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1. Introduction 
In the field of agricultural sciences, parametric inference plays a crucial role as a statistical 

tool, particularly in studies involving plants, such as analyzing grain yield (Souza et al., 2023; 

Mwiinga et al., 2020) or measuring plant cover (Wright et al., 2017). Similarly, in clinical 

research, these inferential methods are essential for analyzing medical data and making evidence-

based decisions (Kwak & Park, 2019). Some inferential procedures, such as the Analysis of 

Variance (ANOVA), require a normal distribution for experimental errors. Acutis et al. (2012) 
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Abstract 

 

The assumption of normality holds significant importance in inferential methods, such as the F-test of Analysis of 

Variance (ANOVA), which finds extensive application across various fields such as agricultural and clinical trials. 

Consequently, normality tests serve the purpose of evaluating the distribution of experimental errors for normality. 

However, prior studies aiming to compare the power of these tests should have considered the experimental design 

employed for simulated studies and assessed the impact of varying experimental conditions on the test powers. This 

study, therefore, focuses on assessing the effects of symmetry (or asymmetry) in the empirical distributions of the 

response variable for each treatment, the equality (or inequality) of their means, and the homogeneity (or heterogeneity) 

of their variances on the empirical power of both normality tests and the F-test, considering a Completely Randomized 

Design (CRD). To achieve this objective, normality tests were applied to 10,000 simulated sets of experimental 

residuals, while the F-test was applied to 10,000 simulated sets of response variable values.  The findings of this study 

indicate that, in the majority of scenarios, power increases with an increasing number of replications per treatment. 

Furthermore, it was observed that the presence of symmetry tends to diminish the power of normality tests, while the 

F-test exhibits remarkable robustness to violations of normality assumptions. However, the power of the F-test can be 

influenced when the homogeneity of variances is compromised in conjunction with the asymmetry of non-normally 

distributed empirical data. 
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highlight that ANOVA has been a standard method in agricultural sciences since the late 1930s, 

providing robust, probabilistic-based statistical analysis to support agronomists in reaching 

reliable information about scientific findings for technicians and farmers. 

In ANOVA, the assumption of normality is primarily related to the F statistic, which is based 

on the Fisher-Snedecor F distribution (Fisher, 1925). The F statistic represents the ratio of two 

estimators of variance, that is, the estimator of variance between treatment means divided by the 

estimator of variance within treatments. The estimator of variance within treatments is known as 

residual variance, which estimates the variance of the experimental errors. Each one of these 

estimators follows a specific chi-square distribution, but both chi-squares require that the 

experimental errors follow a normal distribution. However, it is important to acknowledge that 

normality is not often evaluated in parametric inferences (Souza et al., 2023; Knief and 

Forstmeier, 2021). 

If the assumption of normality is not valid, then it is not possible to guarantee that the ratio 

between variance estimators will result in a statistic that follows an F distribution (Mood,1974; 

Casella and Berger, 2002). Consequently, the conclusion regarding the null hypothesis may be 

erroneous.  

Hence, evaluating the assumption of normality of errors is a crucial step and can be 

accomplished through various methods. These methods include graphical techniques (e.g., 

histograms and boxplots), numerical approaches that utilize measures of skewness and kurtosis, 

and formal normality tests (Souza et al., 2023; Razali & Wah, 2011). According to Shapiro and 

Wilk (1965) and Razali and Wah (2011), numerical methods and normality tests offer greater 

precision compared to graphical techniques. 

One class of normality tests employed to verify the assumption of normality is the adherence 

test, such as Kolmogorov-Smirnov (KS), Lilliefors (LI), Cramér-von Mises (CVM), and 

Anderson-Darling (AD) tests. These tests compare the empirical distribution of the data to a 

theoretical normal distribution. A larger discrepancy observed between these cumulative 

distributions indicates a lower likelihood that the data are normally distributed, as noted by 

Anderson and Darling (1952). 

On the other hand, the other class of normality tests compares two variance estimators: one 

specific to symmetric distributions (such as the normal distribution) and another for general 

distributions. One such test is the Shapiro-Wilk (SW) test (Shapiro and Wilk, 1965). This test 

computes the W statistic, which is a ratio between the variance estimator for the symmetric 

distribution (numerator) and the general variance estimator. The discrepancy between these 

estimators allows inference regarding the typical distribution of the data. A W statistic close to 

one indicates a high probability that the experimental error follows a normal distribution. 

According to Souza et al. (2023), Patrício et al. (2016), González-Estrada and Cosmes (2019), 

the Shapiro-Wilk test (SW) is widely recommended because it can be used for small sample sizes 

(< 50 samples) and have greater power than adherence tests (Razali and Wah, 2011; Pino, 2014; 

Patrício et al., 2016, Arnastauskaitė et al., 2021; Uyanto, 2022). Many important agronomic 

studies have small sample sizes, such as corn (Singh et al., 2023; Ullah et al.; 2023), rice (Li et 

al., 2023), soybean (Karges et al., 2022; Pierozan Junior et al., 2023), sugarcane (Kölln et al., 

2022) and wheat (Basso et al., 2013; Mizuta et al., 2023).  

Nevertheless, apart from the sample size, other experimental conditions may influence the 

power of normality tests and the F-test itself. Previous studies have primarily focused on sample 

size and consistently shown that test power increases as the sample size increases (Confalonieri et 

al., 2007; Anderson et al., 2017; Doulah, 2019; Arnastauskaitė et al., 2021; Islam, 2021; Uyanto, 

2022). Nonetheless, these studies were conducted using simulated sample sizes generally much 

larger than those typically encountered in agricultural experiments and did not explore the effects 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Oriel%20Tiago%20K%C3%B6lln&eventCode=SE-AU
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of conditions such as symmetry (or asymmetry) of empirical data distributions and equality (or 

inequality) of means across treatment groups, as well as the homogeneity (or heterogeneity) of 

variances, on the power of normality tests and the F-test. 

Given this context, studies like Nguyen et al. (2019) emphasize that the F-test is significantly 

sensitive to violations of the homogeneity of variances assumption. However, the impact of such 

violations on the test's power, when combined with other experimental conditions, remains 

unclear. 

Therefore, the present study aims to evaluate the performance of normality tests and the F-test 

when applied to sample sizes representative of real agricultural, medical, and other applied 

sciences experiments. Additionally, evaluates the influence of symmetry (or asymmetry) of non-

normal empirical distributions, equality (or inequality) of means, and homogeneity (or 

heterogeneity) of variances on the empirical power of normality tests and the F-test. 

 

2. Materials and Methods 
Data sets of a Completely Randomized Design (CRD) with five treatments and k replications 

were simulated under different scenarios such that the response variable follows different inverse 

gamma probability distributions. The chosen parameters, α and β (Gelman et al., 2013), of these 

distributions yielded the scenarios C1, C2, C3, C4, C5, C6, C7, and C8, as presented in Table 1. 

The differences among these scenarios are due to distribution symmetry (asymmetry), equality 

(inequality) of treatment means, and equality (inequality) of treatment variances. For this study, 

approximately symmetric inverse gamma distributions were considered symmetric, as they do not 

differ significantly from a symmetric one. Furthermore, for the simulation of scenarios with 

different treatment means, their ratio was 1:2:3:4:5. Similarly, for scenarios with different 

treatment variances, their standard deviation ratio was also 1:2:3:4:5. 

 Five sub-scenarios were simulated for each of the eight scenarios, with each sub-scenario 

characterized by a number of k = 2, 4, 6, 8, or 10 replications per treatment (Figure 1). Therefore, 

40 sub-scenarios were evaluated in this study. For each of these sub-scenarios, 10,000 iterations 

were simulated. For each iteration 𝒘, such that 𝒘=1,2,…,10,000, a 𝒘 set of 5k residuals was 

obtained, according to Equation 1, where 𝜺̂ 𝒊𝒋𝒘, considering the CRD statistical model, is the 

residual obtained for the observed value 𝒚𝒊𝒋𝒘 of the response variable on iteration 𝒘 for replication 

𝒋 of treatment 𝒊: 

 

𝜺̂ 𝒊𝒋𝒘=𝒚𝒊𝒋𝒘−𝝁̂ 𝒊𝒘                                            (1) 

 

Therefore, for each one of the 10,000 iterations, a residual data set, composed of 5k residuals, 

was obtained. Each normality test (KS, LI, CVM, AD, and SW), which has as null hypothesis that 

experimental errors follow a normal distribution, was applied to each residual data set. 

Under α=0.05, an empirical power 𝑷̂ for each normality test was computed by Equation 2:  

 

𝑷̂ =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑−𝒗𝒂𝒍𝒖𝒆𝒔≤𝟎.𝟎𝟓

𝟏𝟎.𝟎𝟎𝟎
                                            (2) 

 

For a given normality test, the number of 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝒔 was the number of 𝒘 residuals data sets 

that yielded rejection of the null hypothesis of normality (α=0.05). 

Unlike the normality tests, the F-test was applied to the response variable values, only in 

scenarios where the treatment means were unequal, specifically for C3, C4, C7, and C8 (Table 1). 

However, their empirical powers (𝑷̂) were also calculated using Equation 2, considering as null 

hypothesis, the equality of the five treatments means and a 5% significance level. 
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For each sub-scenario, each normality test and F-test had its empirical power classified as:  

- Not powerful, if 𝑷̂ < 0.75; 

- Powerful, if 𝑷̂ ≥ 0.75. 

The independence between the classification of empirical power and experimental conditions 

(symmetry of distribution, equality of means, and equality of variance) was evaluated by a chi-

square test, according to Siegel and Castellan Jr. (2006). 

Software R, version 4.0.2 (R Core Team, 2020), was used to obtain all simulated data and 

evaluate all normality and F tests. The simulations and statistical analyses were conducted using 

a suite of packages, including “tidyverse”, “xlsx”, “car”, “GAD”, “PMCMRplus”, “DescTools”, 

“outliers”, “stats”, “coin”, “dplyr”, “nortest”, “onewaytests”, “invgamma”, “nimble” and 

“moments”. The graphical representations were generated using the "lattice" and "dplyr" 

packages. 

 

2.1 Figures and tables 

Figure 1 illustrates the organizational chart for each simulated scenario pattern and sub-scenario. 

  

 

Figure 1. Organization chart of each scenario pattern and sub-scenario, under the CRD, defined by an inverse gamma 

probability distribution of the response variable, considered symmetric or asymmetric distribution, treatment means equal 

or unequal, treatment variances equal or unequal, and k replications per treatment. 

 

 

 

 

Number of 
replications 

per 
treatment 

Residual 
variances of 
treatments 

Treatments 
means

Symmetry

Response 
variable 

distribution

Inverse 
Gamma 

Symmetric

Identical

Identical
k=2, 4, 6, 8 

or 10

Distinct
k=2, 4, 6, 8 

or 10

Distinct

Identical
k=2, 4, 6, 8 

or 10

Distinct
k=2, 4, 6, 8 

or 10

Asymmetric

Identical

Identical
k=2, 4, 6, 8 

or 10

Distinct
k=2 , 4 , 6, 8 

or 10

Distinct

Identical
k=2, 4, 6, 8 

or 10

Distinct
k=2, 4, 6, 8 

or 10



  Ribeiro Neto et al. 

Braz. J. Biom., v.43, e-43760, 2025.                                                                                                                                                                                 5 

Table 1 shows the values of means and standard deviations for each scenario. 
 

Table 1. Values of means and standard deviations for the treatments were established to simulate scenarios considering different 

inverse gamma distributions 

Inverse Gamma Mean Standard Deviation  
Scenario 

 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 = 0,25 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 0,144 C1 

Asymmetric 𝜎1 = 0,144; 𝜎2 = 0,288; 𝜎3 = 0,432; 𝜎4 = 0,576; 𝜎5 = 0,720 C2 

 𝜇1 = 0,25; 𝜇2 = 0,5; 𝜇3 = 0,75; 𝜇4 = 1,00; 𝜇5 = 1,25 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 0,144 C3 

𝜎1 = 0,144; 𝜎2 = 0,288; 𝜎3 = 0,432; 𝜎4 = 0,576; 𝜎5 = 0,720 C4 

Symmetric 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 = 100 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 1 C5 

 𝜎1 = 1; 𝜎2 = 2; 𝜎3 = 3; 𝜎4 = 4; 𝜎5 = 5 C6 

 𝜇1 = 100; 𝜇2 = 200; 𝜇3 = 300; 𝜇4 = 400; 𝜇5 = 500 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 1 C7 

 𝜎1 = 1; 𝜎2 = 2; 𝜎3 = 3; 𝜎4 = 4; 𝜎5 = 5 C8 

 

 

3. Results  
Empirical power of each normality and F-test (the latter, in scenarios with distinct treatment 

means), as a function of the number of replications per treatment, obtained from simulated 

iterations of asymmetric distributions scenarios C1, C2, C3, and C4 (Table 1), is presented in 

Figure 2. A threshold line at 𝑷̂ = 0.75 is plotted in each figure to distinguish between powerful 

and not powerful tests at each replication number k. 

Under asymmetric distribution with identical means and identical standard deviations (C1), 

the empirical power of all normality tests linearly increased as the number of replications (k)  per 

treatment increased (Figure 2 (a)). It should also be noted that the KS test showed the lowest 

empirical power at all k. This result suggests a highly conservative behavior of this test. In most 

iterations, the KS test did not reject the hypothesis of normality when it should have because the 

simulated data follows an inverse gamma distribution. For all normality tests under scenario C1 

(Figure 2 (a)), the greatest empirical power was observed for the highest number of replications 

(k=10), representing a total of 50 observations for the experiment. Other than KS, all normality 

tests were classified as powerful for such replications. For k=8, the LI was not powerful. For k=2 

(10 observations),  k=4 (20 observations), and  k=6 (30 observations), no test was classified as 

powerful according to the empirical powerfulness criteria. 

As in scenario C1, an increase in the empirical power of all normality tests, except for the KS 

test, was observed in C3 as k increases (Figure 2(b)). However, their empirical power values were 

considerably smaller than those observed for C1 (Figure 2 (a)), and no normality test was 

classified as powerful at any number of replications, not even k=10. The only difference between 

scenarios C1 and C3 is that the treatment means were equal in C1 and not in C3. However, the 

independence chi-squared test between equality (not equality) of treatment means and 

powerfulness (not powerfulness) for each normality test was not significant (Table 2). 

Under scenario C3, the F-test was powerful (𝑷̂≥0.75) even for a small number of replicates 

per treatment (k=2) (Figure 2 (b)). This result indicates the robustness of the F-test when the 

assumption of normality is not valid. However, it is worth mentioning that in C3, although the 

treatment means were not equal, the within-treatment variances were equal. 

From the results of simulations for scenario C2 (Figure 2 (c)), when treatment means are 

identical but within treatment variances are different and k≥6, practically, all normality tests, 

except KS test, were powerful (𝑷̂≥0.75). As observed for scenarios C1 and C3, the empirical 

power of the normality tests under C2 increases as k increases. 

In general, C2 showed higher empirical powers than C1 for all k. However, according to the 

chi-squared test (Table 3), there is no significant dependence (α = 0.05) between power and 

within-treatment homogeneity of variance under scenarios simulated for asymmetric distributions 
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with equal treatment means. 

Finally, for asymmetric inverse gamma distributions, Figure 2 (d) also shows the empirical 

power of scenario C4 (not equal treatment means and not equal within treatment variances). An 

increase in empirical power for all normality tests (AD, CVM, LI, SW, and KS) can be observed 

as the number of replications increases. For K≥8, all normality tests were powerful, except KS, 

with a noticeable tie between the most powerful ones (SW, AD, and CVM). On the other hand, 

the F-test was powerful if k>4, regardless of the homogeneity of variances, for scenarios with 

asymmetric distributions (C3 and C4). 

Furthermore, under asymmetric distributions with different treatment means, F-test empirical 

power was lower in scenario C4 (with heterogeneity of variances) than in scenario C3 (with 

homogeneity of variances).  This may be due to the violation, in C4, of the variance homogeneity 

assumption required for using the F-test. 

When symmetric inverse gamma distributions with equal variances were selected for 

simulations, for either case of treatment means, equal (C5) or not equal (C7), no normality test 

was classified as powerful, showing empirical power near zero for every number of replications 

per treatment (Figure 3 (a) and (b)). However, under scenario C7, the F-test was classified as 

powerful for every number of replications per treatment (Figure 3 (b)). 

The chi-square independence test between the powerfulness class (powerful or not powerful) 

and symmetry (asymmetry) of the simulated distributions was significant for most of the normality 

tests (Table 4). Such results explain the decreased empirical power observed compared to results 

obtained from simulations of asymmetric (Figure 2) and symmetric (Figure 3) inverse gamma 

distributions. 

Moreover, the pattern observed for the empirical power of the F-test (Figures 2 and 3) 

indicates relative robustness, as the empirical power of the F-test was very close to 1 under sub-

scenarios C3, C7, and C8. 

The empirical power of most normality tests increased as the number of replications per 

treatment also increased for scenarios simulated using a symmetric inverse gamma distribution 

with unequal within-treatment variances, for both equal (C6) and unequal (C8) treatment means 

(Figure 3 (c) and (d)). Besides this increase, none of the normality tests were classified as 

powerful. It is worth mentioning that the empirical power of KS test remained remarkably stable 

and close to zero.   

Although there is a clear pattern difference, in Figure 3, between scenarios simulated with 

equal (C5 and C7) and unequal variances (C6 and C8), it was not possible to test the significance 

of the independence between powerfulness class and equality of variance because there were some 

cells with zero frequency on the contingency table needed for chi-square independent test.   

Furthermore, under symmetric inverse gamma distributions with different means and standard 

deviations (Figure 3 (d)), no normality test was powerful (𝑷̂<0.75), once again demonstrating how 

these tests were sensitive to the symmetry condition. 

 
3.1 Figures and tables 

 
Figure 2 shows the results of scenarios C1, C2, C3, and C4. 
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Figure 2. Empirical power (𝑃̂) of F-test for scenarios C3 (b) and C4 (d) and Anderson-Darling (AD), 

Kolmogorov-Smirnov (KS), Crámer-von Mises (CVM), Lilliefors (LI) and Shapiro-Wilk (SW) tests for 

scenarios C1 (a), C2 (c), C3 (b), and C4 (d) as a function of number of replications (k) per treatment obtained 

from simulated asymmetric inverse gamma distributions and empirical power threshold value at 𝑃̂=0.75. 

 

 

Figure 3 shows the results of scenarios C5, C6, C7, and C8. 

 

 
Figure 3. Empirical power (𝑃̂) of F-test for scenarios C7 (b) and C8 (d) and Anderson-Darling (AD), Kolmogorov-

Smirnov (KS), Crámer-von Mises (CVM), Lilliefors (LI) and Shapiro-Wilk (SW) tests for scenarios C5 (a), C6 (c), 

C7 (b), and C8 (d) as a function of number of replications (k) per treatment obtained from simulated asymmetric 

inverse gamma distributions and empirical power threshold value at 𝑃̂=0.75. 

 

Tables 2, 3, and 4 show chi-square independence test results. 
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Table 2. Results of chi-square independence tests between classes of empirical power (powerful for 𝑃̂≥0.75 and not 

powerful for 𝑃̂<0.75) and equality (inequality) of treatment means, for Anderson-Darling (AD), Kolmogorov-

Smirnov (KS), Crámer-von Mises (CVM), Lilliefors (LI) and Shapiro-Wilk (SW) normality tests, according to 

simulations of scenarios C1 and C3. Values in bold indicate significance (p-value≤0.05) 

 

Test P-value 

AD 0.1138 

KS - 

CVM 0.1138 

LI 0.2918 

SW 0.1138 

 

 

 

Table 3. Results of chi-square independence tests between classes of empirical power (powerful for 𝑃̂≥0.75 and not 

powerful for 𝑃̂<0.75) and within treatment homogeneity (heterogeneity) of variance, for Anderson-Darling (AD), 

Kolmogorov-Smirnov (KS), Crámer-von Mises (CVM), Lilliefors (LI) and Shapiro-Wilk (SW) tests, according to 

simulations of scenarios C1 and C2. Values in bold indicate significance (p-value≤ 0.05) 
 

Test P-value 

AD 0.5271 

KS - 

CVM 0.5271 

LI 0.4902 

SW 0.5271 

 

 

 

Table 4. Results of chi-square independence tests between classes of empirical power (powerful for 𝑃̂≥0.75 and not 

powerful for 𝑃̂<0.75) and symmetry (asymmetry), for Anderson-Darling (AD), Kolmogorov-Smirnov (KS), Crámer-

von Mises (CVM), Lilliefors (LI) and Shapiro-Wilk (SW) tests, according to simulations of scenarios C1, C2, C3, 

C4, C5, C6, C7, and C8. Values in bold indicate significance (p-value≤ 0.05) 
 

Test P-value 

AD 0.01253 

KS - 

CVM 0.01253 

LI 0.05583 

SW 0.01253 

 
 

4. Discussion 
The reported results were obtained by adopting a methodology that differs significantly from 

previous studies that evaluated normality tests in two key aspects. This study used sample sizes 

much closer to practical, real-world sample sizes (<50 observations), in contrast to the thousands 

of observations employed in previous research. Furthermore, in this study, all normality tests were 

evaluated based on experimental errors rather than response values, as was done in prior studies. 

The experimental errors were computed based on the experimental design used to simulate the 

response values. While this study focused on Completely Randomized Design (CRD), future 

research should extend this methodological approach to other experimental designs, such as 

Randomized Block Design (RBD) and Latin Square Design (LSD), evaluating how treatment 

means equality (inequality), within treatment variances homogeneity (heterogeneity), and 

symmetry (asymmetry) of response variable distributions behave under these alternative 

experimental arrangements. 
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Unlike previous studies that did not employ experimental designs, this study assessed the 

effects of the equality or inequality of treatment means, as well as the homogeneity or 

heterogeneity of treatment variances, which are required for the Analysis of Variance (ANOVA). 

Despite these differences, the results of this study align with those of Arnastauskaitė et al. (2021), 

Razali and Wah (2011), Ogunleye et al. (2018), Doulah (2019), Torman et al. (2012), and Uyanto 

(2022), which showed a similar pattern of increasing empirical power as the number of 

observations increased, particularly when the data originated from asymmetric probability 

distributions for AD, CVM, KS, LI, and SW normality tests (see Figure 2). However, this pattern 

was not observed in this study when the residuals were obtained from scenarios simulated with 

symmetric inverse gamma distributions, either with equal treatment means and within-treatment 

variances (C5) or unequal treatment means and equal within-treatment variances (C7), as depicted 

in Figure 3. All normality tests exhibited stable and extremely low empirical power in these 

scenarios. Nevertheless, scenarios with symmetric inverse gammas and heterogeneity of variances 

(C6 and C8, Figure 3) demonstrated slightly higher power compared to C5 and C7 but still lower 

than the scenarios with asymmetric inverse gammas (Figure 2). These findings concur with those 

of Farrell and Stewart (2006), who stated that normality tests have lower power when empirical 

distributions are symmetric with short tails (C5 and C7) and higher power only when the curves 

have longer tails (C6 and C8). 

It is worth mentioning that Farrell and Stewart (2006) concluded that the modification 

proposed in the SW test by Rahman and Govindarajulu (1997) increases the power of the SW test 

when the empirical distribution of the data is symmetric with a short tail. However, these results 

were not associated with any experimental design, as in the present study. Future studies could 

investigate whether the modification proposed by Rahman and Govindarajulu (1997) effectively 

increases empirical power when experimental errors are used instead of response values under 

symmetric scenarios. Additionally, it could be evaluated whether similar modifications enhance 

the power of other normality tests (AD, CVM, LI, and KS) in these cases, given their previous 

ineffectiveness. 

Among all the normality tests evaluated in this study, the KS test exhibited the lowest power 

across all scenarios and replication numbers per treatment. These findings are consistent with 

those of Ogunleye et al. (2018), Torman et al. (2012), and Uyanto (2022), who observed a 

conservative pattern for the KS test. 

This study also concludes that when the assumption of homogeneity of treatment variances 

holds true, the F-test is powerful for all sample sizes and effectively rejects the hypothesis of 

equality of treatment means. This finding aligns with the results of Nguyen et al. (2019), who 

demonstrated that, under homogeneity of treatment variances, the F-test outperforms non-

parametric methods in assessing equality of means. 

Like the present study, Nguyen et al. (2019) observed reduced power of the F-test when the 

homogeneity of variance is not met and the number of replications per treatment is low. 

However, the robustness of the F-test is evident in this study, as it exhibited considerable 

power even when normality assumptions were violated. These results support the conclusions of 

Knief and Forstmeier (2021) that parametric tests, such as the F-test, are robust to violations of 

the normality assumption if there is no substantial asymmetry in the distribution of experimental 

data. 

In this study, the F-test displayed robustness and stability across all replication numbers per 

treatment in C7 and C8. Nevertheless, the only scenario in which the F-test lacked power was C4 

(k < 4), characterized by a combination of asymmetry in inverse gamma distributions and 

heterogeneity of within-treatment variances, indicating an interaction between these two 

experimental conditions that resulted in reduced F-test power. None of the scenarios with 

symmetry exhibited a lack of power for the F-test. In this regard, considering only symmetric 

inverse gamma distributions, although a chi-squared test was not employed, it is evident that there 

is no dependence between the power classification and the homogeneity or heterogeneity of 

variances for the F-test, as the empirical powers of the F-test were consistently equal to 1 for every 
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k replications per treatment for both scenarios C7 and C8. 

Based on our findings, we propose the following practical guidelines for researchers applying 

these statistical methods in real-world settings. When dealing with experimental data analysis, (1) 

Researchers should be particularly cautious with normality test results under two specific 

conditions: when the experimental error distribution is symmetric or the number of replications 

per treatment is less than 8 (or the total experimental errors are fewer than 40). Under these 

conditions, the empirical power of normality tests is substantially reduced. (2) For ANOVA 

applications, the F-test power is compromised only when there is a simultaneous occurrence of 

heterogeneous within-treatment variances, asymmetric distribution of experimental errors, and 

fewer than 4 replications per treatment. Outside of this specific combination, the F-test 

demonstrates considerable robustness. (3) The F-test performs particularly well with symmetric 

error distributions, maintaining high power regardless of whether variances are homogeneous or 

heterogeneous. (4) For experimental design planning, we recommend a minimum of 8 replications 

per treatment to ensure adequate power for normality testing, although the F-test may perform 

reliably with fewer replications under symmetric distributions. When these minimum 

requirements cannot be met, complementary diagnostic tools, such as graphical methods (e.g., Q-

Q plots) and descriptive statistics (skewness and kurtosis measures), may provide valuable 

additional information for data analysis decisions. 

 

5. Conclusions 
 

It can be concluded that, in general, the empirical power of the normality tests is considerably 

lower when: 

• the distribution of the errors is symmetric; 

• the within-treatment variances are homogeneous (comparing scenarios under the same 

symmetry and treatment means conditions); 

• the treatment means are not equal (considering the asymmetric distribution of the errors and 

comparing scenarios under the same variance condition); 

• the number of replications per treatment is smaller than 8, or the number of experimental 

errors is smaller than 40; 

 

Also, it can be concluded that the empirical power of the F-test:  

• is lower when the within-treatment variances are heterogeneous, the distribution of 

experimental errors is asymmetric, and the number of replications per treatment is smaller 

than 4; 

• is higher under symmetric error distribution for either homogeneous or heterogeneous 

treatment variances.  
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