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Abstract
The residual distributions obtained from discrete correlated and uncorrelated data cannot be well approx-
imated to the standardized normal distribution. In this case, the efficiency in checking the adequacy of
the model to the data and detecting outliers is not guaranteed. Thus, alternative measures for residual
analysis have been considered in several classes of models and their properties have been assessed. In this
paper, we investigate the empirical distribution of four residuals of the multivariate negative binomial
regression (MNBR) model. In our study, we propose standardized weighted and standardized Pearson
residuals; we also consider the standardized component of deviance and quantile residuals suggested by
Fabio et al. (2012) and Fabio et al. (2023), respectively. Monte Carlo simulation results reveal that the con-
cordance of the empirical distribution of the residuals to the standard normal distribution depends on the
dispersion parameter. Furthermore, the impact on residual analysis when the random effect distribution
is misspecified is explored. We concluded that the quantile and standardized weighted residuals presented
better performances.

Keywords: Count data; Monte Carlo simulation; Multivariate Negative Binomial distribution; Overdis-
persion; Residual analysis.

1. Introduction
Residual analysis is used to assess the adequacy of models and detect outliers (Hardin & Hilbe,

2016). It is desirable that the residual distribution follows the standardized normal distribution to
check the lack of fitting through graphical methods. However, this assumption cannot be guaran-
teed when the response variable is nonnormal. Based on this fact, some Monte Carlo simulation
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studies have been carried out for both correlated and uncorrelated data to assess the properties of
the standardized deviance component, Pearson residuals and alternative residuals when the ran-
dom variable is discrete or positive continuous. Espinheira et al. (2008) presented the weighted and
standardized weighted residuals to detect the misspecification of a class of beta regression models.
Numerical procedures showed that the last residual is better approximated to the standard normal
distribution. The authors also verified that the standardized weighted residual is able to clearly iden-
tify atypical and influential observations. Scudilio & Pereira (2020) demonstrated using Monte Carlo
simulation studies that the adjusted quantile residual computed from gamma and inverse normal dis-
tribution outperformed other residuals. Feng et al. (2020) revealed from their simulation results that
the distributions of the Pearson and standardized deviance component residuals obtained from Pois-
son, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial are right-skewed
and heavy-tailed in comparison to the normal distribution. Pereira et al. (2020) introduced a class of
residuals for checking the overall adequacy of a zero-adjusted regression model, which is superior
for detecting outliers compared to the randomized quantile residual. Fabio et al. (2012) and Fabio
et al. (2023) have suggested an extension of these kind of residuals for the residual analysis of the
MNBR model. The MNB distribution was deduced by Fabio et al. (2012) from the random in-
tercept Poisson mixed model where the random effect is assumed to follow the GLG distribution
(Lawless, 1987). The GLG distribution can be skewed to the right or to the left, and the normal
distribution is a particular case. Further, the MNB distribution belongs to the discrete multivariate
exponential family (Johnson et al., 1997) . Its dispersion parameter depends on the shape parameter
of the GLG distribution. Fabio et al. (2023) showed that this parameter has the desirable asymp-
totic consistency when the shape parameter assumes small values. This parameter can have an effect
on the residual analysis of the MNBR model. We aim to investigate the empirical distribution of
four residuals of the MNBR model. We propose the standardized weighted and standardized Pear-
son residuals, and consider standardized component of deviance and quantile residuals suggested by
Fabio et al. (2012) and Fabio et al. (2023), respectively. Under the assumption of MNBR model mis-
specification, Monte Carlo simulations are performed to evaluate the approximation of the empirical
distribution of residuals with respect to the standard normal distribution and their behavior.

This paper is organized as follows: In Section 2, we define the MNBR model and present its
properties. In Section 3, we propose standardized weighted and standardized Pearson residuals. Ad-
ditionally, we consider the standardized component of deviance and quantile residuals. In Section 4,
we perform a simulation study to evaluate the behavior of the empirical distributions of the residuals
under different scenarios. In Section 5, the residual analysis is applied to two real data sets. Finally,
in Section 6, we discuss the conclusions.

2. MNBR model
In this section, we present the MNB distribution which was deduced from a random intercept

Poisson model. The generalized log-gamma is assumed by Fabio et al. (2012) as the distribution for
random effect. Let b be a random variable following a generalized log-gamma (GLG) distribution,
for which probability density function (pdf ) is given by

f (b;µ,σ, λ) =


c(λ)
σ exp

[
(b–µ)
λσ – 1

λ2 exp
{
λ(b–µ)

σ

}]
, if λ ̸= 0,

1
σ
√

2π
exp

{
– (b–µ)2

2σ2

}
, if λ = 0,

(1)

with b ∈ R. The parameters µ ∈ R, σ > 0 and λ ∈ R are the location, scale, and shape parameters,
respectively, and c(λ) = |λ|(λ–2)λ

–2
/Γ (λ–2) with Γ (·) being the gamma function. We denoted b ∼

GLG(µ,σ, λ). The extreme value distribution is a particular case of (1) when λ = 1. For λ < 0 the
GLG pdf of b is skewed to the right and for λ > 0 it is skewed to the left. For λ = 0, (1) reduces to
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normal distribution. Figure 1 shows the GLG distribution for λ = 2 (skewed to the right), λ = –2
(skewed to the left) and λ = 0 (symmetrical).
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Figure 1. The probability density function of the generalized log-gamma distribution for the parameter λ=-2 (left), λ=0
(center) and λ=2 (right).

Fabio et al. (2012) showed that the MNB distribution can be derived from the random intercept
Poisson-GLG model by assuming that σ = λ and µ = 0, in expression (1). Furthermore, the authors
consider the reparametrization, ϕ = λ–2. Let yi = (yi1, . . . , yimi )

⊤ where each yij denotes the jth
measurement taken on the ith subject or cluster, for j = 1, . . . , mi and i = 1, . . . , n. The marginal
probability mass function (pmf ) of yi is given by

f (yi;θ) =
Γ (ϕ + yi+)ϕϕ(∏mi

j=1 yij!
)
Γ (ϕ)

exp
(∑mi

j=1 yij log(µij)
)

(ϕ + µi+)ϕ+yi+
, (2)

where θ = (β⊤,ϕ)⊤, ϕ = λ–2 is the dispersion parameter, ϕ–1 is the overdispersion parameter,
Γ (·) is the gamma function, yi+ =

∑mi
j=1 yij and µi+ =

∑mi
j=1 µij. Its marginals are negative binomial

(NB) distributions, with means E(yij) = µij, variances Var(yij) = µij+µ2
ij/ϕ, covariances Cov(yij, yij′ ) =

µijµij′ /ϕ for j ̸= j′, and intraclass correlation Corr(yij, yij′ ) = √µijµij′ /
√

(ϕ + µij)(ϕ + µij′ ) for j ̸= j′ is
always positive. We can easily see that when ϕ assumes large values, the marginals of MNB distribu-
tion behave approximately as independent Poisson distribution with mean µij. Otherwise, when ϕ

assumes values close to zero, the intraclass correlation tends to one. We denote by yi ∼ MNB(µi,ϕ),
independent vectors of random outcomes which follow the probability function given in (2) with
µi = (µi1, . . . ,µimi )

⊤, and ϕ > 0. The MNB regression (MNBR) model follows the hierarchical

structure, that, is, (i) yi
ind∼ MNB(µi,ϕ) and (ii) log(µij) = x⊤ij β, with xij = (xij1, xij2, . . . , xijp)⊤ con-

taining values of the explanatory variables for the ith cluster (subject), and β = (β1,β2, . . . ,βp)⊤
is the vector of regression coefficients. The inferences for the MNBR model are obtained from
expression (3), in which its formulation has a closed form. Let y = (y⊤1 , . . . , y⊤n )⊤ be the vector
containing all measured outcomes for the ith subject, the log-likelihood function is given by

ℓ(θ) =
n∑

i=1
log

{
Γ (ϕ + yi+)

Γ (ϕ)

}
–

n∑
i=1

mi∑
j=1

log
(
yij!
)

+ nϕ log(ϕ)–

ϕ

n∑
i=1

log(ϕ + µi+) +
n∑

i=1

mi∑
j=1

yij log

{
µij

ϕ + µi+

}
, (3)
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where θ = (β⊤,ϕ)⊤. The maximum likelihood (ML) estimates θ̂ of θ are obtained following the
Fisher’s scoring iterative algorithm described by Fabio et al. (2012). The estimate of the β and ϕ
parameter could be obtained by

β(t+1) = β(t) + (X⊤W(t)X)–1X⊤(y – µ∗(t)),

ϕ(t+1) = ϕ(t) –
Uϕ(ϕ(t))

Lϕϕ(ϕ(t))
,

with

Uϕ =
n∑

i=1


yi+–1∑
j=0

(j + ϕ)–1 –
yi+

ϕ + µi+
– log(1 + ϕ–1µi+) +

µi+
ϕ + µi+

 ,

where the inner summation is 0 when yi+ – 1 < 0 and

Lϕϕ =
∂Uϕ

∂ϕ
=

n∑
i=1


(yi+–1)∑

j=0

yi+
(ϕ + µi+)2

+
ϕ–1µi+
ϕ + µi+

–
µi+

(ϕ + µi+)2
– (j + ϕ)–2

 ,

for the t = 0, 1, 2, . . ., X⊤ = (X1, . . . ,Xn)⊤ with Xi = (xi1, . . . , ximi )
⊤ and xij = (xij1, . . . , xijp)⊤;

y = (y⊤1 , . . . , y⊤n )⊤ with yi = (yi1, . . . , yimi )
⊤; µ∗ = (µ∗

1 ,µ∗
2 , . . . ,µ∗

n )⊤ with µ∗
i = ai ⊙ µi, ai =

(ϕ+yi+)/(ϕ+µi+), µi = (µi1, . . . ,µimi )
⊤ and⊙ define the Hadamard product; W = diag(W1, . . . ,Wn)

with W i = diag(µi) – (ϕ + µi+)–1µiµ
⊤
i and diag(·) represent the diagonal matrix. At convergence,

we obtain

β̂ = (X⊤ŴX)–1X⊤(y – µ̂∗),

where the elements from Ŵ are Ŵ i = diag(µ̂i) – (ϕ̂ + µ̂i+)–1µ̂iµ̂
⊤
i , the elements from µ̂∗ are µ̂∗

i =
âi⊙ µ̂i, âi = (ϕ̂+yi+)/(ϕ̂+ µ̂i+) and ϕ̂ is the maximum likelihood estimate. Under standard regularity
conditions, assuming ϕ̂ is a consistent estimator, the approximate distribution of (β̂ – β) is the
multivariate normal distribution with mean zero and covariance matrix Iββ = –E[∂ℓ2(θ)/∂β∂β⊤] =
X⊤WX.

3. Residual analysis
In this section, we propose the standardized Pearson and standardized weight as measures of

agreement between the data and the fitted MNBR model. We also review other kinds of residuals
suggested by Fabio et al. (2012) and Fabio et al. (2023). We deduce the standardized weighted residual
from the Fisher scoring iterative process of β when ϕ is fixed, similarly to GLMs theory (Agresti,
2015; Faraway, 2016). Since the convergence of this estimation method is satisfied, the β̂ estimator
from the MNBR model reduces to

β̂ = (X⊤ŴX)–1X⊤Ŵz, (4)

where z = Xβ̂ + Ŵ
–1

(y – µ̂∗). Despite z differing from the usual form presented in GLMs, the
estimator of β arises with equivalent formulation. Hence, the weighted residual vector based on (4)

is expressed by r = Ŵ
1/2

(z – Xβ̂) = Ŵ
–1/2

(y – µ̂∗). The weighted residual for the ith subject and
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ijth observation are given by ri = Ŵ
–1/2
i (yi – µ̂∗

i ) and rwij = (yij – µ̂∗ij)/
√

ŵjj
i , respectively. The wjj

i
represent the jth measurement taken on the ith subject of the W matrix . Furthermore, as

Cov(r) = [Ŵ
1/2

– Ŵ
1/2
X(X⊤ŴX)–1X⊤Ŵ] × Cov(z)×

[Ŵ
1/2

– Ŵ
1/2
X(X⊤ŴX)–1X⊤Ŵ]⊤,

it is possible to conclude that Cov(z) ≈ Ŵ
–1

and Cov(r) = (IN – Ĥ) where IN is an identity matrix
of order N and the weighted hat matrix is given as

Ĥ = Ŵ
1/2
X(X⊤ŴX)–1X⊤Ŵ

1/2
.

The standardized weighted residual vector which is orthogonal to the weighted fitted linear pre-

dictor, η̂ = Ŵ
1/2
Xβ̂, is defined by rp = (I – Ĥ)–1/2Ŵ

–1/2
(y – µ̂∗). The standardized weighted

residual corresponding to ith subject takes the form rpi = (In – Ĥi)–1/2Ŵ
–1/2
i (yi – µ̂∗

i ), where Ĥi =

Ŵ
1/2
i Xi(X⊤

i Ŵ iXi)–1X⊤
i Ŵ

1/2
i . In addition, the residual to ijth observation is given as

rswij =
yij – µ̂∗ij√
ŵjj

i (1 – ĥjj
i )

, (5)

where hjj
i represents the jth measurement taken on the ith subject of the H matrix, for i = 1, 2, . . . , n

and j = 1, . . . , mi.
Waller & Zelterman (1997) suggested the Pearson residuals, for the ijth observation to assess the

adequacy of the MNBR model, which is defined as rpij = (yij – µ̂ij)/
√
µ̂ij(1 + ϕ̂–1µ̂ij) by assuming

that ϕ is fixed. We propose the standardized Pearson residuals considering the leverages of the
observations for the standardization of rpij. Thus, its expression takes the following form,

rspij =
rpij√

1 – ĥjj
i

=
(yij – µ̂ij)√

µ̂ij(1 + ϕ̂–1µ̂ij)
√

1 – ĥjj
i

. (6)

Fabio et al. (2012) defined the standardized deviance component as residuals for the ith subject
(or cluster) by considering that ϕ is fixed . Its goodness-of-fit measure can be expressed as rdi =

d(yi, µ̂i, ϕ̂)/
√

1 – ĥi, where d(yi, µ̂i, ϕ̂) = ±
√

2{d2(yi, µ̂i, ϕ̂)}1/2 with

d2(yi, µ̂i, ϕ̂) = ϕ̂ log

(
ϕ̂ + µ̂i+

ϕ̂ + yi+

)
+
∑

{∀yij ̸=0}

yij log

(
yij(ϕ̂ + µ̂i+)

µ̂ij(ϕ̂ + yi+)

)
, (7)

where hi =
∑mi

j=1 hjj
i is a component of Hi matrix. The sign being the same as that of (yi+ – µ̂i+).

Recently, Fabio et al. (2023), under the supposition that yi+ follows a negative binomial distribution
(Tsui, 1986), employed the randomized quantile residual, rqi , for detecting outliers of the ith subject
in the MNBR model. If F(yi+;µ,ϕ) is the cumulative distribution of f (yi+), ai = limy↑yi+ F(y; µ̂i, ϕ̂),
and bi = F(yi+; µ̂i, ϕ̂), then the randomized quantile residuals for yi are given by rq,i = Φ–1(ui), where
Φ(·) is the cumulative distribution function of the standard normal and ui is a uniform random
variable on the interval (ai, bi].
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In general, it is recommended to draw the normal probability plot with an envelope for detecting
possible departures from the assumptions as well as outlying observations or subjects. However,
simulation studies are conducted with the aim of identifying their best performance.

4. Numerical results
In this section, Monte Carlo simulation studies are conducted to evaluate the approximation

of the empirical distributions of the standardized weighted, standardized Pearson, quantile, and
standardized deviance component residuals with respect to the standard normal distribution. The
numerical results are based on R = 10,000 Monte Carlo replications. We consider two scenarios,
in which the response variable y = (y⊤i , . . . , y⊤n ), where yi ∼ MNB(µi,ϕ) is generated following a

hierarchical structure, (i)yij |bi
ind∼ Poisson(uij), (ii) log(uij) = β0 + β1xij1 + β2xij2 + bi, and (iii)bi

iid∼
GLG(0, λ, λ). The covariate values are obtained as random draws in the following distributions:
xij1 ∼ N(0, 1) and xij2 ∼ Bernoulli(0.5) for i = 1, . . . , n and j = 1, 2, 3. The covariate values remain
constant throughout the simulation. Further, it is assumed that β = (1.5, 1.0, 0.0)⊤ and λ = ϕ2 in
the GLG distribution with ϕ(λ) = 0.5(1.41), 1.0(1.0), 3.0(0.58), 20(0.22), 100(0.1) and 500(0.04).
A three-simulation study is performed to evaluate the impact of misspecifying the random effect
distribution on the residuals. For samples size n = 100 and 200, the vector y = (y⊤1 , . . . , y⊤n )⊤ is
generated wrongly from a random intercept Poisson-Normal distribution following a hierarchical

structure (i)yij |bi
ind∼ Poisson(uij), (ii) log(uij) = β0 + β1xij1 + β2xij2 + bi, and (iii)bi

iid∼ N(0,σ), with
σ = ϕ–1 = 2.0, 0.33, 0.01 and fitted under MNBR model.

4.1 Scenario 1
In this scenario, the empirical distribution of (5), (6), (7) and quantile residuals is evaluated and

compared with the quantiles of the standard normal distribution. We consider six different values
for the dispersion parameter and specify a sample size as n = 30.
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Figure 2. Normal probability plot of the standardized deviance component, randomized quantile, standardized Pearson
and standardized weighted residuals (lines) for sample size n = 30, ϕ(λ) = 0.5(1.41), 1.0(1.0), 3.0(0.58) (columns) and
mi = 3 described in scenario 1.
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Figure 3. Normal probability plot of the standardized deviance component, randomized quantile, standardized Pearson
and standardized weighted residuals (lines) for sample size n = 30, ϕ(λ) = 20(0.22), 100(0.10), 500(0.04) (columns) and
mi = 3 described in scenario 1.
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Figures 2 and 3 show the normal probability plots of the order statistics mean of the standardized
deviance component, randomized quantile, standardized Pearson and standardized weighted resid-
uals. We consider confidence bands of 95% confidence level for the residual under study, as well as
the fitted line (black line) and the 45-degree diagonal line (blue line). We expect that the residuals,
as well as the black and blue lines, are superimposed. These figures reveal a high agreement between
the quantile residuals and the standard normal distribution when the parameter ϕ > 1; and when
ϕ < 1, the quantile residual present a little asymmetry. The empirical distribution of the standardized
Pearson and standardized weighted residuals tends to be approximate to the standard normal distri-
bution when the parameter ϕ reaches high values. Additionally, the empirical distribution of both
residuals exhibits smooth tails to the right and to the left, featuring some asymmetry. Finally, the
empirical distribution of the standardized deviance component residuals does not present a desirable
behavior.

4.2 Scenario 2
In this second scenario, measures of central tendency are computed for the mean order statistics

of the residuals defined in Section 3. Our purpose in this scenario is to study their asymmetric
properties by considering three sample sizes, n = 10, 100, and 300. The results are displayed in the
boxplot graphs in Figures 4 and 5. In the boxplot, the red point in the quantile interval corresponds
to the sample mean and the blue lines correspond to the limits of the interval [-3,3].
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Figure 4. Boxplot of the standardized deviance component, randomized quantile, standardized Pearson and standardized
weighted residuals for sample sizes n = 10, 100, 300 (columns), ϕ = 0.5, 1.0, 3.0 and mi = 3 described in scenario 2.
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Figure 5. Boxplot graphics of the standardized deviance component, randomized quantile, standardized Pearson and
standardized weighted residuals for sample sizes n = 10, 100, 300 (columns), ϕ = 20, 100, 500 and mi = 3 described in
scenario 2.
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Figures 4 and 5 reveal that, independent of the sample size, the quantile residuals preserve a
symmetric behavior for the different values of ϕ. The standardized weighted residuals exhibit heavy
tails when ϕ assumes values equal to 0.5 and 1.0 for all sample sizes. Its behavior becomes slightly
asymmetric to the right for high values of ϕ > 3, even though n increases. The standardized Pearson
residuals are asymmetric to the right, decreasing when ϕ and n assume high values, respectively.
Further, the simulation results for the standardized deviance component residuals only exhibit a
nearly symmetric behavior when n = 10 and values of ϕ are high. According to these results, we
can verify that the performance of these residuals is associated with the level of asymmetry of the
shape parameter of the GLG distribution once the ϕ = λ–2. We also conclude that the randomized
quantile residual is more appropriate for the cases in which ϕ < 1, and the intraclass correlation
tends to one. The standardized weighted residuals present better performance than Standardized
Pearson. The quantile residuals present the desirable behavior.

4.3 Scenario 3
Figures 6 and 7 show the empirical distribution of the residuals compared with the quantiles

of the standard normal distribution and the boxplot graphs, respectively, when the random effect
distribution is misspecified. Even though we assumed a normal distribution for the random effect
distribution and fitted by MNBR, the random quantile residuals show a high agreement with the
standard normal distribution for all ϕ and n values. The standardized Pearson weighted residuals
have this behavior for high values of ϕ (see Figure 6). However, the boxplot graphs reveal that
the standardized weighted residuals exhibit a smooth asymmetry to the right for values of ϕ ≥ 3,
in agreement with the simulation results present in Scenario 2. Based on all simulation results, we
conclude that the standardized weighted residuals can be an alternative to quantile residuals as a
goodness of fit for the MNBR model when ϕ ≥ 3.
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Figure 6. Normal probability plot of the standardized deviance component, randomized quantile, standardized Pearson
and standardized weighted residuals (columns) for sample size n = 100, ϕ = 0.5, 3.0, 100 (lines) and mi = 3 described in
scenario 3.
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Figure 7. Boxplot of the standardized deviance component, randomized quantile, standardized Pearson and standardized
weighted residuals for sample sizes n = 100, 200, (lines) ϕ = 0.5, 3.0, 100 (columns) and mi = 3 described in scenario 3.

14 Braz. J. Biom., v.43, e-43728, 2025.



Fabio et al.

In addition, we conducted an additional simulation study (it does not show the results) to evaluate
the behavior of the empirical distribution of the residuals with a small means. We considered a unique
sample size of n = 10, the real values to the vector of parameters as (ϕ,β0,β1)⊤ = (3.0, 0.5, –0.5)⊤
and three different sub scenarios. The random samples are generate assuming: (i) xij1 ∼ U(–1.5; 1.5)
(true model), (ii) x∗ij1 = x2

ij1 (wrong model) and (iii) x∗∗ij1 = 1/xij1 (wrong model). The maximum
estimates are obtained assuming the linear systematic model, i.e., g(µij) = β0 + β1 × xij1. Unlike
Feng et al. (2020), we observed that the residuals, when the covariate is misspecificated, have a very
close empirical distribution when the true model is assumed. Also, the empirical distributions of the
residual have the same behavior as previous simulation results.

5. Applications
5.1 Alzheimer’s data

The Alzheimer’s data is presented in Hand & Taylor (1987) and Hand & Crowder (1996) assess
the deterioration aspects of intellect, self-care, and personality in senile patients with Alzheimer’s
disease. Two groups of patients were compared, one of which received a placebo and the other
received treatment with Lecithin. In the data, each of the subjects, 26 in the placebo group and
22 in the Lecithin group, were measured on five occasions (initially, 1st, 2nd, 4th, and 6th). The
measurements were the number of words that the patients could recall from a list of words. The
major interest in this study is to investigate whether the memory-effect differs between the two
treatment groups. Figure 8, exhibits the presence of atypical patients in the placebo and the Lecithin
groups, measured at different times. The mean number of recorded words in each measurement
is indicated by the black point. Its behavior provides evidence that the mean number of words
recorded for the placebo group does not differ from that of the Lecithin group. This fact is evidenced
in Table 1, as well as the smaller dispersion in the Lecithin group. Further, the rate between the
variance and the mean in each record is an indicator of the overdispersion phenomenon present in
the data. Based on this fact, we propose the MNBR model for fitting the data and accommodating
the extra variability.

Table 1. Summary of Placebo and Lecithin group for the Alzheimer’s data

Placebo
1 2 3 4 5

Mean 9.65 9.23 10.08 8.92 8.73
Variance 26.87 29.78 26.07 31.19 27.56

Variance/Mean 2.78 3.22 2.58 3.49 3.15

Lecithin
1 2 3 4 5

Mean 8.14 9.77 8.41 9.45 9.05
Variance 22.50 21.89 21.39 29.59 26.62

Variance/Mean 2.76 2.24 2.54 3.13 2.94
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Figure 8. Boxplot of the patients in (a) the placebo and (b) the lecithin group, respectively for the Alzheimer’s data.

Thus, we consider that the vector response containing the number of words recalled by the i-th

patient follows the hierarchical structure: (i) yi
ind∼ MNB(µi,ϕ) and (ii) log(µi) = β1 + β2Groupi,

where yi = (yi1, . . . , yi5)⊤, µi = (µi1, . . . ,µi5)⊤, for i = 1, . . . , 48, β1 intercept and β2 represent the
Lecithin effect with respect to the placebo. The parameter estimates obtained using the are shown
in Table 2. The inference results reveal that the mean number of words recalled in the Lecithin
and placebo groups is the same statistically. The standardized weighted, standardized Pearson, and

Table 2. Parameter estimates, standard errors (Std. error), z-values, and p-values for the MNBR model fitted to the
Alzheimer’s data

Parameter Estimate Std. error z-value p-value

ϕ 3.811 0.834 – –

β1 2.232 0.104 21.367 0.000
β2 -0.039 0.154 -0.254 0.799

quantile residuals are employed for a residual analysis of the MNBR model fitted to Alzheimer’s data.
Figure 9 exhibits two graphs. In the first line, the plots of these residuals against the observations
show that they are randomly spread around zero between the threshold of ±3 without the presence
of outliers. Their respective normal plots with simulation envelopes indicate the adequacy of the
MNBR model to the Alzheimer’s data. The performance of these three residuals is in accordance
with the simulation study when ϕ assumes a value close to three.
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Figure 9. The residuals and simulated envelope plots of the standardized weighted, standardized Pearson and randomized
quantile residuals to the Alzheimer’s data.

5.2 Seizure’s data
The data set described in Diggle et al. (2013) and recently by Fabio et al. (2023) refers to an

experiment in which 59 epileptic patients were randomly assigned to one of the two groups the
treatment (Progabide drug) and placebo groups. The number of seizures experienced by each pa-
tient during the baseline period (week eight) and the four consecutive periods (every two weeks)
was recorded. The main goal of this application is to analyze the drug effect with respect to the
placebo. Two dummy covariates are considered in this study: Group, which assumes values equal to
1 if the patient belongs to the treatment group and 0 otherwise; and Period, which assumes values
equal to 1 if the number of seizures is recorded during the treatment and 0 if they are measured in
the baseline period. Considering the irregular measurement of rate of seizures during the time, the
variable Time is considered as an offset for fitting the data, where Time assumes value equal to 8 if
the number of seizures is observed in the baseline period and 2 otherwise.
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In the boxplot graph in Figure 10, we note atypical individuals, patients ♯18(111, 37, 29, 28, 29)
and ♯25(55, 18, 24, 76, 25) that belong to the placebo group. These, atypical observations present a
high number of seizures in the baseline period and in the third visit of the ♯25 patient compared to
other clinic visits. Patients ♯29(76, 11, 14, 9, 8) and ♯49(151, 102, 65, 72, 63) belong to the Progabide
group, and they experienced a decrease in the number of seizures in which clinic visit. This indicates
the effectiveness of the drug in patients with complex seizures. The average number of seizures in
each record is indicated by the red point. Its behavior is similar in both the groups, indicating that
the number of seizures over time does not differ between the groups. Fabio et al. (2023) showed the
occurrence of the overdispersion phenomenon in the seizure data.
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Figure 10. Boxplot and profile mean for placebo (left) and treatment (right) group for the seizure’s data.

The parameters estimated are obtained assuming the following structure: (i) yi
ind∼ MNB(µi,ϕ)

and (ii) log(µij) = β1 + β2Groupi + β3Periodij + β4(Groupi × Periodij) + log(Timeij), where yi =
(yi1, yi2, yi3, yi4)⊤, µi = (µi1,µi2,µi3,µi4)⊤, for i = 1, . . . , 59, β2 is the logarithm of the ratio of the
average rate of the treatment group to the placebo group at baseline, β3 is the logarithm of the ratio
of the seizure mean after the treatment period to before the treatment period for the placebo group,
and exp(β4) is the treatment effect, and it is the ratio of post- to pre-treatment mean seizure ratios
between the treatment and placebo groups. The parameter estimates obtained are shown in Table 3.
The estimates confirm that there is not enough evidence of the treatment effect.

Table 3. Parameter estimates with their respective approximate standard errors (Std. error), z-values, and p-values for the
MNBR model fitted for the seizure’s data

Parameter Estimate Std. error z-value p-value

ϕ 1.607 0.278 – –

β1 1.348 0.153 8.813 < 0.001

β2 0.028 0.211 0.131 0.896
β3 0.112 0.047 2.386 0.017
β4 -0.105 0.065 -1.610 0.107

λ 0.789
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Figure 11. The residuals and simulated envelope plots of the standardized weighted, standardized Pearson and random-
ized quantile residuals to the seizure’s data.

The standardized weighted, standardized Pearson, and quantile residuals are employed for a
residual analysis of the MNBR model fitted to seizure data. Figure 11 suggested that the quantile
residual is more appropriate for checking the departures of the MNBR model fitted to seizure data.
Simulation studies show that standardized Person and standardized weighted residuals are inappro-
priate when ϕ assumes small values (In our application, ϕ = 1.607).

6. Conclusion
The empirical distribution of the four residuals is assessed for the MNBR model. We proposed

the standardized weighted and standardized Pearson residuals, and, to complement our study, we
considered the standardized component of deviance and quantile residuals suggested by Fabio et
al. (2012) and Fabio et al. (2023), respectively. Monte Carlo simulation studies were carried out to
evaluate the approximation of the empirical distributions of the residuals with respect to the standard
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normal distribution. We verify that the performance of these residuals depends on the dispersion
parameter, which is associated with the level of asymmetry of the shape parameter of the GLG
distribution, once ϕ = λ–2. We conclude that the quantile residual is suggested when ϕ > 0.5, for all
sample sizes. The standardized weighted residuals can be an alternative to quantile residuals when
ϕ ≥ 3 for every n. The standardized Pearson residual can be employed as the parameter ϕ and
n assume high values. Finally, we suggest drawing the normal probability plots with simulation
envelope for standardized Pearson and weight residuals to check the adequacy of the MNBR model
to the data by considering the simulation results.
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