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Abstract
The primary goal of calculating sample size is to ascertain the minimum number of samples required to
identify meaningful changes in treatment outcomes, clinical parameters, or associations following data
collection. Determining the sample size is the initial and crucial step in organizing a clinical trial. An im-
proper assessment of this number could result in the approval of an ineffective medication or the rejection
of an effective one. Sample size estimations should align with the intended analysis methodology. We
will use generalized linear models (GLMs) to analyze the data, frequently employing normal approxima-
tions for non-normal distributions. The Binomial, Negative Binomial, Poisson, and Gamma families are
specific cases where we utilize GLM theory to derive sample size formulas when comparing two means.
We evaluated the performance of normal approximations by simulating various distributions using the
log-link and identity-link functions. First, we examined the extent of errors in normal approximations
for discrete probability distributions. Next, we applied GLM theory to derive sample size equations,
which were evaluated through case studies and simulations. The Negative Binomial and Gamma dis-
tributions under study are well-suited for calculations on the link function (log) scale, often providing
greater accuracy than normal approximations. However, the Binomial and Poisson distributions offer
minimal advantage. The proposed method effectively calculates sample sizes when comparing the means
of highly skewed outcome variables.
Keywords: Sample size; Power; Skewed distribution; Generalised linear model; Discrete distribution.

1. Introduction
For clinical and community research, as well as basic biological studies, including animal re-

search, accurately determining the appropriate sample size is essential. A study’s limitations often
stem from the fact that, in fundamental biomedical science, researchers frequently employ the sam-
ple size used in comparable studies (Yan et al., 2017). Understanding the scope of the research in
terms of the desired techniques of analysis, the appropriate study designs, and the characteristics
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of the proposed study population is crucial (Bolarinwa, 2020; Boneau, 1960). Charan proposed a
method that employs power analysis to ascertain the sample size for animal studies, a process that
closely resembles the determination of sample sizes in clinical and population studies. The sample size
is critical for both testing and estimating the accuracy of diagnostic tests in medicine. In a medical
setting, a small sample size results in an inaccurate assessment of accuracy with a broad confidence
interval, which is not helpful to decision-makers (Hajian-Tilaki, 2014). Conversely, an excessively
large sample size is a waste of resources, particularly when the new diagnostic test is expensive.

Lachin explains that we frequently use the normal approximation when calculating sample sizes,
especially for non-Gaussian data analyzed with generalized linear models (GLMs). Even when us-
ing Poisson regression, several medical statistics textbooks still estimate sample sizes for rates using
a normal approximation. A statistical procedure that is not in line with the sample size calculation
could lead to a discrepancy between the nominal and actual power values. The analysis of biomedical
data has frequently employed generalized linear models. For statistical inference, GLMs frequently
use the Wald test and the likelihood ratio (LR) test. However, in small and intermediate samples,
the Wald and LR tests may be too liberal. In recent clinical studies, the adoption of the Negative
Binomial (NB) model for count data has increased. Clinical studies typically prefer it over the Pois-
son model in instances of overdispersed count data. The determination of sample size is one of the
challenges in using the Negative Binomial model in clinical trial design. In practice, simulation
techniques are extensively used to estimate sample sizes. Data with a Binomial distribution, similar
to that of logistic regression, can also be modeled using generalized linear models (Lee & Conway,
2022). Disease mapping research frequently employs the Poisson distribution to investigate spatial
variance in disease counts. Unfortunately, equidispersion, or the equivalency of the variance and
mean, is a well-known drawback of the Poisson distribution. This assumption is frequently vio-
lated, leading to overdispersion in the data, where the variance exceeds the mean. Underdispersion,
where the variance is smaller than the mean, occurs less frequently. To mitigate overdispersion, we
frequently allow the Poisson mean to fluctuate between covariate groups or geographic units by
using fixed and random effects.

As a generalization of exponential distributions, the gamma distribution belongs to the family
of continuous probability distributions (Tripathi et al., 1993). Leonhard Euler, a Swiss mathemati-
cian, is credited with creating the gamma distribution function, according to Nagar, Correa, and
Gupta (Nagar et al., 2013). Many researchers have developed and investigated this function due to
its perceived significance. A study on assessing the homogeneity of the gamma distribution’s char-
acteristics (shape and scale) was carried out, among others, by Bhattacharya (Bhattacharya, 2002)
and Bhaumik (Bhaumik et al., 2009). A study of the shape, scale, and position of the gamma distri-
bution’s probability density function (pdf ) was conducted by Chen and Kotz (Chen & Kotz, 2013).
Numerous scholars, including Schickedanz and Krause, have also studied and developed bivariate
gamma distributions. They investigated the application of the generalized likelihood ratio (GLR)
for testing scale parameters from two gamma-distributed data sets.

The current study examines a dichotomous predictor variable, which compares two means. To
determine whether the normal approximation works with certain cumulative distribution functions
and situations, we used the Berry-Esseen theorem and calculated the relevant distributions. We
specifically concentrate on the Negative Binomial and Gamma distributions, in part because they
might describe skewed data, for which normal approximations are less likely to be adequate. For
the former, we partially reproduce the work of Zhu and Lakkis. We derive a general formula that
includes, for example, the Poisson and Binomial distributions. These methods are applied to real-
world research cases. The sample size equations used in this article to compare the means of the
Negative Binomial, Binomial, Poisson, and Gamma distributions were developed using the GLM
method. We conducted a simulation study using the logit, log, and identity link functions to assess
the performance of the normal approximation for various distributions with varying effect sizes and
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a constant power of 90%.

2. Methods
For discrete probability distributions, we investigate the magnitude of errors in normal approx-

imations. After that, we create sample size formulas using GLM theory, and we evaluate them using
simulations and worked instances. To determine whether the normal approximation works with
certain cumulative distribution functions and situations, we used the Berry-Esseen theorem and
calculated the relevant distributions. We used R software for computation throughout.

Using the Berry-Esseen theorem:
Let R1, R2, . . . , Rn be independent and identically distributed zero-mean random variables with

positive variance σ2. The standardized mean of a random variable is given by

Sn =
n∑

k=1

Rk
σ
√

n
. (1)

The Berry-Esseen theorem, whereΦ is the CDF of the standard Gaussian distribution and Fn(y)
is the CDF of Sn, applies as follows (Feller, 1971). The theorem states that ρ < ∞ is the absolute
third central moment, and C is a distribution-independent positive constant, then

∣∣Fn(y) –Φ(y)
∣∣ ≤ Cρ

σ3√n
. (2)

You can use the Berry-Esseen method even when a direct calculation from the distribution is not
practical. We can express the bound using a finite sum and the third non-absolute central moment.
These bounds can be used to evaluate the sufficiency of the Gaussian distribution assumptions un-
derlying popular sample size calculations (Stonehouse & Forrester, 1998). In the section that follows,
we describe a sample size technique that may be more reliable.

2.1 Sample Sizes Based on Generalized Linear Model Theory
An exponential family distribution yields vectors of independent responses, Yi (i = 1, . . . , N),

which are characterized by GLMs. The covariates in the model, xij, are made up of a linear combina-
tion of unknown regression coefficients. These can be expressed as exponential family distributions
that produce vectors of independent responses, Yi (i = 1, . . . , N), described by GLMs. The model’s
covariates, xij, as a linear combination of unknown regression coefficients, can be represented as

ηi =
p∑

j=1
βjxij.

Here, ηi is linked to µi, the mean of Yi, through the link function ηi = g(µi). The sample size
for a hypothesis associated with the mean of such a distribution on the scale of the link function
can be determined using the variance of its maximum likelihood estimate (MLE). For GLMs, the
covariance matrix of the parameter estimates is approximately

(XTWX)–1 (3)

where W is the weighted diagonal matrix and X is the design matrix (Zelterman, 2005). To un-
derstand how the sample size affects the variance of the parameter estimates, consider comparing
the means of two groups of sizes N0 and N1. Here, X comprises two columns and N rows, where
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N0 + N1 = N. The N0 0’s and N1 1’s in the second column follow all of the 1’s in the first column,
which represents the intercept. The letter W is defined by

W =

(
dµ
dη

)2

V(µ)
(4)

where the variance function that connects Y ’s variance to its mean is denoted by V(µ) (McCullagh,
2019). We can clearly see that the diagonal of W consists of N0 copies of w0 and N1 copies of w1.
We are interested in comparing the two means of the second diagonal element of the 2 × 2 matrix,
which is given by Equation (3). Basic matrix algebra shows that this element is given by[

(N0w0)–1 + (N1w1)–1
]

.

The guidelines from Lachin regarding sample size are utilized in this comparison. In Lachin’s
notation, the subscripts 0 and 1 denote the null and alternative hypotheses, respectively. In this
article, we use O and A to represent the null and alternative hypotheses, while 0 and 1 refer to
the reference (control) and intervention groups, respectively. Additionally, we will use λ as the
generic parameter instead of µ, with µ serving as the mean denoter. Furthermore, we will adopt
a different subscript notation for standard normal deviations, such that zp represents the standard
normal deviation for the lower tail area p. Our statistic (X in Lachin’s notation) is the estimate of
the transformed mean difference generated by the GLM (Zhang et al., 2007). Typically, we use a
log transformation, or logit for a binomial. This statistic’s mean is λO under the null hypothesis and
λA under the alternative hypothesis. Its standard deviations are

∑
O and

∑
A, respectively (Lachin,

1981). These values lead to the formulation of Lachin’s equation:∣∣λA – λO
∣∣ = Z1–α/2

∑
O

–Z1–β
∑
A

. (5)

Following Lachin’s lead, the proportions in the groups are denoted by

Q0 =
N0
N

, Q1 =
N1
N

.

Our method is to use a normal approximation on the scale of the link function. Often, we use the
logarithm to approximate the scale of the link function, but the identity link yields more well-known
equations. We consider two methods for approximating the variance under the H0(Null hypothesis).
Both groups use the reference value in the first technique, which we refer to as Method-1 in honor
of Zhu and Lakkis (Zhu & Lakkis, 2014). Using the above matrix algebra, we have

∑
0

=
√√√√√ 1

Q1N
V(µ0)(

dµ
dη

∣∣∣
µ=µ0

)2 + 1
Q0N

V(µ0)(
dµ
dη

∣∣∣
µ=µ0

)2

=
√√√√√

(
1

Q1
+ 1

Q0

)
1
N

V(µ0)(
dµ
dη

∣∣∣
µ=µ0

)2

and ∑
A

=

√√√√ 1
Q1N

V(µ1)(
dµ
dη

∣∣
µ=µ1

)2 +

√√√√ 1
Q0N

V(µ0)(
dµ
dη

∣∣
µ=µ0

)2 .
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Hence for Method 1, we obtain

∣∣λA – λO
∣∣ =

Z1–α/2

√√√√(
1

Q0
+ 1

Q1

)
V(µ0)(

dµ
dη

∣∣
µ=µ0

)2 + Z1–β

√√√√ V(µ1)(
dµ
dη

∣∣
µ=µ1

)2

(
1

Q1

)
+
(

1
Q0

)
V(µ0)(

dµ
dη

∣∣
µ=µ0

)2

√
N

√
N =

Z1–α/2

√√√√(
1

Q0
+ 1

Q1

)
V(µ0)(

dµ
dη

∣∣
µ=µ0

)2 + Z1–β

√√√√ V(µ1)(
dµ
dη

∣∣
µ=µ1

)2

(
1

Q1

)
+
(

1
Q0

)
V(µ0)(

dµ
dη

∣∣
µ=µ0

)2

g(µ0) – g(µ1)
. (6)

According to Zhu and Lakkis (Zhu & Lakkis, 2014), the test characteristics are often better if the
intervention arm is utilized under the null hypothesis (method 2) rather than µ1, so

∑
0 =

∑
A, then

V(µ0)(
dµ
dη

∣∣
µ=µ0

)2 =
V(µ1)(

dµ
dη

∣∣
µ=µ1

)2

and we derive

√
N =

(Z1–α/2 + Z1–β)
√√√√ V(µ1)(

dµ
dη

∣∣
µ=µ1

)2

(
1

Q1

)
+
(

1
Q0

)
V(µ0)(

dµ
dη

∣∣
µ=µ0

)2

g(µ0) – g(µ1)
. (7)

We can readily apply the general equations (6) and (7) to determine the distributional situations
of interest. With the exception of references to earlier work using Method 1, we will apply equation
(7).

2.2 Binomial distribution
Assume that X is a Binomial variable with n distinct independent events, each with a probability

of p. The probability mass function gives the likelihood of obtaining precisely X successes in n sep-
arate Bernoulli trials. By assuming that n = 1, it would be possible to understand why the literature
occasionally fails to include n in the variance function (Cundill & Alexander, 2015).

We use the Exponential family function:

f (x) = exθ+n log(1–p)+log((n
x))

θ = log

(
p

1 – p

)
b(θ) = n log

(
1 + eθ

)
, a(ϕ) = 1

µ = n
eθ

1 + eθ

µ =
neθ

1 + eθ

p =
µ

n

θ = log

(
µ

n – µ

)

Braz. J. Biom., v.43, e-43754, 2025. 5



Vemula & Dhakshanamoorthy

dµ
dθ

=
µ(n – µ)

n
For n = 1 and θ = η, we get

dµ
dη

= µ(1 – µ)

and
V(µ) = µ(1 – µ)

canonical logit link is
dµ
dη

= µ(1 – µ).

Therefore, using equation (7), we have

√
N =

(Z1–α/2 + Z1–β)
√

1
Q1

1
µ1(1–µ1) + 1

Q0
1

µ0(1–µ0)√
d
[
logit(µ0) – logit(µ1)

] . (8)

The related equation on the identity link scale of difference in proportions is

√
N =

(Z1–α/2 + Z1–β)
√

1
Q1
µ1(1 – µ1) + 1

Q0
µ0(1 – µ0)

√
d
[
(µ0) – (µ1)

] . (9)

2.3 Negative Binomial Distribution
The number of failures in a sequence of independently distributed Bernoulli trials that must

occur before a given number of successes is known as the Negative Binomial distribution (NBD),
and it is a discrete probability distribution. A little k indicates a large variance as k → ∞; then the
distribution tends to be Poisson. Poisson regression is modified by Negative binomial regression,
which reduces the need for equidispersion (Holodinsky et al., 2021). We have extensively evaluated
both overdispersed count data and recurrent event data using the NB regression. A Poisson-gamma
mixture can be used to represent the NB distribution (Tang et al., 2021). Let X be a random vari-
able with a variance function of V(µ), and let it follow the Negative Binomial distribution with a
population mean of µ and a dispersion parameter of k, then we have v(µ) = µ + µ

2

k . The logarithmic
link function is

dµ
dη

= µ

η = log(µ)

using equation (6), we have

√
N =

Z1–α/2

√(
1

Q0
+ 1

Q1

)
(
µ0+

µ2
0

k0
µ2

0
) + Z1–β

√
( 1
Q1

µ1+
µ2

1
k1

µ2
1

+ 1
Q0

µ0+
µ2

0
k0

µ2
0

)

log(µ0) – log(µ1)

√
N =

Z1–α/2

√(
1

Q0
+ 1

Q1

)(
1
µ0

+ 1
k0

)
+ Z1–β

√
1

Q1

(
1
µ1

+ 1
k1

)
+ 1

Q0

(
1
µ0

+ 1
k0

)
log(µ0) – log(µ1)

. (10)
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In the unique scenario where sample sizes are equal, Q0 = Q1 = 0.5, k-parameter k0 = k1, and
after changing in equation (7), we get

√
N =

(Z1–α/2 + Z1–β)
√

1
Q1

(
1
µ1

+ 1
k1

)
+ 1

Q0

(
1
µ0

+ 1
k0

)
log(µ0) – log(µ1)

. (11)

Applying equation (7) to the identity scale with variances equal to µi + µ
2
i

ki
(i=0,1) yields a normal

approximation:

√
N =

(Z1–α/2 + Z1–β)

√
1

Q1

(
µ1 + µ

2
1

k1

)
+ 1

Q0

(
µ0 + µ

2
0

k0

)
µ0 – µ1

. (12)

We were able to use simulations to figure out the real power sample sizes from equations (11) and
(12) by making repeated datasets of the calculated sizes and analyzing them using the Wald and
GLM tests.

2.4 Poisson distribution
The Poisson distribution with parameter λ is stated to exist for a discrete random variable X

with mean µ. We can allow the value of k in equation (11) to reach infinity, or we can also utilize
the log link, v(µ) = µ in equation (7).

Natural exponential family:

f (x) =
[
e
θx–b(θ)

a(ψ) +c(x,ψ)
]

log(f (x)) = x log(λ) – λ – log(x!)

f (x) = ex log(λ)–λ–log(x!)

θ = log(λ)

λ = eθ

b(θ) = eθ

µ =
d

dθ
(eθ) = eθ = λ

V(x) = a(ψ)
d2

dθ2 (eθ) = eθ = λ

canonical link is
log(λ) = θ = η

we obtain

√
N =

(Z1–α/2 + Z1–β)
√

1
Q1

(
1
µ1

+ 1
k1

)
+ 1

Q0

(
1
µ0

+ 1
k0

)
log(µ0) – log(µ1)

. (13)

This is compared using simulation for the situation of Q0 = Q1 = 0.5 on the scale of the identity
link with the normal approximation that follows, which is derived from equation (12) by letting k
tend to infinity

√
N =

(Z1–α/2 + Z1–β)
√

2(µ1 + µ0)
µ0 – µ1

. (14)
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2.5 Gamma distribution
The Gamma distribution can be parameterized using the shape parameter k and the scale pa-

rameter θ, denoted as Y ∼ γ(k, θ), where Y represents a gamma-distributed random variable. The
sum of identical independent exponentials and the exponential distribution are examples of special
situations. Applications commonly use models of right-skewed data. The Gamma distribution is
commonly used to simulate waiting periods in econometrics and other applied sciences, making
the parameterization with k and θ more popular in these fields. In the event where Y is a random
variable with scale parameter θ and shape parameter k, then E(Y) = kθ.

V(µ) =
k
θ2

= k
( µ

k2

)
V(µ) =

µ2

k
.

Log-link function
η = log(µ)

dµ
dη

= µ.

As noted by (Forbes et al., 2011), the variance function holds for the Gamma distribution. Using
equation (7), we obtain

√
N =

(Z1–α/2 + Z1–β)
√

1
Q1

1
K1

+ 1
Q0

1
K0

log(µ0) – log(µ1)
. (15)

3. Results
Supplementary file (Table 4) displays the Berry-Esseen limits and related values derived from the

computation of the non-Gaussian CDFs for the case with a fixed sample size of 100. The normal
approximation performs better for larger means, as expected, according to both approaches. Berry-
Esseen bounds are frequently substantially broader than explicit computation results. Therefore, we
focus on the latter strategy. The results for Binomial distributions with different sample sizes and
proportions (µ) are displayed in supplementary file (Figure 1). As expected, differences in the CDF
of the normal approximation tend to be larger for lower sample numbers and values of µ that are
further from 0.5. For parameter values discovered in some research investigations, the differences are
non-negligible, especially for small values of µ, say between 1 and 5%, which would be anticipated
to approximate Poisson. This tends to maintain the concern that power estimates based on common
approximations might not be precise.

We must relate a distribution of interest (Y) to use the Berry-Esseen theorem. We assume a
discrete distribution with a zero mean. Let Y be a non-negative discrete random variable with
mean µY and variance σ2, and define R = Y – µY . We can then estimate the third central moment
of R, m3, using f , the probability density function of Y. The first sum’s terms are either negative or
zero, while the second sum’s terms are positive. We can express the third absolute central moment
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of R as a finite sum in the following way

m3 = E[|(R – µR)3|]

=
∑
y>0

|(Y – µY )3|f (y)

=
µy∑
y=0

|(y – µY )3|f (y) +
∞∑
µy+1

|(y – µY )3|f (y)

= –
µy∑
y=0

(y – µY )3f (y) +
∞∑
µy+1

|(y – µY )3|f (y)

= E[(Y – µY )3] – 2
µy∑
y=0

(y – µY )3f (y).

3.1 GLM Method for Binomial Distribution
As the magnitude of the effect size increases, fewer samples are needed to achieve a power of 0.9.

For example, detecting small effect sizes (such as 0.2) requires approximately 3,400 samples, while
large effect sizes (such as 0.8) can be identified with fewer than 100 samples. Equations on both the
log scale (Equation 8) and the untransformed scale (Equation 9) were analyzed with n = 1 for various
values of µ0 and efficacy. We conducted 10,000 simulations for each configuration of parameters.
Both models demonstrated identical power when µ = 0.5. The observed trends are consistent with
lower Poisson means, specifically for µ0 = 0.1 and 0.05, and both methods tend to show conservative
behavior at higher efficacies. While the two approaches are generally similar, sample size estimates
from the logit-link method tend to be marginally higher than those from the identity-link method.
Detailed results are presented in Table 1, while the comparison of log-scale and identity-scale results
with µ0 = 0.1 and varying efficacies is available in supplementary file (Table 1). Figure 1 illustrates
the sample size requirements for detecting various effect sizes in a Binomial distribution with a mean
of 0.5, comparing log-link and identity-link functions at 90% power.

For smaller effect sizes like 0.2, the required sample sizes are 3,398 for the logit-link and 3,383
for the identity-link approach. For moderate effect sizes, such as 0.5, the sample size requirements
decrease to 372 for the logit-link and 357 for the identity-link. For larger effect sizes like 0.8, the
sample sizes required are 91 for the logit-link and 74 for the identity-link. These results highlight
that detecting smaller effects demands considerably more resources, while larger effects are easier
to identify with fewer samples, making them more practical for studies with limited resources. The
slight variation between the logit-link and identity-link functions indicates that both are effective,
though the choice of method should be based on theoretical considerations relevant to the study
design.

All calculations are based on simulations repeated 10,000 times with a mean of 0.5, ensuring the
robustness of the estimates. Effect size plays a critical role in determining sample size requirements,
and both the logit and identity-link functions yield comparable results, with the identity-link being
marginally more efficient in certain cases. Researchers should carefully evaluate the assumptions
and methodology to ensure accurate and reliable results.
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Table 1. Comparing the Binomial means with various efficacies using logit and Identity link functions and each data values
are simulated 10,000 times with mean 0.5

Effect size Power Sample size determination using logit link Sample size determination using Identity link

0.2 0.9 3398 3383
0.23 0.9 2483 2468
0.25 0.9 2053 2039
0.28 0.9 1580 1565
0.30 0.9 1343 1329
0.35 0.9 928 913
0.38 0.9 757 743
0.4 0.9 666 652
0.43 0.9 554 540
0.45 0.9 492 478
0.48 0.9 415 401
0.5 0.9 372 357
0.53 0.9 317 302
0.55 0.9 286 271
0.58 0.9 246 231
0.6 0.9 223 208
0.63 0.9 193 177
0.65 0.9 176 160
0.68 0.9 153 137
0.7 0.9 140 124
0.73 0.9 122 106
0.75 0.9 113 96
0.78 0.9 99 82
0.8 0.9 91 74

Figure 1. Visualization of sample size estimation for detecting various effect sizes in a Binomial distribution with mean
µ0 = 0.5, comparing log-link and identity-link functions at 90% power.
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3.2 GLM Method for Negative Binomial Distribution
As the effect size increases, the required sample size to achieve a power of 0.9 decreases. For

smaller effect sizes, such as 0.2, a larger sample size is needed (around 2,110 for the log-link and
2,122 for the identity-link) compared to larger effect sizes. For moderate effect sizes like 0.5, the
sample sizes required are 263 for the log-link and 274 for the identity-link. Similarly, for large
effect sizes like 0.8, the required sample sizes are 81 for the log-link and 87 for the identity-link. In
general, both the log-link and identity-link methods provide similar results, with a slight difference
in sample sizes. The log-link approach tends to require slightly smaller sample sizes compared to
the identity-link for most effect sizes. These results are based on 10,000 simulations with a mean of
µ = 0.75, ensuring the robustness of the sample size estimates.

These findings emphasize that larger effect sizes can be detected with fewer samples, making
studies of larger effects more feasible in resource-constrained settings. The slight difference between
the log-link and identity-link methods suggests that the choice of link function is not crucial but
may depend on theoretical considerations specific to the study design. Using the null hypothesis
that both means are equal to 0.75, a power of 90%, and a significance level of 5% (two-tailed), the
sample size was determined for the given method. The key parameters were µ = 0.75, k0 = k1 = 1,
and Q0 = Q1 = 0.5, derived from a crash data analysis using maximum likelihood bootstrapped
likelihood estimation. We compared equation (11) on a logarithmic scale and equation (12) on an
identity scale. The results indicated that, in the case of a negative binomial distribution, the sample
size values for the identity link function were slightly higher than those for the log-link function.
As the effect size increased, the sample sizes for both methods decreased accordingly. The detailed
results are presented in Table 2.

Figure 2. Visualization of sample size estimation for detecting various effect sizes in a Negative Binomial distribution with
meanµ0 = 0.75, comparing log-link and identity-link functions at 90% power.

The simulations were conducted in two different configurations: (a) the dispersion parameter k
was allowed to vary from 0.1 to 10, with the Poisson distribution acting as the limiting case when
k = ∞; (b) the efficacy, defined as 1 –

(
µ1
µ0

)
, was varied from 0.2 to 0.8. When using the log-

link function, the efficacy was maintained at 20%, which closely matched the nominal power. In
contrast, the identity-link method showed a slightly conservative trend. As the mean difference and
effectiveness increased, the log-link method consistently approximated the nominal power, while
the identity link resulted in an overestimation of the sample size by more than 50% for the higher
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Table 2. Comparing the means of Negative binomial distribution using nominal power 0.90, various efficacies using log-
link and Identity link with meanµ = 0.75, each data value is simulated 10,000 times.

Effect size Power Sample size determination using log link Sample size determination using Identity link

0.2 0.9 2110 2122
0.23 0.9 1558 1571
0.25 0.9 1298 1310
0.28 0.9 1010 1022
0.30 0.9 866 878
0.35 0.9 610 621
0.38 0.9 504 516
0.4 0.9 448 460
0.43 0.9 378 389
0.45 0.9 339 350
0.48 0.9 290 301
0.5 0.9 263 274
0.53 0.9 228 238
0.55 0.9 208 218
0.58 0.9 182 192
0.6 0.9 167 177
0.63 0.9 148 157
0.65 0.9 136 146
0.68 0.9 121 130
0.7 0.9 113 121
0.73 0.9 101 109
0.75 0.9 95 102
0.78 0.9 86 92
0.8 0.9 81 87

12 Braz. J. Biom., v.43, e-43754, 2025.



Vemula & Dhakshanamoorthy

efficacy values. Figure 2 presents the sample size estimation for detecting various effect sizes in a
Negative Binomial distribution with a mean of 0.75, comparing log-link and identity-link functions
at 90% power.

3.3 GLM method for Poisson distribution
We compared equations (13) and (14), which use the logarithmic and identity scales, respectively,

with the aim of determining the required sample sizes for detecting various effect sizes in a Poisson
distribution. These comparisons were made using a mean of µ0 = 2.514 and a nominal power
of 90 %. Based on 10,000 simulations, both methods showed comparable results, with the log-link
function providing slightly higher sample size estimates than the identity-link function, particularly
for smaller effect sizes. As the effect size increased, the required sample size decreased. For small
effect sizes (e.g., 0.2), large sample sizes (378 and 376 for log and identity links, respectively) were
required, while larger effect sizes (e.g., 0.8) required significantly fewer samples (19 and 16 for
log and identity links, respectively). Overall, both methods were effective, but the identity-link
function was marginally more efficient in certain cases. The findings align with the results from a
non-homogeneous Poisson process applied to COVID-19 data analysis in Kuwait, as discussed in
(Al-Dousari et al., 2021).

Table 3. Comparing the means of Poisson distribution using nominal power 0.90,various efficacies using log-link and
Identity-link functions with meanµ0 = 2.514, each data value simulated 10,000 times

Effect size Power Sample size determination using log link Sample size determination using Identity link

0.2 0.9 378 376
0.23 0.9 281 280
0.25 0.9 236 234
0.28 0.9 184 183
0.30 0.9 160 158
0.35 0.9 138 137
0.38 0.9 96 94
0.4 0.9 86 84
0.43 0.9 73 71
0.45 0.9 66 64
0.48 0.9 57 55
0.5 0.9 52 50
0.53 0.9 46 44
0.55 0.9 42 40
0.58 0.9 38 36
0.6 0.9 35 32
0.63 0.9 31 29
0.65 0.9 30 27
0.68 0.9 27 24
0.7 0.9 25 22
0.73 0.9 23 20
0.75 0.9 22 19
0.78 0.9 20 17
0.8 0.9 19 16

For µ0 = 2.514 power is 0.90, and for different effect sizes, 10000 simulations were run for each
data set using log-link and identity-link functions, the results are shown in Table 3. The Poisson
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distribution simulation results with µ0 = 2.412, 3.223 are given in the Supplementary file Table 2
and Table 3. Figure 3 illustrates the sample size requirements for detecting various effect sizes in
a Poisson distribution (mean = 2.514) using log-link and identity-link functions, assuming 90%
power.

Figure 3. Visualization of sample size comparison for detecting various effect sizes in a Poisson distribution with mean
µ0 = 2.514 using log-link and identity-link functions at 90% power.

3.4 GLM Method for Gamma Distribution
The Gamma distribution is a continuous probability distribution with two parameters (Kurni-

asari et al., 2018). As in Yue et al. (2001), we used the problem of estimating the association parameter
using the product-moment correlation coefficient with a mean of 9.68, a shape parameter of 2.50,
and a scale parameter of 0.258 (Yue et al., 2001). As previously, we compare the power of the sample
sizes obtained from equation (15) with the sample sizes obtained via the proper normal estimation on
the original scale. The sample size values for the two tests are the same, however, the identity-link
method’s sample size values are slightly higher when compared to the log-link approach. The re-
sults shown in Table 4 show that the sample size based on the link function’s scale maintains close to
nominal power, whereas the normal approximation overestimates the needed sample size by at least
50% for the larger mean differences. In this case, the likelihood ratio test produced higher estimated
powers for both tests (not shown). Once more, the difference scale showed much higher power than
the logarithmic scale due to the identical sample size inputs for both test protocols. Figure 4 presents
the estimated sample sizes required to detect various effect sizes in a Gamma distribution (mean =
9.68), comparing log-link and identity-link functions at 90% power, based on 10,000 simulation
replications.
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Figure 4. Sample size estimation for detecting various effect sizes in a Gamma distribution with meanµ = 9.68, comparing
log-link and identity-link functions at 90 % power, based on simulations repeated 10,000 times.

Table 4. Comparing the means of gamma distribution using log-link, Identity link with various efficacies, nominal power
0.90 and each data value simulated 10,000 times(µ = 9.68)

Effect size Power Sample size determination using log link Sample size determination using Identity link

0.2 0.9 338 344
0.23 0.9 246 253
0.25 0.9 203 210
0.28 0.9 156 162
0.30 0.9 132 140
0.35 0.9 91 98
0.4 0.9 65 72
0.45 0.9 47 54
0.5 0.9 35 42
0.55 0.9 27 33
0.6 0.9 20 27
0.65 0.9 16 22
0.7 0.9 12 18
0.75 0.9 9 16
0.8 0.9 7 14
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4. Discussions
When you look at the Poisson and Binomial results in terms of the difference in rates or pro-

portions, they show that figuring out sample sizes on the scale of the link function, such as log rates
or log odds, doesn’t help much. On the other hand, sample size calculations based on mean differ-
ences can be quite conservative for the Negative Binomial and Gamma distributions, which include
additional parameters that can indicate skewness. This results in bigger numbers that far exceed
the required power. However, for the example studies, sample size estimations on the log scale stay
rather close to the nominal power. Even in cases where we will employ generalized linear models to
analyze the data, we frequently estimate sample sizes for discrete data using normal approximations
to distributions. Based on the differences in CDF between the exact distributions and the normal ap-
proximation, as determined by distribution functions or the Berry-Esséen theorem, the inaccuracy
could be significant and illogical. In theory, the rate of convergence of the normal approximation to
that determined by the central limit theorem can be estimated using Berry-Esséen and related the-
orems (Feller, 1957; Korolev & Shevtsova, 2012). But frequently, their boundaries turned out to be
noticeably broader than those found by calculating the relevant distribution’s CDF. When analysis-
stage robustness is taken into account, the t-test conducts well under some significant departures
from normality (Heeren & D’Agostino, 1987).

5. Conclusions
The technique is particularly useful for distributions such as the negative binomial and gamma

distributions, which, due to their parameters, can exhibit significant asymmetry, making normal
estimation of the sample mean less accurate. Our approach is straightforward to apply and aligns
closely with the generalized linear models (GLMs) commonly used to compare the means of non-
normal distributions. This method is expected to be especially beneficial in scenarios where sub-
stantial asymmetry is anticipated in the response variable and where normal estimates are likely to
be less reliable. We have demonstrated the advantages of these strategies by presenting examples
across various distributions.
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