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Abstract  
When working on modeling with regression analysis, several models are generally tested in order to select a more accurate equation after 

fitting in relation to some statistical tests. The decision becomes more difficult when the results of the statistical tests are similar because 

they are usually tests by equation, meaning that they provide statistics for each equation separately. A methodology which classifies them 

according to the averages of estimates in relation to the average of actual data does not exist because the averages of estimates and actual 

data are the same. This work proposes a methodology where the average sum of squares of the fitted equations and the average sum of 

squares of the real data are used. Thus, it becomes possible to apply a mean comparison test to group similar equations and separate 

different equations. For this work, 105 trees of Eucalyptus spp. clones were used, rigorously cubed by the Smalian method at seven and a 

half years of age in their second rotation, in a forest experiment located in a semi-arid zone of Pernambuco, Brazil. In turn, five linear 

volumetric models and one non-linear model were fitted and comparisons among equations were performed using several statistical tests 

usually employed in forest modeling. The Tukey, Duncan, Dunnett and Scott-Knott tests were used to test the proposed methodology, 

which, in addition to presenting similar results to the traditional tests, enabled grouping similar equations, and having the real volumes of 

the trees as the control.  

  
Keywords: Eucalyptus; Modeling; Average sum of squares; Mean comparison tests.  

  

1. Introduction  
The statistical technique of regression analysis models and investigates relationships among 

variables is considered one of the most used among all statistical methodologies. It is used in its 

breadth in the various fields of science, such as: Physics, Chemistry, Biology, Epidemiology, 

Econometrics, Administration, Social Sciences, and Forest Measurements, among others 

(Montgomery et al., 2003; Figueiredo-Filho et al., 2011; Fahrmeir et al., 2013; Segel & Edelstein, 

2013; Silva & Ferreira, 2021).   

Regression is understood as the study of the relationship between two variables or groups of 

variables, in which one seeks to estimate the value of a dependent variable (Yi) from the knowledge 

of the values of one or more independent variable(s) (Xi). After fitting the models in modeling 

processes, there is a need to select the best equation that provides robust estimates of the modeled 

phenomenon. 
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There is a large number of statistics which are used to select equations, such as: simple and 

adjusted coefficient of determination, simple and corrected adjustment index, residual standard error, 

mean absolute error, standard error of the estimate, Furnival index, criterion of simple and corrected 

Akaike adjustment, Bayesian information criterion, weighted value of statistical scores, and graphical 

analysis of residuals, among others (Furnival, 1961; Akaike, 1974; Schwarz, 1978; Schlaegel, 1981; 

Schneider et al., 2009; Mehtätalo & Lappi, 2020).  

 These procedures always seek to select the best equation and it is often a difficult decision 

because other factors in addition to precision must be considered, such as: measurement techniques, 

costs to measure the independent variable(s), availability and accuracy of measuring instruments, 

equation selection tests, etc. However, selecting groups of equations that obtain similar results is not a 

common practice.  

The simplest way to select groups of equations would be to apply a completely randomized 

experimental design with real values as comparators and equations as treatments and perform 

traditional analysis of variance (ANOVA), which is a fundamental statistical tool for testing 

randomness of data from a sample in order to select predictors and test hypotheses in experimental 

and modeling processes. If a significant difference was verified by the Snedecor F test (Snedecor, 

1934), a mean separation test would be applied.  

This procedure used in experimentation and other statistical techniques is unable to be used in 

regression analysis because the sum of observed values is equal to the sum of estimated values 

(∑ 𝑌𝑖
𝑛
𝑖=1 = ∑ �̂�𝑖

𝑛
𝑖=1 ), resulting in ∑ 𝑌𝑖

𝑛
𝑖=1 − ∑ �̂�𝑖 = 0𝑛

𝑖=1 , as follows (expressions 1, 2, 3 and 4):  

  

∑ 𝑌𝑖 −𝑛
𝑖=1 𝑛𝑏0 − 𝑏1 ∑ 𝑋𝑖

𝑛
𝑖=1 = 0          (1) 

∑ 𝑌𝑖 −𝑛
𝑖=1 ∑ (𝑏0 + 𝑏1𝑋𝑖

𝑛
𝑖=1 ) = 0          (2) 

  

 But, �̂�𝑖 = 𝑏0 + 𝑏1𝑋𝑖 . So that:  

  

∑ 𝑌𝑖 −𝑛
𝑖=1 ∑ �̂�𝑖

𝑛
𝑖=1 = 0           (3) 

∑ �̅�𝑖
𝑛
𝑖=1 = ∑ �̂�𝑖

𝑛
𝑖=1             (4) 

  

Therefore, given that the estimated means of all fitted equations are equal to the dependent 

variable mean or true mean (�̅̂� = �̅�), applying any mean comparison tests would always do not reject 

the null hypothesis because differences between any estimated mean and the real mean will always be 

zero.  

In this work, what is proposed to solve this problem and to be able to form groups of similar 

equations is to compare the mean sum of squares of the real data, in this case the total sum of squares 

(TSS) with the means of the sum of squares of the regression (SSR) and carry out the F test normally 

as applied in the analysis of experiments. In this case, the null hypothesis (H0) is not rejected when 

the means of SSR and TSS do not differ significantly at the α level of significance. At the same time, 

the means of the SSR of the different equations to be tested are also compared.  

In the specific case of volumetric models in Forest Science and with possession of tree volumes 

(actual and estimated), variance analysis is conducted considering a completely randomized design 

and application of the F test. If H0 is not rejected, the equations provide similar estimates to the real 

data, otherwise it is assumed that at least two equations differ from each other.  

Applying a separation of means test, such as: Tukey (Tukey, 1949), Duncan (Duncan, 1955), 

Dunnett (Dunnett, 1964) among others, would allow grouping those equations that do not present 
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significant difference among themselves, and an equation may belong to more than one group of 

equations in the Tukey and Duncan tests.  

Although the Tukey and Duncan tests originate classifications of means from highest to lowest, 

the most important thing in this specific case of equation comparison is to consider the position of the 

mean of the total sum of squares (TSS) as being the main element of the comparisons, because it 

represents the actual volume.  

It is recommended to apply the Scott-Knott test when the number of equations is high in order to 

avoid that an equation belongs to more than one group; it uses the likelihood ratio to test the 

significance that i treatments can be separated by groups that maximize the sum of squares between 

groups (Scott & Knott, 1974).  

The objective of this work is to compare equations and form groups of equations through the 

means of total sums of squares of real data (TSS) and fitted equations (SSR).  

  

2. Materials and Methods  
 

For this work, 105 Eucalyptus spp. trees in second rotation, rigorously cubed by the Smalian 

method, were selected in a completely random sampling considering an adopted error (SE%=10%). 

The trees were planted in March 2011, were seven and a half years old when they were cubed and are 

part of an experiment installed at the Experimental Station of the Agronomic Institute of Pernambuco 

(IPA), in the municipality of Araripina, Pernambuco located in Chapada do Araripe, in the 

municipality of Araripina, Brazil, with geographic coordinates 07°27’37” S and 40°24”36” W, 

altitude of 831 meters, and with yellow latosol + red-yellow latosol soils. The climate is Bshw 

according to the Koppen classification, being semi-arid, hot and having summer-autumn rains. The 

average precipitation during the second rotation was 450 mm/year, concentrated between the months 

of November to May, which promotes water deficits from May to October (Gouveia et al., 2015).  

Before fitting with rigorous cubing data, the sampling error (actual) was calculated in percentage 

(SE%) (expression 5) in order to compare with the stipulated or adopted error (AE).  

  

 𝑆𝐸% =  [
𝑡(𝛼

2⁄ ;𝑛−2) 𝑠�̅�

�̅�
] 100     (5)  

  

where: t(α
2⁄ ;n−2 df) = tabulated t-test value at the significance level (α

2⁄ ) with n–2 degrees of 

freedom (df); sV̅ = standard error of the mean volume; V̅  = mean volume.  

  

The decision rule is that if SE% ≤ AE% the sample is sufficient, meaning that it represents the 

forest population. In the event of SE% > AE%, there is a need to calculate the sample size (n) using 

expression 6.  

 

 𝑛 =
𝑡

(𝛼
2⁄ ;𝑛−2)

2 𝐶𝑉%2

𝐴𝐸%2          (6) 

 

where: n = number of samples needed to represent the forest population; t(α
2⁄ ;n−2 df)   = tabulated t-

test value at the significance level  (α
2⁄ ) with n–2 degrees of freedom (df); CV% = coefficient of 

variation.  

  

The variability among volume (V), diameter at height of 1.3 m from the ground (D) and the height 

of the tree (H) that will define sufficiency will be that which presents the greatest variability, as it 
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corresponds to the need for a greater number of trees to represent the forest population considered. 

The calculation of n will indicate the need for cubing new trees so that SE% ≤ AE%.  Five simple 

linear models and one non-linear model (Chart 1) were fitted using the least squares method for 

fitting the linear models and the iterative Marquardt method for fitting the non-linear model 

(Marquardt & Snee, 1974).  

 

Chart 1. Adjusted linear and non-linear volumetric models of Eucalyptus spp. at 7.5 years old in Araripina, PE, Brazil  

  

Name  Model  

Spurr or combined variable (Spurr, 1952)  
Vi = β0 + β1(D2H)i + εi 

Spurr without β0  Vi = β1(D2H)i + εi 

Non-linear Spurr   Vi = β0(D2H)𝑖
β1 . εi 

Simple linear as a function of DBH  Vi = β0 + β1Di + εi 

Simple linear as a function of H  Vi = β0 + β1Hi + εi 

Simple linear as a function of DH  
Vi = β0 + β1DHi + εi 

Where: Vi = Tree volume in m3; D = diameter at 1.30m from the ground in cm; H = total height of the tree in meters; β0 and β1= 

model parameters; εi = random error, uncontrollable part of the model.  

  

The following statistical tests and graphical analysis of residuals were initially applied:  

  

a) Adjusted coefficient of determination (radj
2 ) (expression 7) 

  

𝑟𝑎𝑑𝑗
2 = 1 − (

𝑛−1

𝑛−𝑝
) (1 − 𝑟2)          (7) 

  

where: p = number of parameters in the model;  𝑟2 = Coefficient of determination; 𝑟2 =  
𝑆𝑆𝑅

𝑇𝑆𝑆
 ,  

 

where: SSR = Sum of squares of the regression; TSS = Total sum of squares.  

   

b) Corrected Adjustment Index % (CAI%) (Schlaegel, 1981) (expression 8) 

  

𝐶𝐴𝐼% = [1 − (1 − 𝐼𝐴) (
𝑛−1

𝑛−𝑝
)] 100          (8) 

 

where: 𝐼𝐴 =
∑ (�̂�𝑖−�̅�)2𝑛

𝑖=1

∑ (𝑌𝑖−�̅�)2𝑛
𝑖=1

 , n = number of trees sampled; p = number of parameters in the model; Ŷi 

= volume of the i-th tree estimated by regression; Y̅ = mean volume observed;  Yi =  volume of the i-

th tree observed.   

  

c) Mean standard error of the residual (MRSE) (expression 9) 

  

𝑀𝑅𝑆𝐸 = √
∑ (𝑌𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
           (9) 

  

   



 Silva et al. 


Braz. J. Biom., v.43, e-43743, 2025.                                                                                                                       5 

d) Absolute mean error (AME) (expression 10) 

   

𝐴𝑀𝐸 =
∑ |𝑌𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
            (10) 

  

e) Standard error of the estimate in percentage (SEE%) (expression 11) 

   

𝑆𝐸𝐸% = (
100

�̅�
) √

∑ (𝑌𝑖−�̂�𝑖)2𝑛
𝑖=1

𝑛−𝑝
           (11) 

  

f) Mean absolute standard error (MASE) (expression 12) 

  

MASE =
100

𝑛
∑

|𝑌𝑖−�̂�𝑖|

𝑌𝑖

𝑛
𝑖=1                 (12) 

  

g) Mean square of the residual (MSR) (expression 13) 

   

𝑀𝑆𝑅 = √
∑ (𝑌𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛−𝑝
            (13) 

  

h) Coefficient of variation in percentage (CV%) (expression 14) 

  

𝐶𝑉% =  [
√∑ (𝑌𝑖−�̂�𝑖)2𝑛

𝑖=1

(√𝑛−𝑝)�̅�
] 100           (14) 

  

i) Furnival Index (FI) (Furnival, 1961) (expression 15) 

  

𝐹𝐼 =  √𝑀𝑆𝑅 𝑒𝑥𝑝 [−
(𝑛−2)

2𝑛
 ]           (15) 

 

j) Akaike Information Criterion (AIC) (Akaike, 1974) (expression 16) 

  

𝐴𝐼𝐶 =  𝑛 𝑙𝑛 [
𝑆𝑄𝑅𝑒𝑠

𝑛
] + 2𝑝           (16) 

  

l) Corrected Akaike Information Criterion (AICc) (Bozdogan, 1987) (expression 17) 

  

𝐴𝐼𝐶𝑐 =  𝐴𝐼𝐶 + 
2𝑝(𝑝+1)

𝑛−𝑝−1
           (17) 

  

m) Bayesian Information Criterion (BIC) (Schwarz, 1978) (expression 18) 

  

𝐵𝐼𝐶 =  𝐴𝐼𝐶 − 𝑝[2 −  𝑙𝑛 (𝑛)]          (18) 

  

n) Weighted value of statistical scores (WV) (expression 19) 
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The WV assigns values to each equation per test, with the best equation in a test given weight one, 

the second given weight two, and so on. The WV is expressed (19) by:  

 

𝑊𝑉 = ∑ (𝑁𝑟𝑖)(𝑃𝑖
𝑛
𝑖=1 )           (19) 

 

where: Nri = occurrence number in the i-th classification; Pi = weight of the i-th classification.  

   

o) Graphical analysis of the residuals  

  

After fitting the models, the resulting equations were used to estimate the volumes of individual 

trees, and the results were subsequently submitted to ANOVA (α=5%; 1%) in a completely random 

design, considering each equation as a treatment and the real data as a comparator. The Tukey, 

Duncan, Dunnett and Scott-Knott mean comparison tests were applied at 5% and 1% significance 

levels.  

 Tukey’s test, which compares contrasts between two means and is based on studentized 

amplitude, is expressed (20 and 21)by (Tukey, 1949):  

 

∆= 𝑀𝑆𝐷 = 𝑞(𝛼;𝑛,𝑛′𝑑𝑓)√
𝑀𝑆𝑅

𝐽
, when J (number of repetitions) by equation is equal.   (20) 

  

 ∆= 𝑀𝑆𝐷 = 𝑞(𝛼;𝑛,𝑛′𝑑𝑓)√
1

2
(

1

𝐽1
+

1

𝐽2
) 𝑀𝑆𝑅, when J is different by equation.    

  (21) 

  

where: ∆= MSD = minimal significant difference in contrast involving two means; qα = tabulated 

value of the studentized amplitude calculated according to the number of treatments to be compared 

(n) and the number of degrees of freedom of the residual (n’) for the significance level α; MSR = 

mean square of the residual; J = number of repetitions per treatment (equations).   

  

 Duncan’s multiple range test (1955) is more flexible than Tukey’s test in terms of rejecting H0, 

and it allows comparing contrasts between two means; however, it takes into account the number of 

means involved in the contract, meaning the mean(s) which is/are between the mean values to be 

compared. The test is expressed (22 and 23) by:   

  

𝐷 = 𝑀𝑆𝐷 = 𝑧(𝛼;𝑛,𝑛′𝑑𝑓)√
𝑀𝑆𝑅

𝐽
, when J (number of repetitions) by equation is equal.   (22) 

  

 𝐷 = 𝑀𝑆𝐷 = 𝑧(𝛼;𝑛,𝑛′𝑑𝑓)√
1

2
(

1

𝐽1
+

1

𝐽2
) 𝑀𝑆𝑅, when J is different by equation.    (23) 

  

where: D = MSD  Minimum significant difference between two treatments by Duncan’s test; zα 

= tabulated value as a function of the number of means involved in the contrast and the number of 

degrees of freedom of the residual for the significance level α.  

  

 Dunnett’s test uniquely compares each equation with the control. In this test, the null and 

alternative hypotheses are respectively H0: µc = µi and the alternative hypothesis µc ≠ µi, in which µc 

corresponds to the mean of the comparator or control, and µi the mean of treatment i to be compared 

with the control (Dunnett, 1964). The test is expressed (24 and 25) by:  
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∆= 𝑀𝑆𝐷 = 𝑑(𝛼;𝑛,𝑛′𝑑𝑓)√
(2)𝑀𝑆𝑅

𝐽
  , when J (number of repetitions) by equation is equal.   (24) 

∆= 𝑀𝑆𝐷 = 𝑑(𝛼;𝑛,𝑛′𝑑𝑓)√(
1

𝐽1
+

1

𝐽2
) 𝑀𝑆𝑅, when J is different by equation.     (25) 

  

The d(α;n,n′df) corresponds to the tabulated value at the α significance level with n degrees of 

freedom (df) for treatments and n’ degrees of freedom for the residual.  

The Scott-Knott test was also applied to avoid letter coincidences among treatments (Scott & 

Knott, 1974).  

The calculation procedure for this test is as follows:  

  

1) Sort means in ascending order;  

2) Calculate the partition between two groups that maximize the sum of squares between 

groups. Let T1 and T2 be the totals of the two groups with k1 and k2 treatments; The sum of squares 

of B0 (SSB0) is expressed (26) by:  

    

𝑆𝑆𝐵0 =
𝑇1

2

𝑘1
 +  

𝑇2
2

𝑘2
 −  

(𝑇1+𝑇2)2

𝑘1+𝑘2
          (26) 

    

  3) Determine the value of   (expression 27) 

   

 =  [
𝜋

2(𝜋−2)
] (

𝑆𝑆𝐵0

�̂�0
2 ) = 1.37597 (

𝑆𝑆𝐵0

�̂�0
2 )         (27) 

  

σ̂0
2 is the estimator of σy̅

2. It is expressed (28) by:  

  

�̂�0
2 =  (

1

𝑔+𝑣
) [∑ (�̅�𝑖 − �̅�)2𝑛

𝑖=1 + 𝑣. 𝑠�̅�
2]         (28) 

   

where: g = number of treatments involved in the mean group; v = degrees of freedom of the 

residual; Y̅i =  mean of treatment i; Y̅ =  mean of the mean of the treatments; 𝑠�̅�
2 =  

𝑀𝑆𝑅

𝑗
 

  

                     4) If  > χ
[α;

g

π−2
]

2  ,  H0 is rejected  

 

where: χ
[α;

g

π−2
]

2 =  tabulated value of χi
2  

  

Thus, when H0 is rejected, it means that the groups of compared means are different. In this test, 

each equation will belong to a single group, which does not happen in the Tukey, Duncan and other 

means separation tests, thus preventing one mean from belonging to two or more groups.  

The application of the Scott-Knott test using the volume in m3 would generate a statistical 

analysis with extremely small values. Therefore, it was decided to use the volume in cm3 for better 

understanding of the procedure because it will not change the ANOVA results, since the nature of the 

dependent variable in regression analysis is not changed depending on the nature of the independent 

variable(s) used in the modeling. For example, using the volume in cm3, the diameter in cm and the 

height in m, the volume estimates will also be in cm3.  
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Considering the Spurr equation or the combined variable V̂i = b0 + b1(D2H)i with the volume 

expressed in cm3, the coefficients b0 and b1 are respectively expressed (29 and 30) by:  

  

𝑏0 =  �̅� − 𝑏1 (𝐷2𝐻̅̅ ̅̅ ̅̅ )
𝑖
           (29) 

 

𝑏1 =
∑ (𝐷2𝐻)

𝑖
𝑉𝑖

𝑛
𝑖=1 −

[∑ (𝐷2𝐻)𝑖
𝑛
𝑖=1 ](∑ 𝑉𝑖

𝑛
𝑖=1 )

𝑛

∑ (𝐷2𝐻)𝑖
2𝑛

𝑖=1 −
[∑ (𝐷2𝐻)𝑖

𝑛
𝑖=1 ]

2

𝑛

          (30) 

   

Making the substitutions of the units, we have (expressions 31 and 32):  

  

𝑏1 =
(𝑐𝑚2.𝑚)(𝑐𝑚3)−

(𝑐𝑚2.𝑚)(𝑐𝑚3)

𝑛

(𝑐𝑚2.𝑚)2−
(𝑐𝑚2.𝑚)

2

𝑛

          (31) 

 

𝑏1 =
(𝑐𝑚6.𝑚)−(𝑐𝑚6.𝑚)

(𝑐𝑚4.𝑚2)−(𝑐𝑚4.𝑚2)
=

(𝑐𝑚6.𝑚)

(𝑐𝑚4.𝑚2)
=

𝑐𝑚2

𝑚
         (32) 

 

 Substituting b1 for b0, we have (expressions 33):  

  

𝑏0 =  𝑐𝑚3 − (
𝑐𝑚2

𝑚
) (𝑐𝑚2. 𝑚) =  𝑐𝑚3 − 𝑐𝑚4        (33) 

 

 So the equation V̂i = b0 + b1(D2H)i will provide estimates in 𝑐𝑚3 (expressions 34).  

  

�̂�𝑖 = 𝑏0 + 𝑏1(𝐷2𝐻)𝑖 =  (𝑐𝑚3 − 𝑐𝑚4) −  (
𝑐𝑚2

𝑚
) (𝑐𝑚2. 𝑚) = 𝑐𝑚3 − 𝑐𝑚4 + 𝑐𝑚4  =  𝑐𝑚3   (34) 

  

The tests used were carried out with the SYSTAT12 software program (DEMO).  

  
3. Results and Discussion  

 

Table 1 presents some statistics of the dependent and independent variables used in fitting the 

models.   

   
Table 1. Descriptive statistics and dispersion measures for the measured variables for Eucalyptus spp. at 7.5 years old in  
Araripina, PE, Brazil  

  

Statistics  
 Variables   

Volume (m3)  D (cm)  H (m)  

Minimum value  0.0099  4.7  4.6  

Maximum value  0.0496  11.1  13.7  
Arithmetic mean   0.0241  7.4  10.2  
Standard deviation  0.0092  

0.0241  0.0018  
7.47  

1.2  

7.4  0.2  
2.7  

1.8  

10.2  0.4  
3.9  

Confidence interval  
Sampling error (SE%)  
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As the variable that presented the highest sampling error was the dependent variable volume 

(SE% = 7.47), sample sufficiency was achieved. After making the adjustments, the resulting 

equations are shown in Table 2.  

  

  
Table 2. Equations resulting from model fitting for Eucalyptus spp. at 7.5 years old in Araripina, PE, Brazil  

  
Name  Equations  

Spurr or combined variable (Spurr, 1952)  V̂i = 0.004656 + 0.000033(D2H)i 

Spurr without β_0  V̂i = 0.000040(D2H)i 

Non-linear Spurr   V̂i = 0.000142(D2H)i
0.807587 

Simple linear as a function of DBH  V̂i =– 0.026467 + 0.006813 Di 

Simple linear as a function of H  V̂i =– 0.009845 + 0.003347 Hi 

Simple linear as a function of DH  V̂i =– 0.004691 + 0.000377 DHi 

  

The weighted values of the statistical scores for the different fitted equations are shown in Table 

03. The equations were classified with the most accurate equation receiving a weight of 1.0 and the 

others receiving weights in ascending order.  

     
Table 3. Results of the different statistical criteria used in the fitted equations for Eucalyptus spp. at 7.5 years old in Araripina, 

PE, Brazil  

Statistical  
  Equations    

01  02  03  04  05  06  

radj
2   0.9078   (2)  0.8708   (3) 0.9121   (1)  0.8185   (5) 0.4371    (6)  0.8513   (4) 

CAI  0.9077   (2)  0.8702   (3) 0.9113   (1)  0.8180   (5) 0.4316    (6)  0.8511   (4) 
MRSE  0.0028   (2)  – 0.0027   (1)  0.0039   (4) 0.0069    (5)  0.0035   (3) 
AME  0.0023   (1)  0.0027   (2) 0.0023   (1)  0.0030   (3) 0.0053    (4)  0.0027   (2) 
SEE%  11.60   (2)  – 11.41   (1)  16.25   (4) 28.75    (5)  14.94   (3) 
MASE  10.01   (1)  11.90   (2) 10.01   (1)  14.08   (4) 24.96    (5)  12.80   (3) 
MSR  0.0028   (1)  – 0.0028   (1)  0.0039   (3) 0.0069    (5)  0.0036   (2) 
CV%  11.60   (2)  – 11.41   (1)  16.43   (4) 28.70    (5)  14.95   (3) 
FI  0.0017   (1)  – 0.0017   (1)  0.0024   (3) 0.0042    (4)  0.0022   (2) 
AIC  –11.74   (2)  – –11.78   (1)  –11.06   (4) –9.92    (5)  –11.26   (3) 
AICc  –11.62   (2)  – –11.66   (1)  –10.94   (4) –9.45    (5)  –11.14   (3) 
BIC  – 6.43   (2)  –    – 6.45   (1)  –5.75   (4) – 4.61    (5)  –5.95   (3) 
TOTALS  (20)  (10) (13)  (47) (60)  (35) 
MEANS   1.54  2.50 1.00  3.62 4.62  2.69 

Where: The numbers in parentheses represent the classification assigned to the equation in the considered test. 01 (Spurr or combined 

variable); 02 (Spurr or combined variable without b0); 03 (Logarithmized and retransformed non-linear Spurr); 04 (Simple linear as a 

function of D); 05 (Simple linear as a function of H); 06 (Simple linear as a function of DH).  

  

Some statistical tests are not present for the equation without the b0 coefficient, because they 

were performed in an ANOVA table with a different TSS that does not consider the correction.  

It is observed that the results in the tests which use the mean square of the residual (MSR) were 

similar in terms of classifying the equations, only changing the value of the test. The same occurs for 

AIC, AICc and BIC, with the exception of the case in which the dependent variable has many values 

less than zero (0.0). It is also observed that the use of many similar tests does not change the decision 

of choosing the best equation.  

The equation that presented the best Weighted Value (WV) result was the non-linear Spurr 

equation (Eq. 03). However, doubts may arise about which equations are statistically similar or 
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different, meaning that even with different values for the applied tests, the equations can be 

considered similar at a certain significance level .   

The graphical analysis of residuals in percentage is an important tool in the modeling processes 

because it can help in the decision by showing how the data behave (linearly or non-linearly after the 

adjustment has been completed), especially when many equations present similar statistics.  

It is observed that the distribution of residuals (Figure 1) corroborates the results of the weighted 

values, with linear (Eq. 01) and non-linear (Eq. 03) Spurr equations presenting the best distributions, 

while the last three (Eq. 04, 05 and 06) showed discrepant values (outliers) or bias in estimates (Eq. 

02 and 06).   

  

  
  

Figure 1. Graphic distribution of residuals (%) for the fitted equations for Eucalyptus spp. at 7.5 years old in Araripina, PE, 

Brazil.  

  

The ANOVA (Table 4) shows that the F test was highly significant, indicating that at least one 

treatment differs statistically from the others (α=1%). In applying Tukey’s mean comparison test at 

5% and 1% significance levels, we have that the values  𝑞(𝛼;𝑛,𝑛′𝑑𝑓) with seven treatments (control and 

six equations) and 728 degrees of freedom for the residual are q(0.05;7.728df) = 4.18 and q(0.01;7.728df)c= 

4.90. So, for comparisons between treatments by Tukey’s test, the minimal significative difference 

(MSD) values at 5% and 1% significance levels will respectively be: 0.00004438 and 0.00005202 

(m3)2.  
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Table 4. ANOVA for the seven treatments (control and six equations) 

  

FV  DF  SS  MS   
F  

Treatments  6  3.2027325E-7  5.3378875E-8   4,51 ** 

Residual  728  8.6172098E-6  1.1836827E-8     

Total  734  8.9374830E-6       

  F(0.01;6.728df) = 2.80   

 

By applying Duncan’s test at the 5% significance level, we obtain:  

  

a) Involving two means, z(0.05;2.105df)= 2.78. MSD = 0.00002951 (m3)2  

b) Involving three means, z(0.05;3.105df)= 2.9234. MSD = 0.00003104 (m3)2  

c) Involving four means, z(0.05;4.105df)= 3.0214. MSD = 0.00003208 (m3)2  

d) Involving five means, z(0.05;5.105df)= 3.0939. MSD = 0.00003285 (m3)2  

e) Involving six means, z(0.05;6.105df)= 3.1505. MSD = 0.00003345 (m3)2  

f) Involving seven means, z(0.05;7.105df)= 3.1967. MSD = 0.00003394 (m3)2  

  

By applying Duncan’s test at the 1% significance level, we obtain:  

  

a) Involving two means, z(0.01;2.105df)= 3.6525. MSD = 0.00003878 (m3)2  

b) Involving three means, z(0.01;3.105df)= 3.8060. MSD = 0.00004041 (m3)2  

c) Involving four means, z(0.01;4.105df)= 3.9105. MSD = 0.00004152 (m3)2  

d) Involving five means, z(0.01;5.105df)= 3.9887. MSD = 0.00004235 (m3)2  

e) Involving six means, z(0.01;6.105df)= 4.0509. MSD = 0.00004301 (m3)2  

f) Involving seven means, z(0.01;7.105df)= 4.1027. MSD = 0.00004356 (m3)2  

  

Sorting the means in descending order, the Tukey’s and Duncan’s tests show the following results 

(Table 5):  

  
Table 5. Tukey’s and Duncan’s tests at 5% and 1% significance levels 

  

 

 Equations 

Means (SSR) 

(m3)2 

Tukey’s test Duncan’s test 

5% 1% 5% 1% 

V̂i = 0.000040(D2H)i 0.00011304 a  a  a   a   

Real volumes (control) 0.00008393 a  a b a b  a b  

V̂i = 0.004656 + 0.000033(D2H)i 0.00007675 a b a b  b  a b c 

V̂i = 0.000142(D2H)i
0.807587 0.00007656 a b a b  b  a b c 

V̂i =– 0.004691 + 0.000377 DHi 0.00007143 a b a b  b  a b c 

V̂i =– 0.026467 + 0.006813 Di 0.00006884  b a b  b   b c 

V̂i =– 0.009845 + 0.003347 Hi 0.00003669  b  b   c   c 

Means united by the same letters do not differ from each other by Tukey’s and Duncan’s tests at 5% and 1% significance levels.  

  

For the Tukey’s test at the 5% level of significance, it is observed that the linear Spurr equations 

with (Eq. 1) and without b0 (Eq. 2), non-linear (Eq. 3) and with the independent variable DH (Eq. 6) 
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provide estimates which do not statistically differ from the real volumes and are similar to each other, 

while the Spurr equation without b0 (Eq. 2) and the real volumes differ from the equation which has 

the tree height as an independent variable.  

Tukey’s test at the 1% significance level does not show a significant difference from the 

equations for the real volume, since the area of acceptance of the null hypothesis H0 is greater than 

the area of acceptance of H0 at the 5% significance level.  

Considering that Duncan’s test is more flexible than Tukey’s test in terms of rejecting H0, its use 

results in an increase in the probability of committing a type I or α error, meaning do nor rejecting H1 

when H0 is true. This type of error corresponds to the significance level, which is the maximum 

probability of a type I or α error occurring, which means rejecting the null hypothesis when it actually 

occurs (Silva & Silva, 1995).   

Pimentel Gomes (1970) explains that the Duncan test is more flexible in finding significant 

differences because the probability level of do not reject H0 decreases as the number of means 

involved in the contrast increases as a function of (α)n−1. For example, considering the probability 

level of 99% (α =0.99) for three means, the probability will be (0.99)3−1= 0.9801, and involving four 

means it would be (0.99)4−1= 0.9703.   

In the example under consideration for the 1% level of probability in the contrast involving the 

seven means, the real probability of do not reject H0 is not 0.99 because (0.99)7−1= 0.9415. At the 

95% probability level it is (0.95)7−1= 0.7351.  

The values  d(0.05;6.728df) = 2.57 and d(0.01;6.728df) = 3.00 of the Dunnett bilateral test at the 5% and 

1% significance levels, with 12 degrees of freedom obtain MSD equal to 0.00003859 and 0.00004685 

(m3)2, respectively.  

It is observed by the Dunnett’s test (Table 6) for both the 5% and 1% significance levels that only 

the equation which has the tree height as an independent variable differs from the control (real data). 

This corroborates with the others, except Tukey’s test at 1% (Table 6).  

  
Table 6. Dunnett’s test at 5% and 1% significance levels 

  

V̅                        V̅̂                        V̅ − V̅̂ 5%  1%  

V̅ – 02 = 0.00008393 – 0.00011304 =  – 0. 00002911  n.s.  n.s.  

V̅ – 01 = 0.00008393 – 0.00007675 =     0.00000718  n.s.  n.s.  

V̅ – 03 = 0.00008393 – 0.00007656 =     0.00000737  n.s.  n.s.  

V̅ – 06 = 0.00008393 – 0.00007143 =     0.00001250  n.s.  n.s.  

V̅ – 04 = 0.00008393 – 0.00006884 =     0.00001509  n.s.  n.s.  

V̅ – 05 = 0.00008393 – 0.00003669 =     0.00004724  *  **  

Where: V̅ (mean of the real volumes); V̅̂ (mean of the estimated volumes); 01 (Spurr); 02 (Spurr without b0); 03 (non-

linear Spurr); 04 (Simple linear as a function of DBHP); 05 (Simple linear as a function of H; 06 (Simple linear as a 

function of DH); n.s. = not significant; * = significant at a level of 5%; ** = significant at a level of 1%.  

  

An SSR = 11836.83 (cm3)2 was obtained by applying the Scott-Knott test. The next step is to 

calculate SSB0 for the possible partitions.  

  

a) For the first partition (1) versus (2), (3), (4), (5), (6) and (7), SSB0 = 1740.9897  

b) For the second partition (1) and (2) versus (3), (4), (5), (6) and (7), SSB0 = 1424.4384  

c) For the third partition: (1), (2) and (3) versus (4), (5), (6) and (7), SSB0 = 1400.5833  

d) For the fourth partition: (1), (2), (3) e (4) versus (5), (6) and (7), SSB0 = 1330.5836  

e) For the fifth partition: (1), (2), (3), (4) and (5) versus (6) and (7), SSB0 = 1502.5283  
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f) For the sixth partition: (1), (2), (3), (4), (5) and (6) versus (7), SSB0 = 1632.3248  

  

The first partition had the largest SSB0, resulting in  = 20.6861∗∗ . The values of 

χ(0.05;6.13df)
2  are between 12.59 for 6 df and 14.07 for 7 df. The values for χ(0.01;6.13df)

2  are between 

16.81 for 6 df and 18.48 for 7 df. Thus, it is admitted that (1) differs from (2), (3), (4), (5), (6) and (7), 

being isolated as a group. The partitions in (2), (3), (4), (5), (6) and (7) are verified in the next step.   

  

a) First partition: (2) versus (3), (4), (5), (6) and (7). SSB0 = 201.8132  

b) Second partition: (2) and (3) versus (4), (5), (6) and (7). SSB0 = 408.8002  

c) Third partition: (2), (3) and (4) versus (5), (6) and (7). SSB0 = 490.3420  

d) Fourth partition: (2), (3), (4), (5) versus (6) and (7). SSB0 = 834.3337  

e) Fifth partition: (2), (3), (4), (5) and (6) versus (7). SSB0 = 1170.5004  

  

Therefore, the fifth partition was the one that presented the greatest SSB0, with  = 14.1782∗. 

The values of χ(0.05;5.26 df)
2  are between 11.07 for 5 df and 12.59 for 6 df. The values for 

χ(0.01;6.13df)
2 are between 15.09 for 5 df and 16.81 for 6 df. Thus, it is admitted that (1) differs from (2), 

(3), (4), (5), (6) and (7) for the 5% significance level and it is accepted that it is the only group for the 

1% significance level.  

The next partition was analyzing the group (2), (3), (4), (5) and (6), and was performed at the 5% 

significance level because this group joins with (7) at the 1% significance level. So the next step is to 

check the partitions in (2), (3), (4), (5) and (6).   

  

a) First partition: (2) versus (3), (4), (5) and (6). SSB0 = 55.4778  

b) Second partition: (2) e (3) versus (4), (5) and (6). SSB0 = 96.0157  

c) Third partition: (2), (3) e (4) versus (5) and (6). SSB0 = 78.0208  

d) Fourth partition: (2), (3), (4), (5) versus (6). SSB0 = 88.7890  

  

The second partition had the highest SSB0 with  = 1.1781𝑛.𝑠.. The values of χ(0.05;4.38 df)
2   are 

between 9.49 for 4 df and 11.07 for 5 df. Thus, H0 is not rejected forming a group.  

Next, there are three groups of equations by the Scott-Knott test (Table 7) at the 5% significance 

level; the first consists of the equation that has height as the independent variable, a second group 

with the Spurr equation without b0, and the third (which is the most important because it contains the 

real volumes) is composed by the linear and non-linear Spurr equation, and the equations that have D 

and DH as independent variables. There is no participation of any equation in more than one group, 

which is an advantage of the Scott-Knott test, especially when the number of treatments is high. The 

result at 1% significance is similar to the other tests.  

  
Table 7. Summary of the Scott-Knott test 

  

Equations  
Means of SSR (cm3)2  

5%  1%  

V̂i =– 0.009845 + 0.003347 Hi (01)  36.69  a  a  

V̂i =– 0.026467 + 0.006813 Di (02)  68.84  b  b  
V̂i =– 0.004691 + 0.000377 DHi (03)  71.43  b  b  
V̂i = 0.000142(D2H)i

0.807587  (04) 76.56  b  b  
V̂i = 0.004656 + 0.000033(D2H)i (05)  76.75  b  b  
Real volumes (06)  83.93  b  b  
V̂i = 0.000040(D2H)i   (07)  113.04  c  b  
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Therefore, the separation of means tests are options for comparing equations and forming groups 

of equations. The results presented corroborate those found by the various tests considered, and it has 

the advantage of forming groups of similar equations.   

Several studies on equation selection using regression analysis in forestry science have been 

published, including: Vanclay; Skovsgaard, 1997; Guendehou et al., 2012; Viana; Fernandes; Aranha, 

2013; Zhang et al., 2014; Cysneiros et al., 2017; Santos et al., 2018. These studies used different 

statistical methods, but always seeking to select a better discovery, even if they present similar 

estimates, but the selected research most often presents a minimal difference (certainly not 

significant) from the others. Thus, the research studied may have independent variables that are more 

difficult to measure than other research studies that present similar results, but the tests used did not 

allow grouping. 

The choice of the best equation within a group will be a decision made by the modeler, 

considering different statistical and applicability criteria, emphasizing that the best equation is the 

one that presents good precision with the smallest and easiest number of measurable variables. Also, 

the cost to measure independent variables can be considered when selecting the best equation of a 

group of similar equations. 

  

4. Conclusions  
Compared with the classic criteria expressed by the WV, the results of the means tests showed 

similar results. Another possible advantage of this methodology is that one equation is compared with 

another based on estimates and not on their coefficients. This methodology which has been applied to 

simple linear models and a simple non-linear model can be applied to multiple linear and non-linear 

models using the same procedures.  
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