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Abstract
Plant breeding programs involve the selection of new superior lines. However, for a large number of test
lines, there are several limitations in the use of certain designs. Therefore, the success of these programs
depends on an adequate experimental design that allows obtaining accurate estimates of genetic effects,
increasing the efficiency of the experiment and controlling experimental variability. In addition, con-
sidering the dependence between genetic effects is desirable to ensure the validity and generalization of
results, avoiding biased estimates and incorrect interpretations. For this purpose, using partially replicated
designs (p-rep), in which a percentage, p, of test lines are replicated and the others not, can be a good
option. Thus, a simulation study was conducted to evaluate designs for early phase wheat breading exper-
iments according to the optimality criterion C, considering the dependence or independence between
test lines, comparing them in relation to the realized genetic gain and, consequently, the quality of the
material selection, for a given experimental area and for p = 20%, for different genetic variance values. It
could be concluded that the differences between designs are small, and that they are more affected by the
magnitude of the genetic variance assumed for data.

Keywords: Optimality criterion C; Spatially optimized designs; Partially replicated design; Genetic gain;
Quality of genetic selection; Relationship matrix A.

1. Introduction
In the early stages of plant breeding programs, trials allow the testing of a large number of

lines, or test lines, with the aim of detecting superior ones. Such trials are generally characterized
by limited resources, either in terms of genetic material or restrictions regarding the experimental
area, which results in the use of unreplicated designs (Kempton, 1984).
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According to Kempton (1984), initially, the designs most commonly used in these trials were
grid-plot designs. These are row-column designs that include replicates of the standard varieties
systematically occupying the check plots in a regular grid, and the unreplicated test lines. Standard
varieties are usually varieties already present in the market and with desirable characteristics, which
are used as a reference to evaluate the yields of the test lines and also as a way of dealing with possible
trends in soil fertility.

Seeking to improve these tests, Federer (1956) proposed augmented designs. Such designs
present the same two treatments groups, those that will be repeated, the standard varieties, used
to explain part of the spatial variability, and unreplicated ones, or test lines. The augmented block
design consists of distributing the replications of varieties in blocks and then, augmenting each block
with unreplicated test lines. Others augmented designs were proposed by Federer (1961), Federer
(2002), and Federer (2005), Federer & Raghavarao (1975), Federer et al. (1975), Lin & Poushinsky
(1983) and Lin & Poushinsky (1985) and Federer & Crossa (2001).

Cullis et al. (2006) proposed an alternative to grid-plot and augmented designs, the partially
replicated (p-rep) design. This new class of designs assumes replication for p percent of test lines,
which totally or partially replace check plots, and the remaining test lines are not repeated. Origi-
nally, p-rep designs were obtained in such a way to achieve maximum genetic gain, a characteristic
in common with optimal designs specifically designed to maximize the precision of estimates of
the effects of interest. When working with optimal designs, some assumptions are made, since the
following are necessary: the design model, the values of parameters and a search criterion (Shah &
Sinha, 1989).

The grid-plot and p-rep designs were compared by some authors. Cullis et al. (2006) showed
that p-rep designs improved the precision of line selection. In the work, the p-rep designs evaluated
are spatially optimized (C-optimal), that is, given the model and its parameters, the design found is
the one that presents the lowest average variance for simple contrasts of the effects of test lines.

Clarke & Stefanova (2011) carried out this comparison in uniformity trials. Moehring et al.
(2014) simulated the genetic effects and allocated them according to four designs, two of which were
grid-plot and p-rep, to represent triticale yields. Santos (2017) compared these designs in a specific
study with sugarcane. Goes (2020) also compared these types of designs through simulation studies.
It is worth mentioning that, in these works, p-rep designs presented better results for selecting
superior test lines. Furthermore, these designs are widely used in most plant breeding programs in
Australia (Cullis et al., 2020) and are being introduced in Brazil.

There are several measures to evaluate and compare designs, two of which are the realized ge-
netic gain (RGG), which is the ratio between the mean of the s superior EBLUPs (empirical best
linear unbiased predictions) and the mean of the s superior true genetic effects, where s corresponds
to the percentage of selection of the genetic material, which in this work was defined as s = 15%
(Cullis et al., 2006; Smith et al., 2006; Santos, 2017; Goes, 2020; Sermarini et al., 2020), and the selec-
tion success, defined by the percentage of truly superior test lines selected from EBLUPs (Sermarini
et al., 2020). Both the RGG and the selection success depend on the true genetic effects, so they can
only be obtained through simulation studies.

There are other comparison measures that do not depend on simulation studies. For example,
Müller et al. (2010) used the mean of the empirical variance, a measure that depends on the number of
genotypes, including test lines and standard varieties, when present, and on the sum of the differences
in the adjusted means of the genotype. Another proposal is the SE ratio, which is the ratio between
the standard error of the comparison between test lines and checks, calculated from the design under
study and also from a completely randomized design (Clarke & Stefanova, 2011). Piepho & Williams
(2016) evaluated the use of relative efficiency, which is the harmonic mean of non-zero eigenvalues
of the information matrix of test lines.

The p-rep designs are usually obtained by ignoring information about genetic relationship (pedi-
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gree), although in plant breeding programs, it is often possible to access some information about the
degree of genetic relationship of individuals included in the trial (Bueno Filho & Gilmour, 2003;
Butler et al., 2014). Therefore, given that the relatedness information is known, that is, information
about the parents of each individual, it is possible to consider it when obtaining an optimal p-rep
design.

Few authors use the kinship matrix A in the search for optimal designs. Bueno Filho & Gilmour
(2003), considered correlated genetic effects for unresolvable incomplete block designs of size four
to six treatments. The genetic effects in the design were analyzed in three situations of A: A1 =
1
2 Id, where Id denotes the identity matrix, A2 is a simple family structure, i.e., three families of two
siblings (half-siblings) and A3 is a complex kinship, i.e., two treatments are related if they have a
common parent. In all situations, the A-optimality criterion was used for which the search is made
for designs with the minimum sum of variances of treatment effects estimates.

In another study, Bueno Filho & Gilmour (2007) investigated the effect of varying degrees of
uncertainty in point estimates of a range of parameter settings of additive genetic variance expressed
in terms of heritability on design selection. The authors reported that in some situations in plant
breeding programs, it is very likely to have a sparse relationship matrix, A, or discrete family struc-
tures. For some of these situations it is possible to find optimal designs that are robust to assumptions
about heritability. However, for complex kinship structures, the choice of design can change dras-
tically depending on previous point estimates.

Butler et al. (2014) studied three cases: variety selection in canola, estimation of the crossing value
in sorghum genetic selection (hybrid) and estimation of the breeding value for forest improvement,
with different selection objectives, genetic complexity and scale. They extend the work developed
by Bueno Filho & Gilmour (2003) and also by Cullis et al. (2006). The extension concerns the
specifications of the linear model, both in terms of genetic and nongenetic components.

Cullis et al. (2020) evaluated simulation studies for early stages, S1 and S2, based on a plant
breeding case study, with the aim of reinforcing the importance of including information on genetic
relationship. Selection in advanced stages in genetic breeding generally occurs sequentially. These
stages are called S1, S2, S3 and S4. In the study, they evaluated 256 test lines from stage S1 with
the aim of making selections for progression to test stage S2. The study also included four standard
varieties. To this end, a mixed linear model for genetic and nongenetic effects in a p-rep design
was adopted. Thus, the authors considered different p values and different values for the genetic and
residual variance ratio. For different p values, the field scenarios varied the number of lines, between
22 and 28 lines, with a fixed number of 12 columns.

dos Santos (2023) investigated the effectiveness of spatially optimized designs in multienviron-
mental trials to select the best test lines in plant breeding grain yield, regarding genetic gain and
quality of genetic material selection. For this, a simulation study compared the grid-plot and p-rep
designs. For the p-rep design, the p percentages of duplicated lines were varied for p = 11%, 22%
and 33%, and number of standard varieties (0, 5, 10, 15 and 20). The analysis was performed using
mixed linear models considering joint and individual analyses, which incorporated spatial variation
in plot errors. In both designs, the assumption of dependence and independence between line effects
was considered.

It is observed that studies that evaluate p-rep designs in such a way to consider the relationship
between test lines are limited. In this context, the objective of this study is to compare the p-rep
designs with and without the inclusion of relationship matrix regarding the realized genetic gain
and, consequently, the quality of the selection of the genetic material to be considered for a next
phase of the plant breeding study for a given experiment size, based on linear mixed models and
simulation studies. Here, spatially optimized p-rep designs were generated for an experimental area
composed of 36 rows by 20 columns, assuming 598 test lines, with p = 20% and a selection percentage
s = 15%. In the design model, random treatment effects were assumed, different parameter values
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for the genetic variance and independence (Id) or dependence (A) between treatment effects.

2. Materials and Methods
In this study, a dataset was used as a motivating example. This section presents this dataset,

the designs and how they are obtained, the models for simulating data and the measures used to
compare designs. The procedures used in this study are similar to those presented by Santos, 2017;
Goes, 2020; Sermarini et al., 2020; dos Santos et al., 2024.

2.1 Material
The motivating example was a set of 598 wheat lines developed by CIMMYT (CIMMYT, 2021),

the International Maize and Wheat Improvement Center, available in the package lme4GS (Perez-
Rodriguez, 2021). The CIMMYT breeding program has conducted numerous international trials
in a wide variety of wheat production environments. The environments represented in these trials
were grouped into four basic sets of environments, comprising four main agroclimatic regions pre-
viously defined and widely used by CIMMYT. The dataset includes information on average grain
yield and parentage, among others.

The file wheat.Pheno contains four columns: environments (env), replicates (rep), genotype
identifiers (GID), and grain yields (Yield). The file wheat.Pedigree contains three columns, gpid1
and gpid2 correspond to the GIDs of parents 1 and 2, respectively, and progeny, which correspond
to the GIDs of the progeny. Finally, the file wheat.X contains a matrix of dimensions 598 × 1279,
which corresponds to the Diversity Array Technology (DArT) markers encoded as 0 and 1.

2.2 Generated designs
The configuration for generating the designs in this work was a rectangular experimental area

with 36 rows (nr) by 20 columns (nc), totaling 720 plots. A total of 598 test lines (nt) were considered,
as in the motivating example, in a p-rep design, with p = 20%. Thus, 122 test lines were replicated
and 476 were not.

The linear mixed model for generating p-rep designs was based on Gilmour et al. (1997):

y = Xβ + Zgdugd + Zouo + ϵ, (1)

where yn×1 is the vector of the response variable being n = nr × nc; β(q×1) is the vector of fixed
effects with design matrixX(n×q); ugd (nt×1) is the vector of random genetic effects with design matrix
Zgd (n×nt )

; uo((nr+nc)×1) is the vector of nongenetic random effects with design matrix Zo(n×(nr+nc)) , and
ϵn×1 is the vector of random errors. It was assumed that (uo, ugd , ϵ) are independent with Gaussian
joint distribution with zero mean and variance-covariance matrix:

σ2

 Do(γo) 0 0
0 Dg(γgd ) 0
0 0 R(ϕ)

 , (2)

such that γ. = σ2
. /σ2, γo contains the variance parameters for the row and column effects. Addition-

ally, we assume R(ϕ) = Σr(ϕr) ⊗ Σc(ϕc), where ϕr and ϕc are the correlation parameters for rows
and columns, respectively, that characterize first-order separable autoregressive processes.

To generate the designs, σ2 = 1, γr = γc = 0.1, ϕr = ϕc = 0.75 and fourγgd values (0.5, 1, 2 and 3).
The values adopted for the nongenetic parameters were assumed based on the works of Goes, 2020
and Sermarini et al., 2020, which reported estimates for similar experimental conditions in different
crops. These parameters reflect environment aspects, such as spatial correlation and dependence,
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and are not directly associated with genetics or a specific crop. The designs were generated under
two assumptions: the first in which the test lines were assumed unrelated, i.e., Dg = γgd Id, and the
second in which they were assumed related and Dg = γgdA, in which A is the pedigree matrix,
totaling eight evaluated designs.

The pedigree matrix, A, was obtained in R (R Core Team, 2021) using the pedigreem package
(Bates & Vazquez, 2014). The process began by assuming the A matrix to be an identity matrix,
where all off-diagonal elements are zero and on-diagonal elements are one, representing that each
individual is completely related to itself. For each individual, aij is calculated in the pedigree, check-
ing whether it has information about its father (f ) and mother (m). Based on this, the additive
kinship coefficients are calculated according to Henderson (1976), where

aij =

{
1 + 0, 5afm, if i = j
0, 5(aif + aim), if i ̸= j .

The A matrix is updated and this process continues until all individuals in the pedigree have been
processed. The A matrix is symmetric, since the coefficient of kinship between i and j is the same
as that between j and i.

The optimality criterion adopted was the C-optimal, which seeks a design with minimum av-
erage variance of pairwise differences of test lines effects (AVPD), so that,

AVPD =
2

nt – 1

(
tr
(
C–1

)
–

1
nt
1TC–11

)
,

where tr() represents the trace of the matrix and C is the information matrix of test lines, which for
the proposed model is given, according to Hooks et al. (2009), by:

C = ZT
gd

(ZoDo(σo)ZT
o + R(ϕ))–1Zgd + D–1

g (σgd ) – ZT
gd

(ZoDo(σo)ZT
o + R(ϕ))–1

X(XT(ZoDo(σo)ZT
o + R(ϕ))–1X)–1XT(ZoDo(σo)ZT

o + R(ϕ))–1Zgd .

One thousand moves were adopted for the design search. The package used was odw (Butler,
2022) for the R software (R Core Team, 2021).

2.3 Simulation study
After obtaining the designs, a simulation study was carried out to obtain data. Data were simu-

lated for 32 scenarios setting as presented in the previous Section, with the same definitions, adding
only the genomic relationship structure. Thus, the linear mixed model for data generation was based
on Perez-Rodriguez (2021):

y = Xβ + Zgauga + Zggugg + Zouo + ϵ, (3)

where yn×1 is the vector of the response variable being n = nr × nc; β(q×1) is the vector of fixed
effects with the design matrix X(n×q); uga (nt×1) ∼ MN(0,σ2

gaA) is the vector of random additive

genetic effects with design matrix Zga (n×nt)
, A is the pedigree matrix described in Section 2.2, σ2

ga is

the associated variance parameter; ugg (nt×1) ∼ MN(0,σ2
ggG) is the vector of random genomic effects

with design matrix Zgg (n×nt)
, G = WW′/k is a genomic relationship matrix, W is the centered and

standardized marker matrix, k is the variance parameter associated with the number of markers, σ2
gg

is the variance parameter associated with the markers.
The scenarios evaluated are the combinations of eight experimental designs and four values

for γga = γgg (0.5, 1, 2 and 3), as particular cases for the genetic variances. In all cases, σ2 = 1,
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γr = γc = 0.1 and ϕr = ϕc = 0.75 and γgaA + γggG) were assumed. As mentioned in Section 2.2,
to generate data, the values for the adopted nongenetic parameters are also obtained based on Goes,
2020 and Sermarini et al., 2020.

Independent samples were generated for the genetic and nongenetic effects and for the errors,
using the standard normal distribution. In this way, 1,000 vectors of size 598 were obtained for the
genetic effects, 1,000 vectors of size 56 (36+20) for the nongenetic effects of rows and columns, and
1,000 vectors of size 720 (36x20) for the error, ϵ. The appropriate transformation for each vector
was used, so that the variances for the genetic, nongenetic, and residual effects followed the desired
assumption.

After data simulation, the models were fitted. Data were analyzed following the model analogous
to that presented in Equation 3, with the same definitions. For this, the asreml (The VSNi Team,
2023) package for the R software (R Core Team, 2021) was used. For each set of simulated data,
the following were recorded: information on the algorithm convergence, the genetic EBLUPs, to
calculate the comparison measures and the estimates of the variance and correlation components.

2.4 Evaluation of designs
To compare the eight designs in each of the evaluated scenarios, RGG and selection success

measures were calculated. RGG is used to evaluate the genetic gain achieved in each design. For
each scenario of the generated designs, the EBLUPS of test lines are recorded and the RGG is
calculated as the ratio between the average of the best s EBLUPs and the average of the best s of
the true genetic effects, where s is the selection percentage, assumed to be 15%, a value commonly
adopted by Brazilian plant breeding programs (Goes, 2020; Sermarini et al., 2020; dos Santos et al.,
2024). Another measure calculated was the selection success (selection probability for s = 15%),
defined by the percentage of truly superior test lines selected from EBLUPs (Sermarini et al., 2020).

3. Results and Discussion
In Figure 1, the layouts for the p-rep designs are presented, considering the four genetic variance

values (γgd = 0.5, 1, 2 and 3), and the variance and covariance matrix assumed for the genetic effects,
considering dependence (on the right) and independence (on the left). In general, for all designs
considered, treatments are randomly distributed in the experimental area; however, some highlights
are made. Regardless of the assumption about the test lines effects relationship, it was observed that
the greater the genetic variance, the lower the frequency of clustered replicated test lines, that is,
different replicated test lines occupy a smaller number of neighboring plots, and of these, occupying
plots on the border of the experimental region. It is notted that, when assuming the genetic variance
to be twice the residual variance (γgd = 2), the lowest number of clustered replicates was observed,
the lowest number of replicates with at least one replicate occupying its neighboring plot and the
lowest number of replicates occupying plots on the border of the experimental region.
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231 26 63 266147375315126154464 34 578185 91 11 127153563189 38
494361169244 4 565158525 71 27 435493581102213529200 55 446574
399419 34 101504114 4 67 75 252384140 57 569 31 30 224484107481
331380114329 20 406229360 74 25 10 583195 42 425502 54 35 115 13
161268 25 272570347486 93 2 577230334440278 24 94 585311518 70
382 33 536 39 271294 21 421263364 52 182362145561245572489 66 123
67 445 90 542183 35 460240159 66 587441 37 8 325506373180 83 178
444 48 279340118 21 485 23 133100590 6 305116555522 86 498560401
58 344371 46 243 89 551326 79 482433209102275 7 447455567396495
105403 88 287 50 172105322181 95 170557 53 173 29 314 43 430 15 3
281507191 65 194184383168 28 413 41 151456558165 64 582510 24 167
288139352407254588 18 366258 77 269422208235214376524255426212
496 69 36 236359 47 179 8 210394 96 367141501197593379 13 554 43
42 220 16 598 97 251509217162 41 324226 50 321523 17 101319387117
459 89 414400597106237505 15 37 345 27 562 82 397100164412 40 81
40 92 257527418596 94 517539420 62 568595 17 338 76 1 160 74 219
57 98 503113206 95 467112532 72 431 10 416223136 20 289402450 9
55 234341 14 548415 72 355 45 589370249323265534357108111487128
104298438592222135545241108385434 59 405540549516 64 3 14 118
471 79 465 80 119356 28 500586124274544488 26 225 19 218591511227
22 104175429109 33 479301 75 5 410119174137 99 309171 59 594120
348280521566 32 457 46 96 73 408264476 93 52 299339350 7 53 69
122470106111427148363499 47 190454463537 32 515 78 519295 87 303
90 374 9 553512192365343132428393398332285318330514 83 129113
91 533310 36 404143335 56 306395262469293541 49 260526535448 39
282 1 304 81 23 65 300115188130 56 242138453 12 121461386333312
411239 82 110277472 99 353228436389478198584417253163390307 12
85 443292 44 327270110552 58 391 6 205201250579 49 246267186571
73 475117388 5 30 152125248 87 439449 44 22 2 490203 98 149 84
342196142 61 233 63 176 51 468528381452286204103543302354346409
328368508424 60 559273 84 531 11 546284121144238155 68 259 48 16
71 216442297451177351187199313466116317 86 337207232 78 193 60
109580112473 54 556296 61 437432276166290513392 29 316576520256
483 85 77 320156211146 62 221 18 51 88 497358 19 215308 97 492 38
550462377131423575372157477261247530291 76 491107 92 120378202
474 80 573336349283538458 31 369 68 564 45 480134547 70 103150122

595 26 526490409 82 307134493474110578 89 539 68 127288448 73 473
494 70 169244 4 565186289 71 380251 64 453531213 84 225 55 239 27
80 479 34 1 129 19 455 61 287293 39 140 57 569323511227563252104
331270 93 329 20 406 77 170 74 208144583195510264104172544 19 13
383268 25 324458103553 79 87 577230505532300408 94 226504120 2
46 33 315360271 8 21 421263115275207362145561283 97 392123 66
76 389378 86 215341460359551 66 158550 37 291273 12 373180183463
444 96 23 340118 21 65 319133447590108209116555522 86 354 85 500
491219235566 85 256574201243 9 44 132560475 45 361 4 567396364
27 211347587231117143119559538346164284173 6 121536430593501
281100191 65 51 441161344214105138151456114415162499 42 278185
109280352407266506285 74 520422126229461301 53 60 524589 34 469
333466 7 205223 47 179 8 210467 40 43 241 12 517139 42 450554 63
304495 80 29 11 435509 52 570 41 149454 95 581523 17 90 16 62 159
110518394400446106237405 15 111265334562375 22 41 276412137 25
426 92 336 62 418588 94 541 89 471 47 568114150480 53 294247546371
57 119503113206259420 32 217 72 535 10 440 1 379502221402 13 147
286234492 49 2 118 72 355 69 462 23 327507403121192103102484128
481485 75 311222296545 35 328385434 59 459540596322108525 14 29
24 339465314 98 356 28 302184124 35 165 3 197573558 83 591358 10
37 432366313585 33 527 11 32 146483245317 50 99 321279157107115
348 28 292193449457586257200 46 482101175141299155350 88 176512
70 17 218111468 81 363582 16 564160486 88 31 320 78 199295 40 303
330374508332 78 497365246171 60 325369 71 519167476232 83 58 427
91 533154 36 404105338514 81 395262391445 97 95 260372575233 54
282109410148428298 67 5 188130116242437102168306513316496312
50 384198498 55 472 99 353 58 48 597310576584417253163 43 267416
572106357258 14 413 73 552228152113236326370254249255 26 488571
125 52 54 397142 30 419189248 87 439368 44 388548107117135318 84
342376521272 18 429386 51 194196381452549112269543136530122349
112178 9 424101579345529 67 414 61 516 56 398238 79 220489 48 91
22 216557367305478351187181451 45 343174 63 337182 56 542 39 277
153580204377598556443 30 24 224 64 166401290537 69 177 82 487 15
390594 77 515156240433 31 6 18 423436534464120528308203274 38
411261 3 131212 36 399 59 477592393 98 425 76 250 93 92 382 96 202
438387 49 90 431100 20 470 5 38 68 190 7 335297547 75 309442122

595 26 158490349 52 145 64 493426 22 204 89 539133127297310 93 177
494283169192547565186 39 29 88 345 64 140451213529 11 147184574
546 10 34 558357114463 28 291293384212 57 188 31 511224 18 107245
331270319329 20 406229360 74 226 97 479278 88 534 98 117 35 255354
417268 25 7 17 362106506 60 577230 44 416584 24 500587353120 15
139 33 251201314 60 21 421263197 52 182340 12 332199583 65 69 153
76 573 90 159576 35 460168260 66 438550 37 399180 89 373273315 1
366 48 413589264290485185296100590 6 405564129522 86 294560459
250512427 79 538103551174288559116209544113302447 49 567396 31
37 403 21 41 266330105239328119261162115173108211536430256 3
281507527392111 55 383325265105234151104 19 415142499 42 437272
112450 76 407231588 32 13 109355154 77 248 58 122368524298 59 469
496306 54 205 79 119179454210104194 61 27 501400 87 379 12 549338
316350195432401444509375570 41 85 191 96 336523462101317385 27
110571165301 83 106365305 2 361 39 433449 82 28 25 164563452160
513 92 96 252418596 94 26 344471 47 568137 17 480457178 82 586 42
377514503 19 223 70 363 32 97 376535 10 440 50 136502 4 402321 84
313 45 492253 2 525 72 422318 53 23 181323412 67 364409 34 200128
481117516 43 214 83 138442575 62 434 15 537540225393108243 14 217
73 1 465277 47 356102 94 222439 8 146100517121 13 528359358 81
22 456175 40 542 33 458 54 53 5 483196 36 482 73 123189 59 594592
348 85 292193102289118125420 46 436 90 50 141299339 6 533176411
259566307 51 468120467582206484474276380112320 78 367295 44 303
172374508486 74 244369343347428 66 237578 65 75 476232126370113
91 103408 36 404 80 585556 46 208262 16 62 541 95 227372 9 219156
282554304 81 555562 70 118569130 80 218453 43 240121395386333312
394352183135132472 99 170228510389478487110161519308 4 267532
580 87 5 258257241448552 58 150 14 91 553300254249398242 63 464
99 144280397521 30 388322311 23 275115505152 98 107148203167 55
327 67 71 16 233382190 51 371581381 40 11 561269543 57 279346591
466410 9 424101579171 84 531286 61 166 56 246238155 68 489 48 598
134216557274287473351187221 72 342 63 326 86 337207 56 78 470 95
109419545 3 446548387 30 24 124455284236488324 29 143271520461
220445 77 515 7 504285247390 18 391530 75 518 20 215163 69 341 38
425 71 149131423116526157477435198498441495 93 491 92 429593202
8 334 49 378431111443114497 38 68 572 45 335597475235309414122

595 26 546 33 349397468411199259 34 578555539296108231563 65 473
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Figure 1. Layouts for the p-rep design generated considering the kinship matrix A (on the right) and for the p-rep design
generated without considering the kinship matrix (on the left), for an experimental area of 36 rows by 20 columns and 598
test lines, with p = 20%.
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Regarding simulation results, algorithm convergence was observed for all 1,000 fitted models in
each of the scenarios under the eight different designs.

In Table 1, when generating designs with the genetic variance being half of the residual vari-
ance, for the cases evaluated, it was observed that the average RGG is higher and more accurate when
using spatially optimized designs in which the effects of test lines are assumed to be independent,
not exceeding 0.3% when compared to the designs for which the matrix A was considered. Inter-
estingly, the same was observed when γgd = 2. However, when the genetic and residual variances
are equal (γgd = 1) and when the former is three times the latter (γgd = 3), the spatially optimized
designs with Dg(γgd ) = γgdA showed better performance, but not exceeding 0.3% and 0.1% for the
RGG, on average, for γgd = 1 and γgd = 3, respectively. Similar behavior was observed when com-
paring the designs in relation to selection success. However, for this measure, greater difference was
observed between designs in relation to the assumption of genetic effects in relation to the precision
of the selection success (Table 2).

Table 1. Mean and standard deviation of realized genetic gain (RGG) for designs generated with γgd = 0.5, 1, 2, 3 and
assumed genetic variance for data, γga = γgg = 0.5, 1, 2, 3, considering the kinship matrix, Dg = γgdA, and without
considering the kinship matrix, Dg = γgd Id, for selection percentage s = 15%.

γgd = 0.5
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 1.513 (0.315) 2.239 (0.432) 3.269 (0.605) 4.053 (0.732)
Dg = γgdA 1.511 (0.318) 2.233 (0.439) 3.264 (0.610) 4.048 (0.736)

γgd = 1
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 1.510 (0.318) 2.235 (0.435) 3.264 (0.607) 4.048 (0.736)
Dg = γgdA 1.514 (0.310) 2.239 (0.429) 3.268 (0.599) 4.056 (0.723)

γgd = 2
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 1.510 (0.317) 2.236 (0.434) 3.267 (0.605) 4.058 (0.728)
Dg = γgdA 1.511 (0.318) 2.233 (0.436) 3.263 (0.606) 4.050 (0.734)

γgd = 3
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 1.513 (0.320) 2.238 (0.439) 3.267 (0.611) 4.054 (0.733)
Dg = γgdA 1.514 (0.317) 2.238 (0.436) 3.269 (0.608) 4.057 (0.731)

As in Sermarini et al. (2020), the design generated with the same set of parameters assumed for
data does not necessarily present better performance. In the present study, by not informing the re-
lationship between test lines in the search for the optimal or near optimal design, it is recommended
to adopt low genetic variance (γgd = 0.5). However, when searching for the design when such a
relationship was declared, no consistency in results was observed, and a general recommendation is
not appropriate.

In the study by Bueno Filho & Gilmour (2003), which evaluated three different assumptions for
A, the authors showed that, for selection purposes, genetic relationship plays an important role in
the search for the optimal block design. The authors reported that some designs are quite robust to
misspecification of the covariance structure. For simple genetic covariance structures, which were
defined as A = 1

2 Id, which resembles the structure used in this work Dg = γgd Id, for generating
the designs; the optimal design is in the class of optimal designs for unrelated treatments. For
special covariance structures, which resemble the Dg = γgdA structure used in this work, the authors
state that it is possible to find an optimal design outside the class of optimal designs for unrelated
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Table 2. Mean and standard deviation of selection success for designs generated withγgd = 0.5, 1, 2, 3 and assumed genetic
variance for data, γga = γgg = 0.5, 1, 2, 3, considering the kinship matrix, Dg = γgdA, and without considering the kinship
matrix, Dg = γgd Id, for selection percentage s = 15%.

γgd = 0.5
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 61.846 (4.532) 66.559 (3.929) 71.106 (3.482) 73.297 (3.120)
Dg = γgdA 61.599 (4.417) 66.442 (3.879) 70.954 (3.375) 73.163 (3.204)

γgd = 1
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 61.608 (4.320) 66.558 (3.781) 70.917 (3.358) 73.215 (3.208)
Dg = γgdA 61.582 (4.418) 66.442 (3.959) 70.938 (3.503) 73.275 (3.691)

γgd = 2
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 61.626 (4.320) 66.494 (3.965) 71.021 (3.437) 73.327 (3.124)
Dg = γgdA 61.477 (4.427) 66.477 (3.919) 70.917 (3.467) 73.154 (3.144)

γgd = 3
γga = γgg = 0.5 γga = γgg = 1 γga = γgg = 2 γga = γgg = 3

Dg = γgd Id 61.438 (4.357) 66.406 (3.889) 70.841 (3.363) 73.239 (3.164)
Dg = γgdA 61.503 (4.363) 66.450 (3.760) 70.844 (3.554) 73.315 (3.082)

treatments.
Regarding the assumption of dependence and independence between test lines, in the study car-

ried out by dos Santos, 2023, no major differences were observed in the comparison measures when
considering the dependence or independence between the test lines effects in the design model, cor-
roborating results presented in this work. However, the author states that when the kinship matrix
is used in the analysis model, there is a gain of at least one truly good test line selected by the model.

Additionally, when observing genetic gain and selection success, these were greater in cases
where the ratio between genetic and residual variance for data were greater, a fact expected and
also observed by Cullis et al. (2006), Clarke & Stefanova (2011), Santos (2017), Goes (2020) and
Sermarini et al. (2020).

Finally, Figures 2 and 3 present the densities of the estimates of variance components of fitted
models for optimal designs obtained considering the kinship matrix A, and without considering the
kinship matrix. For γga , in Figure 2, in general, it was observed that the assumptions considered to
generate the designs did not significantly influence the estimates of variance components. However,
it is interesting to highlight that: (i) when assuming independence between the genetic effects when
searching for an optimal design, the cases presenting the least bias in relation to the estimates of
variance components were for γgd = 2 at γg = 0.5 and for γgd = 3 at γg = 2; (ii) when assuming
the pedigree matrix of the genetic effects in the design model, the smallest bias in the estimates
of variance components was observed when γgd = 3 and γga = γgg = 3. The same occurs when
analyzing γgg in Figure 3, which suggests that for higher variance values it is more appropriate
to declare the information on kinship between treatments effects. In addition, there were cases in
which the components presented overestimation and underestimation, with slight tendencies.
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Figure 2. Estimates of parameter related to the genetic variance (γ̂ga ) for the p-rep designs generated considering the
kinship matrix A and for the p-rep designs generated without considering the kinship matrix, for the four γgd values. The
vertical line represents the expected parameter value.
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Figure 3. Estimates of parameter related to the genetic variance (γ̂gg ) for the p-rep designs generated considering the
kinship matrix A and for the p-rep designs generated without considering the kinship matrix, for the four of γgd values.
The vertical line represents the expected parameter value.
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4. Conclusions
In this study, spatially optimized p–rep designs for 598 test lines were compared in an experi-

mental area of 36 rows by 20 columns, with the objective of evaluating genetic gain and selection
quality through measures of realized genetic gain and selection success when assuming some char-
acteristics for the designs. That is, four values for the generation of the designs and for the simulation
study, γgd and γga = γgg , being 0.5, 1, 2, 3; a percentage value for the repeated test lines, p = 20%; a
value for the selection percentage, s = 15% and a scenario for the values of the nongenetic effects. In
addition, assumptions of dependence and independence between the treatment effects, in this case,
the test lines, were considered.

No large differences were identified for realized genetic gain and selection success among the
designs that were generated assuming the pedigree matrix (A) and the designs that considered in-
dependence (Id) between the treatment effects. The same was observed for selection success. Re-
garding the distribution of test lines in the experimental area, including or not the pedigree matrix
did not interfere with randomness, but it is noted that for higher values of genetic variance, the fre-
quency of test lines in neighboring plots and on the border of the experimental area is lower. When
γgd = 2 is assumed, there is a smaller number of clustered replicates, a smaller number of replicates
with at least one neighboring replicate, and a smaller number of replicates on the border.

It is highlighted that the results for the quality of selection are strongly affected by the charac-
teristics of the data, since the higher the ratio between the genetic and residual variances, the higher
the values for the RGG and the success of selection. This study has some limitations. The data were
simulated based on a set of parameters used by plant breeding programs and the same experimen-
tal area size, the same percentage of repeated test lines, the same percentage of selection, a single
scenario for the values of nongenetic effects and the genetic variances were supposed to be equal.
In addition, the matrices A and G used in this work, extracted from CIMMYT, are for the wheat
crop. Therefore, other results could be found if different scenarios were assumed, for example, for
the percentage of repeated test lines, percentage of selection and higher values for the nongenetic
variance parameters. Therefore, it is expected that experimental designs that provide more detailed
information about treatments present a better performance in terms of precision and reliability of
results, since greater amount of information allows a more robust analysis and a better identification
of the treatment effects.
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