ = exp(β) to have better convergence of the Gibbs
sampling algorithm. Considering a vector of covariates associated with a vector of parameters θ =
(θ1, θ2, θ3, . . . , θk), θj = exp(βj), j = 1, 2, . . . , k, we assume independent gamma prior distributions
θj ∼ G(cj, dj).

We use the Bayes rule to combine a specified prior distribution for the parameters of the model
with the likelihood function of the model obtaining the posterior distribution from where the
Bayesian inferences are obtained. Therefore, for θ the vector of parameters of a model describ-
ing the behavior of the data D, if P(θ), P(θ/D), and L(D/θ) indicate, respectively, the prior, the
posterior distributions of θ, and the likelihood function of the model, then P(θ/D) ∝ L(D/θ)P(θ).

We use standard MCMC (Markov Chain Monte Carlo) methods as the Gibbs sampling algo-
rithm and the Metropolis-Hastings algorithm (Gelfand & Smith, 1990; Chib & Greenberg, 1995)
to get the posterior summaries of interest.

In the discrimination of the different models to be used in each application, we use the DIC
(Deviance Information Criterion) proposed by Spiegelhalter et al., 2002, which is appropriate when
we use MCMC methods to get the posterior summaries of interest.

The DIC criterion is widely used in Bayesian inference applied especially using Markov Chain
Monte Carlo methods. Set the deviation (deviance) by:

D(θ) = –2 lnL(θ) + C (12)

where θ is a vector of unknown model parameters; L(θ) is the likelihood and C is a constant not
necessarily known in the comparison of two models. The DIC criterion defined by Spiegelhalter
et al., 2002 is given by,

DIC = D(θ̂) + 2PD (13)

in which D(θ̂) is the deviation calculated from the posterior mean θ̂ = E(θ | y) and pD is the effective
number of parameters in the model, given by,

pD = D – D(θ̂)

where

D = E(D(θ) | y)

is the posterior average of the deviation that measures the goodness of fit of the data for each model.
Smaller DIC values indicate better models and these values can be negative.

6. Statistical analysis of the INCA cancer data
We consider a data set related to the survival times of cancer patients admitted to the intensive

treatment unit of the INCA health institute (Instituto Nacional de Câncer - INCA) in Rio de Janeiro,
Brazil. The data were obtained from a cohort of 862 cancer patients (data set in (Carvalho et al.,
2019)) and analyzed by Soares et al., 2006, whose main objective was to evaluate if some factors
(covariates) have statistical significant effects on the survival times of the patients. The variables in
the original data set are given by,

• T: Time from the first case monitored in days.
• Death status: death = 1, censored observation = 0.
• Gender: male = 1, female = 0.
• Age: in years.

6 Braz. J. Biom., v.43, e-43722, 2025.
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• Tumor type: (1) Locus = localized solid; (2) Mtx = metastatic ; (3) Hemato = hematological.
• Desnutrition: 1 for recent weight loss > 10% or BMI < 18; 0 = no.
• Comorbidity: 1 for severe comorbidities present; 0 = absent.
• Leucopenia: 1 = for leukopenia present; 0 = absent.

Remarks: Comorbidity in the data set describes the simultaneous occurrence of two or more health
problems in the same individual. Leukopenia is when the number of leukocytes, which are the
blood’s defense cells, is low.

The data set presents 499 uncensored observations and 363 right censored observations. The
survival times are denoted by t (survival in days) and the variable δ (death status) denotes de censoring
indicator (δ = 1 if not censored, δ = 0 if censored).

For the categorized covariates, Figure 1 shows the plots of the non-parametric Kaplan & Meier,
1958 estimates for the survival functions in each level of the covariates. Using standard log-rank or
Wicoxon non-parametric tests it is observed that the covariates tumor type, desnutrition, comor-
bidity and leukopenia shown significant differences for the survival times (p-value < 0.05).

A first analysis is considered assuming the standard proportional (PH) hazards model of Cox (1)
with exp(βz) = exp(β1z1 + β2z2 + · · · + β7z7), where Z1 denotes the covariate gender (1=male;
0=female); Z2 denotes the covariate age (years); Z3 denotes a dummy covariate for tumor locus
(locus=1; 0 other); Z4 denotes a dummy covariate for tumor hemato (hemato=1; 0 other); Z5 denotes
the covariate desnutrition (1 for recent weight loss > 10% or BMI < 18; 0 = no); Z6 denotes the
covariate comorbidity (1 for severe comorbidities present; 0 = absent) and Z7 denotes the covariate
leucopenia (1 = for leukopenia present; 0 = absent). The covariate Z8 (Mtx or metastatic tumor) is
considered as reference.

The MLE estimates of the regression parameters of model (1) obtained from the partial likelihood
function (use of an iterative numerical procedure) and the R software, are presented in Table 1
from where it is also observed that the covariates Z2 (age), Z3 (tumor locus), Z5 (desnutrition), Z6
(comorbidity) and Z7 (leucopenia) shown significant effects on the lifetimes of the patients (p-value
< 0.05).
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Figure 1. Kaplan-Meier (1958) estimates for the survival functions.
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Table 1. Maximum likelihood estimates (MLE) of the PH Cox regression parameters

coef exp(coef) se(coef) z p

sex 0.09916 1.10424 0.09125 1.09 0.27722
age 0.01306 1.01315 0.00298 4.38 < 0.001

tumorloco -0.73584 0.47910 0.11456 -6.42 < 0.001

tumorhemato -0.00729 0.99274 0.13682 -0.05 0.95751
desnut 0.55041 1.73397 0.16126 3.41 0.00064
comorbi 0.52255 1.68632 0.16769 3.12 0.00183
leucopenia 0.87309 2.39430 0.15838 5.51 < 0.001

We interpret the obtained results as follows: since the MLE of the regression parameter associ-
ated to age (Z2) is positive, the hazard rate of deaths increases with higher ages; since the MLE of
the regression parameter associated to tumor type locus (Z3) is negative, the hazard rate of deaths
decreases with tumor type locus in comparison to the other two types of tumor (result in agree-
ment to the Kaplan-Meier plots in Figure 1); since the MLE of the regression parameter associated
to desnutrition (Z5) is positive, the hazard rate of deaths increases with the presence of desnutrition
(result in agreement to the Kaplan-Meier plots in Figure 1); since the MLE of the regression param-
eter associated to comorbidity (Z6) is positive, the hazard rate of deaths increases with the presence
of comorbidity (result in agreement to the Kaplan-Meier plots in Figure 1); since the MLE of the
regression parameter associated to leucopenia (Z7) is positive, the hazard rate of deaths increases
with the presence of leucopenia (result in agreement to the Kaplan-Meier plots in Figure 1).

To check if the proportional hazard assumption is verified, we could use plots of the weighted
Schoenfeld residuals (Schoenfeld, 1982; Grambsch & Therneau, 1994) against survival times where
the presence of some patterns in these graphs may indicate departures from the proportional haz-
ards assumption. Figure 2 shows the plots of the Weighted Schoenfeld residuals (PH Cox regression
model), from where it is difficult to say that the PH model is well fitted by the data set (a subjective
decision). From the asymptotical chi-square test with one degree of freedom to test for the propor-
tional hazards assumption with respect to each covariate (Grambsch & Therneau, 1994),we observed
that for the covariate tumor hemato (p-value < 0.10) there is indication that the proportional hazards
model is not apropriated although for all other covariates we obtained p-values > 0.10 (use of a 10%
significance level).

As a second statistical analysis, we assume the semiparametric models introduced in section 3 with
exp(βz) = exp(β1z1 + β2z2 + · · · + β7z7), where Z1 is gender (1=male; 0=female); Z2 is age (years);
Z3 is tumor locus (locus=1; 0 other); Z4 is tumor hemato (hemato=1; 0 other); Z5 is desnutrition
(1 for recent weight loss > 10% or BMI < 18; 0 = no); Z6 is comorbidity (1 for severe comorbidi-
ties present; 0 = absent) and Z7 is leucopenia (1 = for leukopenia present; 0 = absent), assuming a
hierarchical Bayesian approach. The covariate Z8 (Mtx or metastatic tumor) is considered as refer-
ence. From prior information obtained in Table 2 (use of empirical Bayesian methods, see Carlin
& Louis, 1997) assuming the PH model using partial likelihood function, we assume the following
prior gamma probability distributions for the reparameterized forms of the regression parameters
θj = exp(βj), j = 1, 2, . . . , 7 assuming the proportional (PH) hazards model denoted as “model 1”
: θ1 ∼ G(110.424, 100); θ2 ∼ G(101.315, 100); θ3 ∼ G(47.910, 100); θ4 ∼ G(99.274, 100); θ5 ∼
G(173.397, 100); θ6 ∼ G(168.632, 100) and θ7 ∼ G(239, 430, 100).
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Figure 2. Weighted Schoenfeld residuals (PH Cox regression model).

We also assume the same gamma prior distributions for the parameters θj = exp(βj), j = 1, 2, ..., 7
assuming the logarithmic transformation family G(x) = log(1 + rx)/r or proportional odds model
denoted as “model 2” and the special case of the logarithmic transformation family obtained when
r = 1 denoted as “model 3” and a gamma G(1, 1) prior distribution for the parameter r in “model 2”.

Since the baseline hazard function is unknown in the semiparametric models introduced in sec-
tion 2, we assume the hazard function h0i = ai, i = 1, 2, . . . , 862 as a random effect (a non-observed
latent variable) with a uniform U(0, 0.1) probability distribution. Observe that the accumulated
hazard function is given by Λ0(ti) = aiti, for i = 1, 2, . . . , 862 where the hazard functions are given
by h0(t) = dΛ0(t)/dt.

We used the OpenBUGS software (Spiegelhalter et al., 2003), considering a burn-in sample
of 11,000 simulated samples discarded to eliminate the effects of the initial values in the iterative
procedure and taking a final sample of size 1,000 (every 100th in 100,000 generated Gibbs samples)
to get the Monte Carlo Carlo estimates for the parameters of interest assuming the three models.
The convergence of the Gibbs sampling algorithms was verified from trace plots of the simulated
samples for each parameter and the Gelman & Rubin, 1992 index assuming three parallel chains (See
Appendix 2 at the end of the manuscript).

Using DIC as a discrimination criterion, the Monte Carlo estimates of DIC (2002) are given,
respectively by, DIC = 5281.0 (“model 1”), DIC = 5265.0 (“model 2”) and DIC = 5215.0 (“model
3”), an indication that “model 3” based on the complete likelihood function with latent variables
representing the unknown hazard functions is the best fitted model (better fitted model has smaller
DIC).

Assuming “model 3” (logarithmic transformation family G(x) = log(1 + rx)/r or proportional
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odds model with r = 1), Table 2 shows that the covariates Z3 (tumor locus), Z5 (desnutrition), Z6
(comorbidity) and Z7 (leucopenia) shown significant effects on the survival times of the patients
since the 95% credible intervals for the corresponding regression parameters do not include the
zero value.

It is interesting to observe that using the PH model under a classical approach (partial likelihood
function proposed by Cox, 1972, the covariate Z2 (age) also show significant effect (p-value < 0.05)
but looking at the scatter plot of Figure 3 (times versus age considering only the uncensored ob-
servations) it is hard to say that there is some dependence between the survival times and the ages
of the patients. That is, “model 3”, a proportional odds model, under a Bayesian approach, is more
realistic for the data set.

7. Concluding remarks

The class of semi-parametric models (transformation methods) recently introduced in the liter-
ature could be a good alternative in the analysis of survival data in presence of censored data and co-
variates, especially in medical applications. In medical studies, as observed in the medical literature,
non-parametric techniques are commonly used in the lifetime data analysis, as the Kaplan-Meier
non-parametric estimates of the survival function, log-rank and Wicoxon non-parametric tests to
compare the survival curves and the proportional hazards model of Cox, 1972.

Table 2. Posterior summaries (mean, standard-deviation and 95% credible intervals) assuming “model 3”

mean sd Lower Upper
95% c.i 95% c.i

β1 0.05943 0.07947 -0.1057 0.2098
β2 -0.0019 0.0018 -0.0057 0.0015
β3 -1.265 0.1189 -1.500 -1.043
β4 -0.0469 0.0888 -0.232 0.1196
β5 0.5944 0.0692 0.4604 0.7226
β6 0.5577 0.0716 0.4137 0.6946
β7 0.8893 0.0609 0.7680 1.007
θ1 1.065 0.0845 0.8997 1.233
θ2 0.9981 0.001837 0.9943 1.002
θ3 0.2843 0.03366 0.2232 0.3524
θ4 0.9579 0.08442 0.7929 1.127
θ5 1.816 0.1258 1.585 2.06
θ6 1.751 0.1253 1.512 2.003
θ7 2.438 0.1483 2.155 2.736

10 Braz. J. Biom., v.43, e-43722, 2025.
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Figure 3. Scatter plots the survival functions (not censored) versus Z2 (age).

In practice, the proportional hazards (PH) model (Cox, 1972) is the most used technique in the
lifetime data analysis, although the assumption of proportional hazards could not be verified in many
applications. Other common problem using the PH model under the partial likelihood function
proposed by (Cox, 1972; Cox, 1975) is that the obtained inferences are based on asymptotical results
usually requiring large sample sizes to get accurate results.

The class of semiparametric models (transformation models) generalizes the usual models as-
sumed in medical applications such as the proportional hazards model or the odds ratio model, al-
though under this class of models the baseline hazard function is unknown requiring to be approx-
imated in some numerical way. In this study, we introduced a simple method to obtain inferences
of interest assuming semiparametric models under a hierarchical Bayesian methodology where the
unknown hazard functions are assumed as latent variables. The posterior summaries of interest are
obtained from usual MCMC (Markov Chain Monte Carlo) methods assuming the elicitation of the
prior distributions for the parameters of the model using some prior information obtained using the
usual proportional hazards (PH) model of Cox, 1972.

Using the proposed methodology, we observed in an application to a data set consisting of the
survival times of cancer patients admitted to the intensive treatment unit of the INCA health institute
(Instituto Nacional de Câncer - INCA) in Rio de Janeiro, Brazil, more sensitive inferential results
compared to the inferential results obtained using the traditional Cox proportional hazards model
based on asymptotical normality of the maximum likelihood estimators of the regression parameters
under the partial likelihood approach.

It is also important to point out that with the proposed methodology, using standard existing
Bayesian discrimination methods as the DIC criterion, it was possible to choose the best class of
semiparametric models, in our application, the odds ratio class, usually a not easy task in applications.

An alternative for the use of non-parametric or semi-parametric methods for the survival data
analysis in presence of covariates and censored data could be the use of existing parametric regression
models. Medical researchers argue that parametric regression models based on different probability
distributions could present some difficulties in the choice of each parametric model for the survival
data and difficulties in the medical interpretations for each parameter of the proposed parametric
model assumed in each application. Considering standard Weibull and log-normal parametric re-
gression models available in most statistical software in the analysis of the INCA cancer data set, the
Cox & Snell, 1968 residual plots did not indicate good fit for the Weibull and log-normal regression
models to the INCA cancer data set.

As a final remark, we can conclude that the hierarchical Bayesian approach for the generalized
model (transformation model) introduced in this study could be of great interest when the assump-
tion of proportional hazards model is not verified for the data. The proposed methodology is a useful
complementation and generalization for the popular and powerful Cox, 1972 model, perhaps, the
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most used statistical model in medical applications considering lifetime data in terms of efficiency,
applicability and interpretability.
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Appendix 1 (OpenBUGS codes)

Proportional hazards model

model {
for (i in 1:N) {
zeros[i] <- 0
phi[i] <- - loglike[i]
zeros[i] ~ dpois(phi[i])
loglike[i]<- delta[i]*(beta1*sex[i]+ beta2*age[i] + beta3*tumorloco[i] +
beta4*tumorhemato [i] + beta5*desnut[i] + beta6*comorbi[i] +
beta7*leucopenia[i])+ delta[i]*log(lambda[i]) - exp(beta1*sex[i]+
beta2*age[i] + beta3*tumorloco[i] + beta4*tumorhemato [i] +
beta5*desnut[i] + beta6*comorbi[i] + beta7*leucopenia[i])*Lambda[i]
lambda[i] <-a[i]
Lambda[i] <- a[i]*t[i]
a[i]~ dunif(0,0.1)
}
beta1<- log(theta1)
theta1~ dgamma(110.424,100)
beta2<- log(theta2)
theta2~ dgamma(101.315,100)
beta3<- log(theta3)
theta3~ dgamma(47.910,100)
beta4<- log(theta4)
theta4~ dgamma(99.274,100)
beta5<- log(theta5)
theta5~ dgamma(173.397,100)
beta6<- log(theta6)
theta6~ dgamma(168.632,100)
beta7<- log(theta7)
theta7~ dgamma(239.430,100)
}

Logarithmic transformation model

model {
for (i in 1:N) {
zeros[i] <- 0
phi[i] <- - loglike[i]
zeros[i] ~ dpois(phi[i])
A1[i]<- delta[i]*( beta1*sex[i]+ beta2*age[i] + beta3*tumorloco[i] +
beta4*tumorhemato [i] + beta5*desnut[i] + beta6*comorbi[i] +
beta7*leucopenia[i])
A2[i]<- delta[i]*log(1+r*exp(beta1*sex[i]+ beta2*age[i] + beta3*tumorloco[i] +
beta4*tumorhemato [i] + beta5*desnut[i] + beta6*comorbi[i] +
beta7*leucopenia[i])*Lambda[i])
A3[i]<- (log(1+r*exp(beta1*sex[i]+ beta2*age[i] + beta3*tumorloco[i] +
beta4*tumorhemato [i] + beta5*desnut[i] + beta6*comorbi[i] +
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beta7*leucopenia[i])*Lambda[i]))/r
loglike[i]<- A1[i] + delta[i]*log(lambda[i]) - A2[i] - A3[i]
lambda[i] <-a[i]
Lambda[i] <- a[i]*t[i]
a[i]~ dunif(0,0.1)
}
beta1<- log(theta1)
theta1~ dgamma(110.424,100)
beta2<- log(theta2)
theta2~ dgamma(101.315,100)
beta3<- log(theta3)
theta3~ dgamma(47.910,100)
beta4<- log(theta4)
theta4~ dgamma(99.274,100)
beta5<- log(theta5)
theta5~ dgamma(173.397,100)
beta6<- log(theta6)
theta6~ dgamma(168.632,100)
beta7<- log(theta7)
theta7~ dgamma(239.430,100)
r ~ dgamma(1,1)
}

list(t=c(162,10,2,182,182,12,52,10,3,4,9,7,6,182,182,182,182,90,182,20,10,
2,182,4,
28,46,5,3,182,12,4,31,182,182,4,2,3,182,182,182,182,182,3,2,73,43,43,4,45,
182,48,182,182,9,8,2,16,6,38,182,182,75,79,182,182,182,98,13,12,18,11,3,
182,53,2,182,110,182,9,38,29,182,100,68,5,7,19,182,45,182,182,2,44,182,8,
3,12,182,182,182,4,3,182,16,67,182,182,14,182,6,182,1,20,5,3,182,182,48,
182,21,12,142,182,182,182,10,182,13,10,20,12,3,182,23,182,20,8,57,6,2,86,
4,13,130,182,182,182,12,160,182,8,17,3,6,2,14,2,38,182,9,182,7,47,182,16,
182,1,58,52,17,159,182,10,4,28,100,182,17,182,182,4,182,182,2,26,182,182,
27,17,2,7,128,4,9,7,34,56,15,182,45,2,16,115,182,182,182,7,182,14,3,19,13,
4,182,164,3,6,2,105,3,7,182,55,74,182,182,182,6,182,37,182,182,53,182,182,
182,15,18,182,49,2,108,22,14,182,1,9,182,182,182,1,182,182,182,9,182,39,17
,15,97,182,182,182,182,182,182,182,182,2,182,14,4,19,17,3,182,182,173,182,
6,64,182,2,39,182,24,18,3,182,182,182,1,173,182,86,182,7,7,20,182,5,182,10
,14,12,2,182,3,3,4,28,11,149,182,11,25,182,182,182,7,182,182,182,147,8,6,
21,182,23,182,182,2,182,182,182,2,182,182,17,24,38,21,182,6,182,182,182,
67,182,3,7,182,8,182,182,23,182,182,182,182,182,5,5,34,7,25,3,6,170,25,
182,17,182,182,1,63,4,182,13,182,182,3,182,182,182,4,1,29,182,182,13,3,
61,84,8,182,64,93,182,126,182,182,21,10,182,10,3,182,7,182,24,182,37,34,
2,2,182,182,182,17,182,182,182,182,1,4,182,182,4,182,182,2,182,182,182,
182,15,182,14,182,26,182,182,48,18,182,182,38,182,48,144,134,182,28,182,
182,1,182,12,10,3,182,6,2,182,182,182,24,182,182,9,182,125,42,182,26,182,
148,5,15,182,182,18,182,6,2,182,182,3,70,61,8,1,182,182,182,182,18,182,5,
182,182,5,182,10,19,28,41,10,13,182,119,182,182,182,182,55,182,182,182,2,
3,182,7,4,3,50,14,22,182,182,2,182,182,8,182,1,8,182,182,182,182,56,1,123
,51,182,182,182,182,4,3,4,182,182,182,182,1,10,182,182,182,182,7,182,182,
3,2,46,108,182,182,97,113,182,182,182,155,155,101,7,6,182,182,182,22,59,1
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8,94,12,27,182,5,182,182,182,182,9,14,182,182,58,2,2,1,8,182,6,182,182,35
,2,181,182,163,16,182,2,182,9,5,3,5,12,2,2,12,182,33,182,182,4,5,141,81,3
,178,182,182,11,182,25,27,27,182,49,182,3,2,19,182,16,182,19,6,5,3,20,182
,182,22,182,182,182,182,14,182,2,14,32,182,1,8,182,182,9,182,12,6,182,182
,182,182,182,31,182,182,26,182,78,3,10,182,31,1,16,6,14,182,99,182,182,18
2,182,100,182,182,30,182,182,89,72,7,182,58,182,182,42,182,8,5,29,182,58,
182,182,182,6,2,9,182,11,22,182,182,182,182,3,159,182,22,54,23,8,3,8,3,5,
182,182,2,1,25,40,182,1,182,44,182,182,182,182,182,31,12,182,15,182,182,5
,8,25,40,182,182,182,5,46,6,1,4,2,1,3,6,3,4,5,97,44,182,182,182,40,6,182,
173,182,182,36,182,86,99,66,182,33,1,13,5,7,1,5,11,182,9,182,2,182,182,50
,182,182,182,182,182,9,13,1,182,182,14,182,11,2,182,67,182,182,182,13,182
,182,29,182,182,4,10,182,5,36,43,38,22,15,66,182,182,182,182,182,15,182),
sex=c(0,1,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,0
,0,0,0,0,0,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0,0,1,1,1,1,0,0,1,1,1,1,0,1,1,0,1,
1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,1,1,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,1,
1,0,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,0,1,1
,1,1,0,0,0,1,1,1,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,
1,0,1,1,0,1,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,1,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1
,1,0,1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,1,0,1,0,1,0,0,
0,0,1,1,1,1,0,0,1,1,0,0,0,1,1,0,1,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,1,0
,0,0,1,0,1,0,0,1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,1,1,1,0,1,0,1,1,1,0,1,1,0,1,
1,1,0,0,0,0,1,1,1,0,0,0,1,0,1,1,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,0,0,1,1,1
,1,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,
0,1,1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0
,0,1,1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0,1,1,
0,1,0,0,0,1,0,0,0,1,0,1,0,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0,1
,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0,0,0,0,1,0,1,1,0,1,0,1,1,1,1,0,1,1,0,1,0,1,
1,0,1,1,1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0,0,0,1,1,0
,1,0,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1,0,1,1,0,1,0,1,
1,1,0,1,0,1,1,0,1,1,1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,0,1,1,0,1,1
,0,0,1,1,0,0,1,1,0,0,1,0,0,1,0,1,1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,1,1,
1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,1,1,1,0
,1,0,0,0,1,0,1,1,1,1,0,0,0,1,1,0,1,0,0,0,1,1,1,0,1,0,1,1,0,0,1,1,1,1,1,1,
1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,1,1),
delta=c(1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0
,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,0,1,1,1,1,1,1,0,0,1,1,0,0,0,1,1,1,
1,1,1,0,1,1,0,1,0,1,1,1,0,1,1,1,1,1,0,1,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,0
,0,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,
1,1,0,0,0,1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,1,0,1,1,1,1,0,1,0
,0,1,0,0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,1,1,0,
1,1,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0,1,1,0,0,0,
1,0,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0,1,1,0,1,1,0,1,
1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,0,0,1,0,0,
0,1,1,1,1,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0,1,0,0,
0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1,1,1,0,0,1,1,1,1,
1,0,1,1,0,1,0,0,1,1,0,1,1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,1,0,0,1,0,
0,1,0,0,0,0,1,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,0,1,0,0,1,0,1,1,1,0,1,1,0,0
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,0,1,0,0,1,0,1,1,0,1,0,1,1,1,0,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0,
1,0,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,0,1,0,1,1,
0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,1,0,0,1,1,1,1,0,0,1,1,
0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,1,0,0,
1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,1,1,1,0,0,1,0,1,1,1,0,1,
0,1,1,1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,0,0,1,0,1,1,0,0,0,
0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,0,0,1,
0,1,1,1,0,1,0,0,0,1,1,1,0,1,1,0,0,0,0,1,1,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,
0,1,0,1,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,1,1,0,1,0,0,1,0,1,1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,0,1,0,0,0,0,0,1,
1,1,0,0,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,1,0),
age=c(69,67,69,35,63,63,53,75,68,78,69,66,70,60,74,64,36,40,68,61,74,65,
55,67,73,64,71,46,68,74,52,60,63,57,43,18,30,64,45,29,67,22,47,50,64,45,
26,38,67,76,22,50,46,49,72,69,76,41,67,54,62,69,86,62,36,78,50,83,88,19,
62,25,71,67,77,45,21,59,71,77,50,55,50,60,74,70,35,87,48,54,60,22,85,69,
53,69,79,18,58,40,63,71,49,73,52,70,34,68,59,33,51,78,43,67,43,83,72,68,
67,69,70,45,58,57,41,63,40,58,53,54,51,83,73,73,58,30,41,27,69,76,62,47,
58,39,79,59,75,59,70,62,60,79,30,71,71,65,68,54,40,45,56,43,67,51,58,52,
58,58,69,60,61,73,67,52,57,69,54,74,70,73,87,54,43,71,77,64,62,63,48,54,
47,68,79,64,51,72,73,87,79,42,57,58,77,30,20,46,59,62,75,49,52,73,51,34,
21,50,81,80,66,51,41,18,59,22,48,50,57,19,57,23,78,58,63,70,77,55,45,65,
69,66,73,60,71,54,56,67,75,26,50,53,70,63,64,45,73,58,83,72,40,20,23,30,
67,49,67,55,30,61,44,70,69,50,45,64,34,20,63,25,46,51,75,24,67,48,61,45,
49,38,60,39,65,77,64,62,79,69,70,52,74,47,58,69,63,59,68,68,50,16,65,54,
66,73,43,38,55,79,45,74,36,25,43,62,53,57,72,44,81,79,56,68,52,19,28,66,
71,27,71,38,50,72,65,80,81,74,66,83,70,65,62,55,45,48,64,31,51,49,40,38,
46,72,62,50,52,53,53,44,74,71,21,72,71,65,77,75,60,66,68,50,70,30,57,73,
57,48,36,60,62,48,55,56,76,80,48,38,55,59,78,25,77,64,54,45,28,76,21,31,
78,27,69,67,77,87,43,32,46,69,70,52,42,73,27,29,80,65,60,47,20,74,64,78,
67,64,33,53,38,22,60,66,85,66,82,31,49,91,32,51,56,67,56,56,22,60,57,49,
32,57,38,60,57,74,80,53,30,22,54,76,69,42,55,19,61,20,85,64,59,19,41,70,
59,84,60,62,64,45,27,64,54,88,38,52,72,68,23,73,73,67,52,65,61,52,46,64,
55,50,83,58,54,45,29,20,30,52,70,53,75,63,68,71,52,72,54,44,29,67,77,19,
78,69,71,83,43,65,38,17,57,61,52,58,72,75,30,72,65,45,45,53,72,53,53,91,
64,85,68,56,17,63,60,82,70,39,73,73,63,48,58,47,63,85,65,73,71,68,84,38,
50,32,29,73,43,68,63,67,51,35,67,37,62,53,61,52,50,45,84,59,26,45,63,64,
66,54,34,67,47,65,82,55,52,85,61,60,85,62,64,71,53,73,57,55,54,62,77,73,
61,56,73,49,77,18,73,68,63,55,76,36,73,70,65,64,33,59,48,76,57,72,63,66,
83,75,65,89,28,70,70,54,69,69,63,28,54,50,58,60,49,65,64,90,40,60,74,46,
45,68,66,64,39,59,73,81,46,61,57,48,54,75,81,69,39,67,69,69,42,75,70,56,
52,38,37,61,62,76,53,40,51,59,73,76,59,67,21,73,64,71,51,24,69,23,18,69,
66,63,72,70,64,79,45,51,40,67,65,60,73,55,64,45,65,72,69,69,48,86,77,73,
60,63,49,61,23,51,18,41,64,63,69,62,59,34,63,65,60,49,40,65,74,74,77,53,
44,72,77,31,60,33,51,61,65,57,51,29,44,54,70,72,73,70,49,88,33,77,72,62,
68,57,70,57,98,55,52,73,36,64,72,41,69,24,53,53,50,74,44,19,79,64,54,63,
46,38,68,62,58,33,75,76,63,55,69,58,68,21,77,57,67,80,74,63,54,60,42,79,
70,41,46,53,48,72,66,71,59,67,27,70,66,61,66,75,61,38,63,74,68,70,59,66),
tumorloco=c(1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,1,1,0,1,0,0,1,1,1,1,1,1,1,1,1,
0,1,1,1,0,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,0,0,
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0,1,1,1,0,0,1,1,0,1,0,0,1,1,0,1,1,0,0,0,0,1,1,1,1,0,1,1,0,0,0,0,1,1,1,1,
1,0,1,1,1,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,0,0,0,0,1,0,0,1,1,1,0,0,0,1,
1,0,1,0,0,1,1,1,1,1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,1,1,
0,1,0,0,1,0,1,0,1,1,1,1,1,0,1,1,0,1,0,0,1,1,1,1,1,1,0,0,0,1,1,0,1,1,1,0,
0,0,0,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,0,1,0,
0,1,1,1,0,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,1,1,1,0,
0,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,0,1,1,1,1,0,1,1,1,
1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,1,0,1,0,1,0,1,0,0,1,1,0,
1,1,1,0,0,1,1,0,1,0,0,1,0,1,1,1,1,0,0,1,1,0,1,1,0,0,1,1,1,1,1,1,1,0,1,1,
0,0,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,
0,1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,0,1,1,1,
0,0,0,1,1,0,1,1,0,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,1,0,1,1,0,1,1,
1,0,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,0,1,0,1,1,1,0,0,1,
1,1,0,0,1,1,1,1,1,0,0,0,1,1,1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,0,1,1,
1,1,1,0,0,0,0,1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0,1,1,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,1,1,0,0,0,1,1,1,
0,1,1,1,1,1,1,0,1,0,1,0,1,1,1,0,1,0,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,0,
0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,
1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,0,0,
0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,1,1,1,1,0,0,1,1,0,0,0,1,
1,0,1,0,1,1,1,1,0,1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,1,
1,1,1,0,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,1,
1,1,1,0),
tumorhemato=c(0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,
0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,0,0,0,0,1,1,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,
0,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,
1,1,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,
0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,
0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,
0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,1,1,1,
0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,
0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,
0,0,0,0,1),
desnut=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,
0,1,0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,0,1,1,1,0,0,1,1,
0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,
1,0),
comorbi=c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0),
leucopenia=c(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
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,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0),N = 862)
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Appendix 2 Convergence of the MCMC (model 3)
Trace plots (model 3)
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GR index (model 3)
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