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Abstract 

The discrete data available in any fields of knowledge is influenced by several known and unknown factors and the factors which affect the 

discrete data are stochastic in nature. The stochastic nature of discrete data is really a challenge for statistician to model and analyse with the 

existing discrete distributions. In the present paper, Poisson-Rama distribution, a Poisson mixture of Rama distribution, has been proposed to 

model over-dispersed data. Distributional properties, estimation of parameter using maximum likelihood method, and applications of the 

proposed distributions have been discussed. The simulation study has been carried out to know the consistency of maximum likelihood 

estimates of parameter.  It is observed that the proposed distribution gives much closure fit than several over-dispersed one parameter 

discrete distributions including Poisson-Lindley distribution, Poisson-Akash distribution and Poisson-Ishita distribution. 
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1. Introduction 
 The Poisson distribution is a suitable distribution for equi-dispersed (mean equal to variance) count 

data. Count data appear in several fields of knowledge including biological sciences, insurance, medicine 

and agriculture, some among others. But in real life situation, it has been observed that most of the 

datasets being stochastic in nature are either over-dispersed (variance greater than mean) or under-

dispersed (variance less than mean). Various statistical techniques are proposed to deal with over- 

dispersed count data such as weighted distributions and the mixture of distributions. A well-known and 

widely used technique for allowing over-dispersion in count data is the mixed Poisson distribution. 

 During recent decades an attempt has been made by different researchers to derive over-dispersed 

one parameter discrete distribution by compounding Poisson distribution with one parameter continuous 

lifetime distributions. One of the important characteristics of the Poisson mixture of lifetime distribution 

is that the resultant distribution follows some characteristics of its mixing distribution.  A popular one 

parameter over-dispersed discrete distribution is the Poisson-Lindley distribution (PLD) proposed by 

Sankaran (1970). The PLD is a Poisson mixture of Lindley distribution introduced by Lindley (1958). 
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The second popular one parameter over-dispersed discrete distribution is the Poisson-Akash distribution 

(PAD) proposed by Shanker (2017). The PAD is a Poisson mixture of Akash distribution introduced by 

Shanker (2015). The third popular over dispersed discrete distribution is the Poisson-Ishita distribution 

(PID) proposed by Shukla & Shanker (2019). The PID is a Poisson-mixture of Ishita distribution 

introduced by Shanker & Shukla (2017). Further, it has been observed that this one parameter discrete 

distributions are not suitable for some over-dispersed datasets from biological sciences due to their levels 

of over-dispersion. Shanker & Hagos (2015) have detailed discussion on applications of PLD for data 

arising from biological sciences, as the data from biological sciences are, in general, over-dispersed. It 

has been observed by Shanker & Hagos (2015) that in some biological science data PLD does not give 

better fit and hence there is a need for another over-dispersed discrete distribution.  

 Shanker (2017) introduced a one parameter lifetime distribution, named Rama distribution, defined 

by its probability density function (pdf) and cumulative distribution function (cdf) 
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Statistical properties including moments and moments based measures, hazard rate function, mean 

residual life function, stochastic ordering and deviations from the mean and the median, estimation of 

parameter and applications are available in Shanker (2017).  

The main purpose of this paper is to derive an over-dispersed discrete distribution which is the 

compound of the Poisson and the Rama distribution. Descriptive statistical constants including 

coefficients of variation, skewness, kurtosis and index of dispersion have been studied. Over-

dispersion, unimodality and increasing hazard rate of the derived distribution has been discussed. 

Maximum likelihood method and the method of moment have been explained to estimate parameter of 

the proposed distribution.  Goodness of fit and its comparison with other one parameter over-dispersed 

discrete distributions are presented. 

 

2. The Poisson-Rama Distribution 
 

The one of the important characteristics of the Poisson distribution is that although the Poisson 

distribution is equi-dispersed discrete distribution but the compounds of Poisson distribution with any 

lifetime distribution will always results into an over-dispersed discrete distribution.  

Let X follows Poisson distribution with parameter 0   having probability mass function (pmf) 
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Now suppose the parameter  follows Rama distribution with parameter   having pdf 
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Thus, the marginal pmf of X can be obtained as 
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We would call this distribution as Poisson-Rama distribution (PRD). Further, we would show that 

the pmf of PRD is over-dispersed, unimodal and has increasing hazard rate. The behavior of the pmf of 

PRD for varying values of parameter has been shown in the following figure1 and it reveals that as the 

value of parameter increases, the distribution becomes positively skewed to the right and over-dispersed. 

From the figure 1, it is quite obvious that the PRD has a tendency to accommodate right tail and for 

particular values of the parameter, the tail tends to zero at a much faster rate, which means that the PRD 

fits appropriately to those datasets where there is an extended right tail or the tail approaches to zero at a 

faster rate. The field of biology and the insurance are flooded with such over-dispersed datasets where 

the right tail approaches to zero at a very faster rate.  

Further, it should be noted that the PRD is actually a two-component mixture distribution that can be 

expressed as 
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where  ;iP x  is the pmf of the negative binomial distribution with parameter the number of successes i  

and proportion
1



 
. When 1i  ,  ;iP x  is the pmf of the geometric distribution, which is a special 

case of the negative binomial distribution. The formulae for p  and  ;iP x  for 1, 2i   are given by 
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Now, even though the PRD is two-component mixtures of negative binomial distribution, the 

presence of two modes is not visible in any of the plots of pmf of PRD in figure 1 for the selected values 

of the parameter  . This suggests that the two modes which come from the two sub-populations must be 

located very close to each other.  As observed by Tajuddin et al (2022) that if the modes of the sub-

populations are located very close to each other, the population will have single mode. This means that if 

the existence of the modes of the sub-populations each with very close modes values are certain, then this 

distribution can be considered as one of the candidates for model fitting of over-dispersed data.  
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(a)                                                                                    (b) 

 

(c)                                                                                    (d) 

 

(e)                                                                                     (f) 

Figure 1. Probability mass function of Poisson-Rama distribution for varying values of parameter. 
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3. Descriptive Statistical Constants 
 

Using (2.1), the r th factorial moment about origin, 
 r

  , of PRD can be obtained as 
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Substituting 1, 2,3r  and 4 , the first four factorial moment about origin of PRD can be obtained as 
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The relationship between moments about origin and factorial moments about origin gives the 

following four moments about origin  
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Using the relationship between moments about mean and the moments about origin, moments about 
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the mean of PRD are obtained as  
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Now, the descriptive measures of PRD including coefficient of variation (C.V), skewness, kurtosis 

and index of dispersion are obtained as 

 

            

7 6 4 3

3

1

30 84 144 144
.

24
CV

     



    
 


                                                                      

(18) 

         
   

11 10 9 8 7 6 5 4 3

2

3
1 3 2 3 2

7 6 4 3
2

3 2 36 270 396 324 1944 648

864 2592 1728

30 84 144 144

        

 


     

        
      

    
                

(19) 

         
 

15 14 13 12 11 10 9 8

7 6 5 4 3 2

4
2 22 7 6 4 3

2

10 18 51 852 3132 3348 11880

34992 23544 59184 132192 98496 98496

186624 93312

30 84 144 144

       

     




     

       
 
      
  
  

    
                       

(20) 

 

              
  

2 7 6 4 3

3 3

1

30 84 144 144

6 24

     


  

    
 

  
                                                                                (21) 

 

 

The behaviors of coefficients of variation, skewness, kurtosis and index of dispersion of PRD for 

varying values of parameter are shown in the following figure 2. It is obvious that the coefficient of 

variation, skewness, kurtosis are all increasing for increasing values of parameter while the index of 

dispersion is decreasing for increasing values of parameter. 
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(a)                                                                (b) 

 

 

(c)                                                                (d) 

Figure 2. Coefficients of variation, skewness, kurtosis and index of dispersion for varying values of parameter. 

 
4. Statistical Properties 

 
4.1 Over-dispersion 
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This shows that 2 1   and thus PRD is always over-dispersed distribution. Therefore, PRD can be 

used for discrete data sets which are over-dispersed in nature. 

 

 
4.2  Increasing hazard rate and unimodality  

 
The PRD distribution is skewed to the right, unimodal and decreasing which is supported by the 

following result. It can be easily shown that PRD has increasing hazard rate (IHR) and is unimodal. 
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is a decreasing function of x for a given  ,  ,P x  is log-concave. This implies that PRD has an 

increasing hazard rate and is unimodal. Grandell (1997) has detailed discussion about relationship 

between log-concavity, IHR and Unimodality of discrete distributions.  
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            3 2 3 2 3log , 4log log 6 11 3 3 7 log 6 4 log 1P x x x x x                   
   

 

Assuming  
    log ,g x P x 

  
, we have 

 

 
 

 
2

3 2 3 2

3 12 11
log 1

6 11 3 3 7

x x
g x

x x x


  

 
   

     
 and 

 

 
      

 

2
3 2 3 2 2

2
3 2 3 2

6 12 6 11 3 3 7 3 12 11

6 11 3 3 7

x x x x x x
g x

x x x

  

  

         
 

      
   

                 

  

 

4 3 2 3 2

2
3 2 3 2

3 24 72 90 37 6 3 3 2
0

6 11 3 3 7

x x x x x

x x x

  

  

        
 

      
 

 

 Thus, the pmf  ,P x   of  PRD is log-concave 
  

 

5. Estimation of Parameter 
 

5.1 Method of Moment Estimate 

Let 1 2, ,..., nx x x be a random sample of size n from PRD. Equating the first moment about origin to the 

corresponding sample moment, the moment estimate (ME)  of  is the solution of the following fourth 

degree polynomial equation 4 3 6 24 0x x      , where x is the sample mean. 

This equation can be solved using Newton-Raphson method to get the estimate of the parameter. The initial 

value of   in the Newtin-Raphson method for the above polynomial equation can be selected as follow: 

Suppose   4 3 6 24f x x       , where x is known from the dataset  for which we are estimating the 

value of the parameter. Now we have to guess two values of  , say 1  and 2  such that    1 2 0f f   . 

Then we can select any value of   say 0  between 1  and 2  as initial value value of   in the Newton-

Raphson method.  

 
 

5.2 Maximum Likelihood Estimate  
 

Let 1 2, ,..., nx x x be a random sample of size n from PRD and let xf be the observed frequency in the 

sample corresponding to ( 1, 2,3,..., )X x x k  such that 
1

k

x

x

f n


 , where k is the largest observed value 

having non-zero frequency. The likelihood function L of PRD is given by 
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 
 

 
1

4
3 2 3 2

3
4 1

1
6 11 3 3 7

6
1

x

k

x

x

n
k f

x f x

L x x x


  


 

 

 
            



                                             

(23) 

 

The log- likelihood function is obtained as 

 

     
4

3 2 3 2

3
1 1

log log 4 log 1 log 6 11 3 3 7
6

k k

x x

x x

L n f x f x x x


   
  

 
               

 
          

(24) 

 

The first derivative of the log- likelihood function is given by  

 

            
   

 

22

3 3 2 3 2
1

3 6 34log 4 3

6 1 6 11 3 3 7

k
x

x

fn xL n n

x x x

 

      

 
   

        
 ,                                (25) 

 

where x  is the sample mean. 

The maximum likelihood estimate (MLE), ̂  of   is the solution of the equation  
log

0
L







 and is 

given by the solution of the non-linear equation 

 

                 
 
 

   
 

3 2

3 3 2 3 2
1

24 3 6 34
0

16 6 11 3 3 7

k
x

x

n fn x

x x x

  

    

  
  

      
                                   (26)        

 

Since this log-likelihood equation cannot be expressed in closed form, it may be difficult to solve it 

by direct method. Therefore, the MLE of the parameter   can be computed iteratively by solving log-

likelihood equation using Newton-Raphson iteration available in R-software, until sufficiently close 

values of the parameter   is obtained. The initial value of the parameter   can be taken as the value 

given by method of moment estimate.   

 
6. A Simulation Study  

In this section, the performance of the proposed distribution has been studied by a simulation 

technique. The simulation process consists in generating N=10,000 pseudo-random samples of sizes 

n=50, 100, 150, 200, 300, and 400 of a variable X having PSD (2.2). The procedure is based on the 

Monte Carlo simulation method to estimate the average bias and the mean squared error (MSE) of the 

MLEs of the parameter .  The following formulae used for finding bias and MSE of parameter are. 

 

                ) 

 

The following algorithm can be used to generate a single random variable from PSD 



2

1 1

1 1
( ) ( ), MSE( ) ( )

N N

j j

j j

B
N N

     
 

    
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Algorithm: 

                 Generate, 𝑢 ∼ 𝑈(0,1) 

𝑥 → 0 

𝑝𝑥 ⇒ 𝜃4(𝜃3 + 3𝜃2 + 3𝜃 + 7)/(𝜃 + 1)4(𝜃3 + 6) 

while(𝑝𝑥 < 𝑢)do 

𝑥 → 𝑥 + 1 

𝑝𝑥1 = 𝑝𝑥 ∗ 𝑝𝑥−1 

𝑝𝑥 ⇒ 𝑝𝑥 + 𝑝𝑥1 

while 

return(𝑥) 

end 

Table 1. Estimated Bias and MSE of MLEs  

Sample Size True Parameter 

Value of  

Estimated 

Parameter value 

of   

Bias MSE 

n=50 2.0 

2.5 

3.0 

3.5 

 

2.6876 

3.2949 

3.5937 

4.0029 

0.0137 

0.0158 

0.0118 

0.0100 

0.00090 

0.01182 

0.00664 

0.00483 

 

 

n=100 

2.0 

2.5 

3.0 

3.5 

2.9159 

3.3893 

3.8513 

4.2683 

 

0.0091 

0.0088 

0.0085 

0.0076 

 

0.00778 

0.00780 

0.00713 

0.00580 

 

n=150 

2.0 

2.5 

3.0 

3.5 

0.9374 

3.4920 

3.8045 

4.3012 

 

0.0062 

0.0066 

0.0053 

0.0053 

 

0.00539 

0.00645 

0.00410 

0.00394 

     

 

n=200 

2.0 

2.5 

3.0 

3.5 

2.9159 

3.3893 

3.7158 

4.2203 

 

0.0045 

0.0044 

0.0035 

0.0036 

 

0.00409 

0.00385 

0.00246 

0.00253 

 

n=300 2.0 

2.5 

3.0 

3.5 

2.9374 

3.3255 

3.3255 

4.3086 

 

0.0031 

0.0027 

0.0010 

0.0026 

0.00266 

0.00220 

0.00030 

0.00161 

 

n=400 2.0 

2.5 

3.0 

3.5 

2.9238 

3.4016 

3.8531 

4.3434 

 

0.00230 

0.00225 

0.00213 

0.00210 

0.00205 

0.00200 

0.00171 

0.00172 

 

 

The Table 1 shows the bias and MSE of the MLEs of the parameter   for different sample sizes. The 

result indicates that bias and mean square error tends to zero when the sample size increases, which 

confirms the asymptotic theory of maximum likelihood estimator. 

( )





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7. Goodness of fit 
 

In this section, three over-dispersed count data are analyzed to show the applications of PRD. The 

first dataset is the number of mistakes in copying groups of random digits, available in Kemp & Kemp 

(1965). This data is over-dispersed with the index of dispersion of 1.605. The second data is the Pyrausta 

nublilalis, available in Beall (1940) with an index of dispersion of 1.758.  

The third data is the number of Chromatid aberrations. Studies on chromosomal aberrations and 

Chromatid aberrations have been performed over the past several years and the percentage of cells with 

chromosomal aberrations and Chromatid aberrations have been used as a quantitative measure of 

biological dosimetry. In the analysis of data on chemically induced chromosome aberrations in cultures 

of human leukocytes, Loeschke & Kohler (1976) and Janardan & Schaeffer (1977) recommended 

modified Poisson distribution, negative binomial distribution and Lagrangian Poisson distribution. But 

these distributions do not provide good fit because the chemically induced chromosome aberrations and 

Chromatid aberrations are time dependent and hence have higher level of over- dispersion than the over-

dispersion of negative binomial distribution.  The index of dispersion of the third data is of 2.05. The 

goodness of fit of PRD has been compared with the Poisson distribution and one parameter over-

dispersed distributions namely Poisson-Lindley distribution (PLD), Poisson-Akash distribution (PAD) 

and Poisson-Ishita distribution (PID). The pmf of PLD, PAD and PID is given in the following table 2.  

 

Table 2.  Probability mass function of over-dispersed discrete probability distributions 

Name of the distribution Pmf 

PLD 

 
 

 

2

3

2
, ; 0,1,2,..., 0

1
x

x
P x x

 
 




 
  


 

PAD 

 
 

 

2 23

32

3 2 3
; ; 0,1,2,..., 0

2 1
x

x x
P x x

 
 

 


   
   

 
 

PID 

 
 
 

2 3 23

33

3 2 2
; ; 0,1,2,..., 0

2 1
x

x x
P x x

  
 

 


    
   

 
 

 

The expected values given by PLD, PAD and PID are also given in the table for ready comparison. 

It is very clear from the goodness of fit presented in tables 3, 4, and 5 that PRD provides a better fit over 

PLD, PAD and PID. Therefore PRD can be considered as an important over-dispersed discrete 

distribution to model over-dispersed count data from biological sciences. 

 

Table 3. Summary of the datasets 

Datasets Mean Variance Skewness Kurtosis 

1 0.783333 

 

1.236389 

 

1.865895 

 

3.672049 

 

2 0.7500 

 

1.294643 

 

1.903268 

 

3.670897 

 

3 0.5475 

 

1.122744 

 

2.365317 

 

5.694967 
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Table 4. Distribution of mistakes in copying groups of random digits, available in Kemp and Kemp (1965) 

No. of errors per group Observed 

Frequency 

Expected Frequency 

PD PLD PAD PID PRD 

0 

1 

2 

3 

4 

35 

11 

8 

4 

2 

27.4 

21.5 

8.4 

2.2 

0.5 

33.0 

15.3 

6.8 

2.9 

2.0 

33.5 

14.7 

6.6 

2.9 

2.3 

33.7 

14.5 

6.5 

2.9 

2.4 

34.1 

13.9 

6.5 

3.0 

2.5 

Total 60 60.0 60.0 60.0 60.0 60.0 

ML estimate  ̂  
 0.7833  1.7434  2.0779  1.8643 2.4026 

2  
 7.98 2.20 1.40 1.33 1.02 

d.f.  1 1 2 2 2 

p-value  0.0047 0.1380 0.4966 0.5140 0.6005 

 

Table 5. Distribution of Pyrausta nublilalis available in Beall(1940) 

No. of insects Observed 

Frequency 

Expected Frequency 

PD PLD PAD PID PRD 

0 

1 

2 

3 

4 

5 

33 

12 

6 

3 

1 

1 

26.4 

19.8 

7.4 

1.8 

0.3 

0.3 

31.5 

14.2 

6.1 

2.5 

1.0 

0.7 

32.0 

13.6 

5.9 

2.6 

1.1 

0.8 

32.2 

13.4 

5.8 

2.6 

1.1 

0.9 

32.6 

12.9 

5.8 

2.6 

1.2 

0.9 

Total 56 56.0 56.0 56.0 56.0 56.0 

ML estimate  ̂  
 0.7500 1.8081 2.1446 1.9186 2.4673 

2  
 4.87 0.53 0.24 0.20 0.09 

d.f.  1 1 1 1 1 

p-value  0.0273 0.4666 0.6242 0.6547 0.76290 
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Table 6. Distribution of number of Chromatid aberrations (0.2 g chinon 1, 24 hours) available in Janardan and Schaeffer 

(1977) & Loeschke and Kohler (1976) 

No. of Chromatid 

aberrations 

Observed 

Frequency 

Expected Frequency 

PD PLD PAD PID PRD 

0 

1 

2 

3 

4 

5 

6 

7+ 

268 

87 

26 

9 

4 

2 

1 

3 

231.3 

126.7 

34.7 

6.3 

08 

0.1 

0.1 

0.1 

257.0 

93.4 

32.8 

11.2 

3.8 

1.2 

0.4 

0.2 

260.4 

89.7 

32.1 

11.5 

4.1 

1.4 

0.5 

0.3 

260.8 

89.3 

31.8 

11.5 

4.2 

1.5 

0.6 

0.3 

264.4 

85.6 

31.0 

11.8 

4.5 

1.7 

0.6 

0.4 

Total 400 400.0 400.0 400.0 400.0 400 

ML estimate  ̂  
 0.5475  2.3804  2.6594  2.3362 2.9260 

2  
 38.21 6.21 4.17 3.61 2.63 

d.f.  2 3 3 3 3 

p-value  0.0001 0.1018 0.2437 0.3067 0.4522 

 
8. Concluding Remarks 

 
In this paper a Poisson mixture of Rama distribution called Poisson-Rama distribution (PRD) has 

been suggested. The expressions of statistical constants including coefficients of variation, skewness, 

kurtosis and index of dispersion have been obtained and their behavior for varying values of parameter 

has been studied. It is observed that the obtained distribution is unimodal, has increasing hazard rate and 

over-dispersed. Both the method of moment and maximum likelihood estimation has been discussed for 

the estimation of parameter. A simulation study has been done to test the performance of maximum 

likelihood estimates. Finally, the goodness of fit of the proposed distribution and its comparison with 

other one parameter over-dispersed discrete distributions Poisson-Lindley distribution (PLD), Poisson-

Akash distribution (PAD), and Poisson-Ishita distribution (PID) on three datasets from biological 

sciences has been presented. The result shows that the PRD provides greater flexibility in real over-

dispersed count data. 
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