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Abstract
Inference regarding the comparison of mean vectors between two independent populations is of great
interest in applied fields, especially in scenarios where high-dimensional data analyses are common. In
low-dimensional cases with the multivariate Behrens-Fisher problem, there are numerous solutions, but
most test statistics have asymptotic distributions. In multivariate procedures, a problem arises when the
number of variables, p, is greater than or equal to the sample size, n. In this case, it is not possible to use
the few existing methods, as they rely on the inverse of the sample covariance matrix, which cannot be
obtained in this situation (p ≥ n) since the covariance matrix is singular. In most cases, asymptotic tests
are very liberal, particularly in small samples and specifically in multivariate cases when the dimensional-
ity is high. The bootstrap method is one of the main computationally intensive methods, where its key
advantage is that it does not require knowledge of the population probability distribution. Additionally,
when the conditions assumed for the application of a test are violated, the bootstrap makes the problem ex-
tremely simple to address. Based on this, the present study aimed to propose multivariate comparison tests
between two independent mean vectors: the Ahmad Bootstrap Test (ABT) and the Hyodo, Takahashi,
and Nishiyama Bootstrap Test (HTNBT), in high-dimensional settings, for balanced or unbalanced, non-
normal and normal data, under the multivariate Behrens-Fisher problem. The performance of these tests
was evaluated and compared with tests indicated by the literature, namely Hotelling’s T2, the modified
Nel and Merwe (MNV) test proposed by Krishnamoorthy and Yu, the test proposed by Ahmad (AT), and
the test proposed by Hyodo, Takahashi, and Nishiyama (HTNT), using Monte Carlo simulation. Power
and Type I error rate were considered as evaluation measures. Comparisons were conducted in various
scenarios, such as cases of homoscedasticity and heteroscedasticity of covariance matrices, in low and high
dimensionality for multivariate normal, t with 3 degrees of freedom, and uniform (0, 1) distributions. In
other words, scenarios in which the conditions assumed for the application of most tests are violated. The
results showed that the ATB test was generally robust and consistent compared to its competitors in most
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evaluated situations, while the HTNTB test was strongly conservative and had low power.

Keywords: Non-parametric Bootstrap; Test Evaluation; Monte Carlo Simulation.

1. Introduction
Inference concerning the comparisons of mean vectors between two independent populations is

of significant interest in applied fields, especially in scenarios involving high-dimensional data anal-
ysis, where the number of variables is greater than or equal to the number of observations. In cases of
low-dimensionality with the multivariate Behrens-Fisher problem, characterized by heterogeneity
between the covariance matrices of two multivariate normal populations (Ferreira, 2018), the statis-
tics of traditionally applied tests only have asymptotic distributions. Numerous solutions exist for
this problem (Bennett, 1951; James, 1954; Yao, 1965; Johansen, 1980; Nel & Van der Merwe, 1986;
Krishnamoorthy & Yu, 2004). Among them, Krishnamoorthy & Yu (2004) recommend using the
test statistic proposed by Nel & Van der Merwe (1986) with a modification suggested by them.

In multivariate procedures, a problem arises when the number of variables p exceeds the sam-
ple size n. In such cases, few existing methods can be utilized because they rely on the inverse of
the sample covariance matrix, which cannot be obtained when (p ≥ n), as the covariance matrix
is singular. To address this issue, Hyodo et al. (2014) proposed using Dempster’s trace criterion
(Dempster, 1958; Dempster, 1960) for comparisons between mean vectors. Additionally, problems
arise when multivariate data do not originate from multivariate normal distributions and when,
analogous to the univariate case, the covariance matrices of treatments (or populations) are not ho-
mogeneous. Such cases, under generally unfavorable conditions, were addressed by Ahmad (2018),
who presented asymptotic solutions based on chi-squared and standard normal distributions.

In most cases, asymptotic tests are overly liberal, meaning they exhibit Type I error rates that
are considerably higher than the nominal significance levels adopted, especially in small samples and
specifically in the multivariate case when dimensionality is high. In many instances, these tests are
not efficient in controlling Type I error, as observed by Silva et al. (2008), who concluded that the
bootstrap test studied was superior to the asymptotic tests, being considered robust with respect to
the assumptions made for the test while controlling Type I error in a conservative manner.

The bootstrap technique is one of the main computationally intensive methods that, among its
major advantages, does not require knowledge of the population probability distribution. Moreover,
when the conditions assumed for the application of a test are violated, the bootstrap method makes
addressing the problem extremely straightforward.

Therefore, the general objective of this work is to propose non-parametric bootstrap tests for
comparisons between two independent mean vectors in high dimensionality, considering balanced
or unbalanced, non-normal and normal data under the multivariate Behrens-Fisher problem. The
specific objectives are to evaluate the performance of the proposed tests and compare it with the
performance of tests present in the literature, including Hotelling’s T2 test and the tests proposed by
Krishnamoorthy & Yu (2004), Ahmad (2018), and Hyodo et al. (2014), considering various scenarios
such as cases of homoscedasticity and heteroscedasticity between covariance matrices, in both low
and high dimensionality for multivariate normal, t-distribution with 3 degrees of freedom, and
uniform (0, 1) distributions.

2. Methods
Without loss of generality, consider the p-dimensional random vectors Xik = [Xik1, . . . ,Xikp]⊤

∼ Fi, i = 1, 2, k = 1, 2, . . ., ni where Xik has a p-dimensional mean vector E(Xik) = µi and a positive
definite p × p symmetric covariance matrix Cov(Xik) = Σi, with Fi representing the distribution
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family for the i-th treatment or population. Cases where the distribution family Fi corresponds to
the multivariate normal distribution were considered, as well as the more general case where Fi
is a p-variate distribution that is not necessarily normal, with potentially unequal (heterogeneous)
covariance matrices Σi and unbalanced data, where ni are different (ni is the sample size for the
i-th treatment or population). The complete sample is the combination of the samples from the
two populations into a single sample, with n being the total size of the combined sample, where
n =

∑2
i=1 ni. Typical cases were considered with p < n–2, as well as cases where p ≥ n–2, indicating

high dimensionality. The inference of interest was on the p-dimensional parameter vectors δ =
µ2 – µ1.

Unbiased estimators for the mean vector µi and the covariance matrix Σi of the i-th treatment
(or population) are given by

X̄i =
1
ni

ni∑
k=1

Xik and Si =
1

ni – 1

ni∑
k=1

(Xik – X̄i)(Xik – X̄i)⊤, i = 1, 2. (1)

When the covariance matrices of the populations are equal, that is, in the homogeneous case
where Σ1 = Σ2 = Σ, the estimator for the common covariance matrix Σ is given by

Sp =
1

n – 2

2∑
i=1

(ni – 1)Si, (2)

associated with ν = n – 2 degrees of freedom, where n = n1 + n2.
The general case of interest refers to linear combinations a⊤δ, for a known non-zero vector

a ∈ Rp, where δ = µ2 – µ1 is the vector of differences between the two mean vectors. A case of
particular interest is δ per se, which includes all possible differences. The estimator of δ is δ̂ = X̄2–X̄1.

The null hypothesis tested is H0 : δ = 0, with the alternative hypothesis given by H1 : δ ̸= 0.
Hotelling’s T2 test was applied and served as a reference for comparisons with the other proposed
tests. This test and the multivariate normality test (MNV) were applied only when p < n – 2. The
asymptotic tests of Hyodo et al. (2014) and Ahmad (2018) were applied in all cases, as well as the
two proposed tests. The following sections will describe the tests assuming the sample structures
described above.

2.1 Tests
In this subsection, computations for the Hotelling’s T2 test (HT), Krishnamoorthy & Yu (2004)

(MNV), Ahmad’s test (AT), Hyodo et al. (2014) (HTNT), and the proposed bootstrap tests are pre-
sented.

2.1.1 Hotelling’sT2 Test (HT)
The statistic T2

c , for the HT test was computed as

T2
c =

n1n2
n (X̄1. – X̄2. – δ0)⊤ S–1

p (X̄1. – X̄2. – δ0) . (3)

Under H0, the distribution of T2
c is exact and proportional to a central F distribution, assuming

multivariate normal samples and homoscedasticity, given by

T2
c ∼

(n1 + n2 – 2)p
(n1 + n2 – 1 – p)

Fp,n1+n2–1–p. (4)
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The null hypothesis H0 : µ1 = µ2 = µ was rejected when the computed value of the statistic in (3)
exceeded the critical value from the distribution (4) given by [(n1+n2–2)p]Fα,p,n1+n2–1–p/(n1+n2–1–p),
where Fα,p,n1+n2–1–p represents the upper quantile 100α% of the F distribution with f1 = p and
f2 = n1 + n2 – 1 – p degrees of freedom.

2.1.2 MNV Test
The statistic for the MNV test, T∗2

c , was computed as

T∗2
c = (X̄1. – X̄2. – δ0)⊤

(
S1
n1

+
S2
n2

)–1
(X̄1. – X̄2. – δ0) ,

and the null hypothesis was rejected when

T∗2
c >

νp
(ν + 1 – p)

Fα,p,ν+1–p,

where the degrees of freedom adjustment is given by ν

ν =
p + p2

2∑
i=1

1
ni – 1

{
tr
[(

SiS–1
e

ni

)2
]

+
[
tr
(
SiS–1

e
ni

)]2
} and Se =

S1
n1

+
S2
n2

.

2.1.3 Ahmad Test (AT)
The test statistic T2 for the AT was computed as

T2 = 1 +
nQ0
nQ1/p

, (5)

where the quantity Q1 is given by

Q1 =
2∑
i=1

Qi1,

with

Qi1 =
Ei – Uni

ni
, Ei =

ni∑
k=1

X⊤
ikXik
ni

and Uni =
1

ni(ni – 1)

ni∑
k=1

ni∑
ℓ=1

k̸=ℓ

h (Xik,Xiℓ) ,

and the quantity Q0 = U0/p, where

U0 =
2∑
i=1

Uni – 2Un1n2 ,

with

Un1n2 =
1

n1n2

n1∑
k=1

n2∑
ℓ=1

h (X1k,X2ℓ) ,

that is, Q0 é U0 with kernels of Uni and Un1n2 scaled by p,

h(Xik,Xiℓ) =
X⊤
ikXiℓ
p

and h(X1k,X2ℓ) =
X⊤

1kX2ℓ

p
.
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The null hypothesis was rejected if T2 ≥ Tα, where Tα is given by Tα = χ2
α;f /f , with χ2

α;f
being the upper 100α% quantile of the chi-squared distribution with degrees of freedom f given
by

f =
[tr(Ω0)]2

tr(Ω2
0)

,

where

Ω0 =
n
p
Σ̂0 and Σ̂0 =

2∑
i=1

Si
ni

.

2.1.4 Hyodo, Takahashi, and Nishiyama Test (HTNT)
The D2 statistic for the HTNT was computed by

D2 =
p
σ̂

{
(X̄2 – X̄1 – δ)⊤(X̄2 – X̄1 – δ)

(1/n1 + 1/n2)tr(S)
– 1

}
, (6)

where σ̂ =
√

2pâ2/â2
1, tr(S) corresponds to the trace of the matrix S, and the constants â1 and â2 are

given by

â1 =
tr(S)
p

and â2 =
ν2

(ν + 2)(ν – 1)p

[
tr(S2) –

tr2(S)
ν

]
,

with ν = n – 2.
The null hypothesis was rejected if D2 ≥ z, where z = z(α) is the upper 100α% quantile of the

D statistic, as given by (Hyodo et al., 2014; Nishiyama et al., 2014)

z(α; â1, â2, â3, â4) = zα +
√

2â3(z2
α – 1)

3
√
pâ3

2

+
1
p

[
â4
2â2

2
zα(z2

α – 3) –
2â2

3
9â3

2
zα(2z2

α – 5)

]
+

1
2ν

zα,

where zα is the upper 100α% quantile of the standard normal distribution. The remaining required
quantities are given by

â3 =
ν4

(ν + 4)(ν + 2)(ν – 1)(ν – 2)p

[
tr(S3) –

3tr(S2)tr(S)
ν

+
2tr3(S)
ν2

]
,

â4 =
ν3[b1tr(S4) + b2tr(S3)tr(S) + b3tr2(S2) + b4tr(S2)tr2(S) + b5tr4(S)]

(ν + 6)(ν + 4)(ν + 2)(ν + 1)(ν – 1)(ν – 2)(ν – 3)p
,

where the bis are

b1 = ν2(ν2 + ν + 2), b2 = –4ν(ν2 + ν + 2), b3 = –ν(2ν2 + 3ν – 6),
b4 = 2ν(5ν + 6) and b5 = –(5ν + 6).

2.1.5 Ahmad Test via Bootstrap (ATB)
For the computation of the non-parametric bootstrap proposal of the test by Ahmad (2018), the

statistic T2 was first calculated on the original sample using expression (5). Using the estimates X̄i
from (1) of the original sample, the modified sample was obtained, given by

Y ik =Xik – X̄i,
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for i = 1, 2 e k = 1, 2, . . ., ni.
This sample was combined by grouping the n =

∑2
i=1 ni observations Y ik into a single p-

dimensional sample of size n, thus imposing the null hypothesis of equality of the mean vectors.
This combined sample was resampled with replacement, recreating the structure of the original
sample from two populations with ni p-varied observations from the i-th treatment or population,
with i = 1, 2. This process was repeated B = 2, 000 times.

In each set of data originating from the bootstrap resampling, the statistic T2 in (5) was cal-
culated, generating the final statistic T2ℓ , in the ℓ-th bootstrap resampling were stored together
with the original value, forming a vector of dimension ℓ = B + 1, given by T = [T21 , T22 , . . ., T2B ,
T2(B+1)

]⊤. Subsequently, the p-value was computed by

p-value =

B+1∑
ℓ=1

I
(
T2ℓ ≥ T2(B+1)

)
B + 1

,

where I
(
T2ℓ ≥ T2(B+1)

)
is the indicator function that returns 1 if T2ℓ ≥ T2(B+1)

and 0 otherwise.
The null hypothesis was rejected when the obtained p-value was less than or equal to the nominal
significance level adopted, i.e., when p-value ≤ α.

2.1.6 Hyodo, Takahashi, and Nishiyama Test via Bootstrap (HTNTB)
Similarly to the statistic T2, the use of the statistic by Hyodo et al. (2014) was considered. Thus,

in the original sample, the statistics D2 were computed as in (6) and the modified sample was ob-
tained, which was grouped into a single p-dimensional sample of size n. This combined sample was
resampled with replacement, recreating the structure of the original sample from two populations
with ni p-varied observations from the i-th treatment or population, with i = 1, 2. This process was
also repeated B = 2, 000 times.

In each set of resampled data, the statistic D2 in (6) was obtained, generating the final statistic
D2ℓ , in the ℓ-th bootstrap resampling or in the original sample when ℓ = B+1. The values of the ℓ-th
bootstrap resampling were stored together with the original value, forming a vector of dimension
B + 1, given by D = [D21 , D22 , . . ., D2B , D2(B+1)

]⊤. Subsequently, considering D2ℓ and D2B+1 , the
p-value was computed in the same manner as described for ATB. The null hypothesis was rejected
when the obtained p-value was less than or equal to the nominal significance level adopted.

Next, the strategies considered in this work to evaluate the performance of the tests are presented.

2.2 Simulations and test performance evaluation
The performance evaluation of the proposed tests, ATB and HTNTB, along with the tests HT,

MNV, AT, and HTNT, was conducted via Monte Carlo simulation in two stages. In the first stage,
where the simulations were performed under the null hypothesis H0 : µ1 = µ2 = µ, the proportion
of rejections of the null hypothesis is related to the Type I error rate, and in the second stage,
performed under the alternative hypothesis H1, the proportion of rejections is related to the power.

Two random samples of independent and identically distributed vectors of sizes n1 and n2, were
considered, where n1 ∈ {10, 20, 50}, n2 = 2n1, with each dimension p ∈ {2, 10, 50, 100, 300},
generated from the multivariate normal, t-distribution with 3 degrees of freedom, and uniform
(0 ,1), distributions. The covariance matrix structures Σi, i = 1, 2, considered were compound
symmetry (CS) and first-order autoregressive (AR(1)), defined, respectively, by Σi = σ2[(1–ρ)I +ρJ]
and Cov(Xk,Xl) = κρ|k–l|, ∀ k, l, where I is an identity matrix and J is a matrix of ones, both p× p.
Specifically, for homoscedastic cases, only p ∈ {10, 300} with (n1, n2) = (20, 40), (40, 40) were
considered.
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In heteroscedastic cases, two configurations were considered for Σi, the first with both matrix
structures being equicorrelated, i.e., CS, with ρ = 0.5 e ρ = 0.8 for Σ1 and Σ2, respectively; and
the second, CS and AR(1), respectively, both with ρ = 0.5. In the homoscedastic cases, CS was
considered, with ρ = 0.5.

To evaluate the Type I error rate, the simulations were generated under the complete null hy-
pothesis, i.e., with both populations having the same parametric mean vectors. Thus, the rejection
of the null hypothesis was considered a Type I error. The probability of committing a Type I error
was estimated by the proportion of experiments in which a significant difference between means
was incorrectly detected relative to the total of N = 2, 000 simulated experiments.

The obtained Type I error rates were compared among themselves and with those obtained by
Ahmad (2018). Since they were estimated via Monte Carlo simulation, they were not free from
error. Therefore, the exact binomial test, with 99% confidence (Oliveira & Ferreira, 2010), was
used to verify whether the tests are liberal, conservative, or exact. The hypotheses of the test are

H0 : α = 0.05 (or 0.01 or 0.10)
versus

H1 : α ̸= 0.05 (or 0.01 or 0.10).

If the null hypothesis was rejected and the observed Type I error rates were significantly (p-
value< 0.01) lower than the nominal significance level, the test in question was considered conser-
vative; if the observed Type I error rates were significantly (p-value< 0.01) higher than the nominal
level, the test was considered liberal; and if the observed Type I error rates were not significantly
(p-value< 0.01) different from the nominal level, the test was considered exact (Oliveira & Ferreira,
2010). Considering y as the number of rejections of H0 for N = 2, 000 Monte Carlo simulations at
the nominal significance level α, the test statistic can be obtained using the relationship between the
F and binomial distributions, with a success probability of α.

The test statistic was computed as

Fb =
(

y – 1
N – y

)(
1 – α

α

)
,

which, under the null hypothesis H0, follows an F distribution with ν1 = 2(N – y) and ν2 = 2(y + 1)
degrees of freedom. If Fb ≤ Fν1,ν2 (α/2) or Fb > Fν1,ν2 (1 – α/2), then the null hypothesis is
rejected at the 1% significance level, where Fν1,ν2 (α/2) and Fν1,ν2 (1 – α/2) are the 100α/2% and
100(1 – α/2)% quantiles, respectively, of the F distribution with ν1 and ν2 degrees of freedom
(Oliveira & Ferreira, 2010).

In the second stage, for power evaluation, the simulations were conducted following the pro-
cedures described for Type I error, except that Xik was generated from multivariate distributions
with different mean vectors, i.e., Xik ∼ Fi(µi, Σi).The mean vector of population 1, µ1, was defined
according to the simulation distribution in each case, and the other mean vector was set as

µ2 =µ1 + δ,

where δ is defined as δ = ∆p1, with ∆ = 0.2(0.2)1 and the vector p1 é p1 = [1/p, 2/p, . . . , p/p], as
presented in Ahmad (2018).

3. Results and Discussion
An evaluation of the results obtained from the simulations was conducted for the three signifi-

cance levels adopted, α ∈ {0.10, 0.05, 0.01}, which revealed similar behaviors when considering the
same configurations for each α. Therefore, the simulation results for α = 0.05, will be presented and
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discussed, as in Ahmad (2018) and Krishnamoorthy & Yu (2004), to enable a direct comparison be-
tween the tests studied. Occasionally, when the pattern does not hold, results for other significance
levels will be discussed.

The first part of the test evaluation was based on the results of type I error rates for samples
simulated under H0, that is, when µ1 = µ2. These results were marked with symbols to classify the
tests as liberal (+), conservative (–) or exact (without a symbol), according to the exact binomial test
(Oliveira & Ferreira, 2010). In the second part, the tests were compared by examining the power,
where the samples were simulated under H1, that is, µ1 ̸= µ2, as described in 2.

The tests were evaluated in various configurations to verify their robustness. Scenarios of ideal
cases were considered, in which the basic assumptions of classical tests were met, i.e., homoscedastic
balanced and unbalanced cases with multivariate normal distribution. However, more general cases
were also evaluated, including heteroscedastic and unbalanced situations, where the distributions
were not necessarily multivariate normal. In both cases, low and high-dimensional scenarios were
considered.

3.1 Homoscedasticity of Covariance Matrices
To evaluate performance, the type I error rates of the proposed tests were compared with those

of the HT, MNV, HTNT, and AT tests. Initially, the tests were subjected to cases where the basic
assumptions of classical tests were met.

3.1.1 Type I error rate
In the case of homoscedasticity of covariance matrices, with α = 0.05, as presented in Table 1,

when analyzing the ideal scenario for the tests, p = 10, (n1, n2) = (40, 40), where the populations
(treatments) follow a multivariate normal distribution with µ = 0 and σ2 as described in 2, it can
be observed that all tests controlled the Type I error rate, with most doing so exactly according to
the exact binomial test. This corroborates the results found in the configurations studied by Gebert
(2014) for the MNV test. It is worth noting that HTNTB was conservative in controlling the Type
I error rate, with a rate of 0.026. When the nominal level of significance, α, is changed to α = 0.10,
in addition to HTNTB, the AT test was also conservative, though not as strongly conservative
as HTNTB, which had a Type I error rate of 0.041, while AT presented a rate of 0.075, being
considered slightly conservative, as it is close to the confidence interval for being considered exact
(0.0834, 0.1185) for α = 0.10. Another important point to highlight is that for α = 0.10, HTNT
showed the opposite result to its bootstrap version, HTNTB, being liberal, i.e., it did not control the
Type I error rate. For α = 0.01, all tests controlled the Type I error rate exactly. In the unbalanced
case, (n1, n2) = (20, 40), the behavior of the tests was similar to that observed in the balanced case,
with the main difference being that AT for α = 0.10, became exact, but for α = 0.01 it was the
only test that did not control the Type I error rate, while its bootstrap version, ATB, was exact in
all previously mentioned scenarios, proving to be a consistent test, similar to more traditional tests
like HT and MNV.

For the high-dimensionality case, p = 300, (n1, n2) ∈ {(40, 40), (20, 40)}, still in Table 1, it is
possible to observe that this consistency of ATB remains, being an exact test in controlling the Type
I error rate for all α levels, which is not the case for AT. In this scenario, AT did not control the Type
I error rate with α = 0.01 in the unbalanced case. HTNT controlled the Type I error rate only at
α = 0.01, while its bootstrap version controlled it in all scenarios, although it was conservative at
α = 0.05, in the balanced case, and at α = 0.10, in both scenarios.

When testing populations following a multivariate t3 distribution with three degrees of free-
dom, thereby violating some assumptions of the tests, the overall performance was similar to the
multivariate normal case. As expected, the HT and MNV tests showed changes in their Type I er-
ror control, becoming conservative in some cases. Notably, the AT test began to control the Type I

8 Braz. J. Biom., v.43, e-43772, 2025.



Carvalho Nascimento et al.

Table 1. Type I Error Rates for the Tests HT, MNV, HTNT, AT, HTNTB and ATB, considering the number of variables (p), sam-
ple sizes (n1, n2), covariance matrix structures (CS), multivariate distributions, and a nominal significance level (α) of 0.05
under H0, for homoscedastic cases.

CS with ρ = 0.5
p α n1, n2 HT MNV HTNT AT HTNTB ATB

Multivariate Normal - Low Dimensionality
0.10 40, 40 0.1020 0.1005 0.1215+ 0.0750– 0.0410– 0.1000

20, 40 0.1010 0.1055 0.1195+ 0.0895 0.0565– 0.0990
10 0.05 40, 40 0.0525 0.0520 0.0540 0.0410 0.0260– 0.0435

20, 40 0.0520 0.0520 0.0545 0.0595 0.0315– 0.0525
0.01 40, 40 0.0090 0.0080 0.0090 0.0150 0.0090 0.0095

20, 40 0.0090 0.0115 0.0100 0.0180+ 0.0075 0.0140
Multivariate Normal - High Dimensionality

0.10 40, 40 – – 0.1265+ 0.0880 0.0545– 0.0955
20, 40 – – 0.1490+ 0.1090 0.0700– 0.1175

300 0.05 40, 40 – – 0.0710+ 0.0495 0.0345– 0.0445
20, 40 – – 0.0845+ 0.0630 0.0460 0.0575

0.01 40, 40 – – 0.0075 0.0135 0.0080 0.0075
20, 40 – – 0.0150 0.0230+ 0.0185+ 0.0125

Multivariate t3 - Low Dimensionality
0.10 40, 40 0.0775– 0.0750– 0.1245+ 0.0815– 0.0460– 0.0930

20, 40 0.0865 0.0840 0.1330+ 0.0865 0.0460– 0.0940
10 0.05 40, 40 0.0380– 0.0340– 0.0555 0.0450 0.0310– 0.0475

20, 40 0.0410 0.0345– 0.0630 0.0495 0.0305– 0.0465
0.01 40, 40 0.0065 0.0065 0.0105 0.0135 0.0095 0.0125

20, 40 0.0065 0.0055 0.0125 0.0135 0.0105 0.0090
Multivariate t3 - High Dimensionality

0.10 40, 40 – – 0.1115 0.0790– 0.0490– 0.0885
20, 40 – – 0.1095 0.0745– 0.0485– 0.0840

300 0.05 40, 40 – – 0.0605 0.0435 0.0325– 0.0435
20, 40 – – 0.0490 0.0435 0.0340– 0.0440

0.01 40, 40 – – 0.0090 0.0140 0.0105 0.0105
20, 40 – – 0.0115 0.0155 0.0120 0.0105

Multivariate Uniform (0, 1) - Low Dimensionality
0.10 40, 40 0.1055 0.1035 0.1290+ 0.0965 0.0590– 0.0865

20, 40 0.0935 0.1005 0.1310+ 0.0920 0.0585– 0.1015
10 0.05 40, 40 0.0540 0.0540 0.0645+ 0.0555 0.0325– 0.0500

20, 40 0.0445 0.0505 0.0580 0.0565 0.0370– 0.0475
0.01 40, 40 0.0115 0.0110 0.0140 0.0180+ 0.0135 0.0075

20, 40 0.0105 0.0100 0.0120 0.0215+ 0.0095 0.0145
Multivariate Uniform (0, 1) - High Dimensionality

0.10 40, 40 – – 0.1295+ 0.0910 0.0600– 0.0985
20, 40 – – 0.1305+ 0.0995 0.0700– 0.1075

300 0.05 40, 40 – – 0.0710+ 0.0530 0.0360– 0.0475
20, 40 – – 0.0725+ 0.0655+ 0.0470 0.0600

0.01 40, 40 – – 0.0095 0.0180+ 0.0115 0.0070
20, 40 – – 0.0165 0.0250+ 0.0185+ 0.0115

–: Significantly (p-value < 1%) lower than α.
+: Significantly (p-value < 1%) higher than α.

Source: Author (2024).
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error rate at α = 0.01. In the high-dimensional case, a significant difference was observed in HTNT,
which controlled the Type I error rate in all scenarios, while AT became conservative at α = 0.10.
Finally, ATB was the only test that controlled the Type I error rate exactly across all scenarios under
the multivariate t3 distribution.

An additional scenario, which further deviates from the ideal conditions for performing the
tests, occurs when the populations follow a multivariate uniform distribution (0, 1). In the low-
dimensional case, the tests showed similar performance to the multivariate normal distribution, with
statistically significant differences. The HTNT test failed to adequately control the Type I error rate
in the balanced case for α = 0.05, while the AT test precisely controlled it at α = 0.10, but failed
to maintain control at α = 0.01. In the high-dimensional case, the similarity persisted in most
scenarios; however, AT failed to control the Type I error rate in the unbalanced case at α = 0.05
and in both cases for α = 0.01. In general, for homoscedasticity of covariance matrices, the ATB test
stood out as the only one to be exact in all simulated scenarios, consistently controlling the Type I
error rate.

3.1.2 Power
When evaluating the power of the tests for the scenarios presented in the Type I error rate

analysis above, similar behavior was observed across all α levels, Therefore, only α = 0.05 will be
presented and discussed. In Figure 1, from left to right, the scenarios of low and high dimensionality
are displayed, respectively, and from top to bottom, the multivariate normal, t3 and uniform (0, 1)
distributions are shown. The last case is unbalanced because, despite showing very similar power to
the balanced case (as will be discussed below), AT did not control the Type I error rate according to
the results presented in 3.1.1. In the ideal case, with normality and low dimensionality, as expected,
the classical tests HT and MNV had higher power than the other tests, both in balanced and unbal-
anced cases. However, this difference in power was not as pronounced when the mean differences
were small (∆ ∈ {0.2, 0.4}) or for larger differences (∆ = 1.0). Another anticipated result was that
tests that showed conservative control of the Type I error rate exhibited lower power. For the mul-
tivariate t3 the tests performed very similarly to the multivariate normal case, though generally, the
tests were slightly less powerful. Finally, for the multivariate uniform (0, 1) distribution, the power
of the tests was significantly higher than in the normal case, reaching 100% power for ∆ = 0.4 in
the balanced case and ∆ = 0.6 in the unbalanced case. The performance for high dimensionality
was similar to that for low dimensionality.

Overall, as expected, in the ideal scenarios, HT and MNV showed the best performance, i.e.,
exact control of the Type I error rate and higher power compared to their competitors. However,
these tests were not robust, as they were not consistent across all scenarios. Additionally, these
tests have limitations for high-dimensional cases, as their test statistics depend on the inverse of
the covariance matrix, which is not possible when p ≥ n – 2. Thus, the test with the best overall
performance in the homoscedastic case was ATB, as it was robust and consistent in all the simulated
cases in this study.

3.2 Heteroscedasticity of Covariance Matrices
To better assess the robustness of the tests, it is necessary to move further away from the ideal

scenario. Thus, the tests were evaluated in two heteroscedastic scenarios, as described in 2.2, The
first scenario involves CS and CS with different ρvalues, introducing a slight variation between the
covariance matrix structures of the two populations. The second scenario involves CS and AR(1)
creating a more drastic difference between the structures.
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3.2.1 Type I Error Rates (CS, CS)
In the scenario where the two populations/treatments have different compound symmetry struc-

tures, it was generally observed that the behavior of the tests, whether they controlled the Type I
error rate or not, was very similar across the nominal significance levels (α) studied. There were
only a few differences. Generally, at α = 0.10 tests that did not control the Type I error rate exactly
at α = 0.05, tended to show more cases of liberal or conservative behavior. Therefore, only α = 0.05
will be discussed here, as the behavior at other α levels was similar to what was observed in 3.1.2.

Source: Author (2024).

Figure 1. Power and Type I Error Rates for the Hotelling’s T2 Test (HT), MNV, HTNT, Ahmad’s Test (AT), HTNTB, and ATB,
considering p ∈ {10, 300}, (n1, n2) = (40, 40),(20, 40), α = 0.05, homoscedasticity, multivariate normal, t3, and uniform (0,
1) distributions in low and high dimensionality cases.

In Table 2, it can be observed that in the multivariate normal case, the performance of the tests
changed when the structure of one of the covariance matrices was modified. Comparing with p = 10
as shown in Table 1 it can be noted that the tests most negatively affected by this change were HT,
MNV and HTNT, meaning they did not control the Type I error rate, yielding rates significantly
higher than expected. For instance, HT and MNV were considered strongly liberal, while HTNT
was slightly liberal, meaning it was close to the confidence interval of the exact binomial test for
these cases. Slightly liberal results may still be acceptable for use in research if they fall within an
acceptable risk in an experiment, as a higher power for the tests might be expected as a consequence.
The goal is to find exact or conservative tests, provided that conservative tests have power as high
or very close to those that are exact in controlling the Type I error rate. Other tests affected were
HTNTB and ATB, which became, respectively, strongly and slightly conservative in some cases,
with HTNTB being strongly conservative in all scenarios. This trend observed in the multivariate
normal distribution extends to the other multivariate distributions studied here.

Also in Table 2, it is clear that traditional tests like HT and MNV were more affected. Moreover,
another factor that exacerbated poor performance in controlling the Type I error rate for these tests
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was the increase in p (the number of variables observed in the populations). When p increased,
the tests tended to produce increasingly unacceptable Type I error rates, with probabilities as high
as 47.00% or 78.65%, making it more advisable to flip a coin for decision-making. For MNV, as
presented by Krishnamoorthy & Yu (2004), with p = 2, the test controlled the Type I error rate
exactly, but as p increased, the performance of the test declined, particularly when p approached
one of the sample sizes ni. For example, with p = 10, (n1, n2) = (10, 20), MNV exhibited slightly
liberal behavior, but it began controlling the Type I error rate exactly when the sample sizes were
increased, thereby distancing p from ni, which corroborates the results presented by Gebert (2014),
where the test showed liberal behavior for p = 7, (n1, n2) = (8, 30) for all levels of heterogeneity
between the covariance matrices studied.

The other tests remained more stable as p increased. Sample size was not as relevant a factor as p
in this Type I error rate analysis, not contributing significantly for most tests based on the simulations
studied in this work. However, it is worth mentioning that Takahashi et al. (2013) recommend the
use of HTNT for small sample sizes, likely because the largest sample size the authors used was 40.
In Table 2, it can be observed that in low-dimensionality settings, HTNT performed worse with
(n1, n2) = (50, 100), which may reinforce the authors’ recommendation to use the test only with
small sample sizes. However, this poor performance with (n1, n2) = (50, 100) was not observed in
high-dimensional settings.
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Table 2. Type I Error Rates for the Tests HT, MNV, HTNT, AT, HTNTB, and ATB, considering the number of variables (p),
sample sizes (n1, n2), covariance matrix structures (SC, SC), multivariate normal and uniform distributions, low and high
dimensionality, and a nominal significance level of 0.05 (α), under H0.

Σ1 : CS, ρ = 0.5 and Σ2 : CS, ρ = 0.8
p n1, n2 HT MNV HTNT AT HTNTB ATB

Multivariate Normal - Low Dimensionality
10, 20 0.0690+ 0.0470 0.0540 0.0530 0.0155– 0.0535

2 20, 40 0.0675+ 0.0430 0.0595 0.0440 0.0130– 0.0470
50, 100 0.0690+ 0.0450 0.0660+ 0.0485 0.0110– 0.0440
10, 20 0.1550+ 0.0900+ 0.0545 0.0505 0.0180– 0.0345–

10 20, 40 0.1535+ 0.0540 0.0585 0.0550 0.0155– 0.0350–

50, 100 0.1475+ 0.0410 0.0650+ 0.0565 0.0135– 0.0380–

50 20, 40 0.1830+ 0.2925+ 0.0615 0.0505 0.0175– 0.0395
50, 100 0.4195+ 0.1625+ 0.0600+ 0.0455 0.0105– 0.0420

100 50, 100 0.4700+ 0.7865+ 0.0695+ 0.0580 0.0160– 0.0425
Multivariate Normal - High Dimensionality

50 10, 20 – – 0.0505 0.0535 0.0180– 0.0290–

100 10, 20 – – 0.0505 0.0515 0.0170– 0.0345–

20, 40 – – 0.0585 0.0575 0.0195– 0.0395
10, 20 – – 0.0665+ 0.0610 0.0235– 0.0360–

300 20, 40 – – 0.0585 0.0580 0.0210– 0.0410
50, 100 – – 0.0610 0.0490 0.0140– 0.0370–

Multivariate Uniform (0, 1) - Low Dimensionality
10, 20 0.0795+ 0.0535 0.0560 0.0640+ 0.0165– 0.0475

2 20, 40 0.0785+ 0.0545 0.0685+ 0.0610 0.0190– 0.0460
50, 100 0.0775+ 0.0505 0.0775+ 0.0495 0.0130– 0.0390
10, 20 0.1505+ 0.0780+ 0.0530 0.0535 0.0195– 0.0345–

10 20, 40 0.1585+ 0.0515 0.0565 0.0590 0.0155– 0.0415
50, 100 0.1515+ 0.0435 0.0700+ 0.0505 0.0155– 0.0385

50 20, 40 0.2370+ 0.3705+ 0.0570 0.0475 0.0130– 0.0375–

50, 100 0.4540+ 0.1525+ 0.0610 0.0480 0.0120– 0.0405
100 50, 100 0.5890+ 0.8095+ 0.0730+ 0.0520 0.0195– 0.0380–

Multivariate Uniform (0, 1) - High Dimensionality
50 10, 20 – – 0.0570 0.0595 0.0220– 0.0415
100 10, 20 – – 0.0580 0.0595 0.0220– 0.0395

20, 40 – – 0.0450 0.0430 0.0130– 0.0325–

10, 20 – – 0.0580 0.0560 0.0140– 0.0305–

300 20, 40 – – 0.0665+ 0.0575 0.0175– 0.0385
50, 100 – – 0.0615 0.0540 0.0200– 0.0435

–: Significantly (p-value < 1%) lower than α.
+: Significantly (p-value < 1%) higher than α.

Source: Author (2024).

Overall, for low-dimensionality in the multivariate normal case, the HT, MNV and HTNT tests
were liberal. HT changed from slightly liberal at p = 2 to strongly liberal at p ≥ 10 , and MNV
showed similar behavior for p = 10 and lower sample sizes, which was relevant for this test in this
structure, and for p ∈ {50, 100}. HTNT, although it did not control the error rate in some cases at
α = 0.05 and increased the number of liberal cases at α = 0.10, controlled the Type I error rate in all
scenarios for α = 0.01 , being slightly conservative in only one case: p = 50 with (n1, n2) = (50, 100).
Its bootstrap version, HTNTB, was strongly conservative across all α levels and, like for α = 0.05,
was not affected by increases in p or n, indicating that using the bootstrap methodology in this test
was important for stability in controlling the Type I error rate, though this test is expected to have
low power. The AT showed exact control for both α = 0.05 and α = 0.10, but had a few cases of
being slightly liberal for α = 0.01 at p = 10, (n1, n2) = (10, 20) and p = 100, (n1, n2) = (50, 100). Its
bootstrap version, ATB, controlled the Type I error rate in all scenarios, being slightly conservative
in some cases. It is important to note that, as in 3.1.1, the Type I error rate of the tests were similar
between the multivariate normal and t3 distributions.

When studying the tests in the multivariate uniform (0, 1) distribution, an increase in scenarios
where the tests were liberal was observed, along with an overall increase in error rates. Most of the
tests exhibited similar behavior in terms of Type I error rate control as observed in the case of the
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multivariate normal distribution, with the exception of the AT test, which failed to control the rate
for p = 2 and (n1, n2) = (10, 20). Additionally, there was a higher number of failures in controlling
the rate for α = 0.01 compared to the normal distribution for the same significance level.

In high-dimensionality, as shown in Table 2, the performance of the tests was very similar to
the low-dimensionality case, both in terms of α levels and the multivariate distributions studied
in this work. The main differences were that HTNT achieved better control of the Type I error
rate, i.e., it had fewer liberal cases. Its bootstrap version performed similarly in high-dimensionality
as observed in low-dimensionality, being strongly conservative in most scenarios. The AT also
exhibited behavior similar to that seen in low-dimensionality, still showing liberal cases at α = 0.01,
while its bootstrap version controlled the error rate in all cases, though there were more slightly
conservative cases.

3.2.2 Power (CS, CS)
The power of the tests changed significantly in some cases compared to the previously studied

scenarios in 3.1.2. Overall, the power of the tests was very similar across the different α levels, as was
observed in 3.1.2, so only the results for α = 0.05 will be presented. Additionally, the phenomena
of decreased test power in the multivariate t3 distribution compared to the multivariate normal and
the significant increase in power in the multivariate uniform (0, 1) were similar to those discussed
in 3.1.2. For this reason, most of the results and discussions for the multivariate t3 and uniform (0, 1)
distributions will be omitted. Ahmad (2018) considered the multivariate t distribution with 7 degrees
of freedom and obtained power values similar to those of the multivariate normal distribution.

In Figure 2 the following scenarios for the multivariate distribution are presented from top to
bottom and right to left: p = 2 with (n1, n2) = (20, 40) (I), p = 2 with (n1, n2) = (50, 100) (II),
p = 10 with (n1, n2) = (20, 40) (III), p = 10 with (n1, n2) = (50, 100) (IV), p = 50 with (n1, n2) = (50,
100) (V) and p = 100 with (n1, n2) = (50, 100) (VI). In scenario (I), for the multivariate normal
distribution, among the tests that controlled the Type I error rate, most showed similar power,
except for HTNTB. For mean differences ∆ ∈ {0.8, 1.0} , the power of the tests diverged, with a
drop in HTNT’s rate and an increase in AT’s rate, making AT the most powerful among the tests
that controlled the Type I error rate. This was followed by ATB and MNV, both almost as powerful
as AT. Lastly, HTNTB, being strongly conservative as expected, was the least powerful test. In
scenario (II), where only the sample sizes n were increased, the tests showed higher power, with
performance similar to that of scenario (I) but with slightly higher power rates. The only exception
was HTNT, which, like HT, did not control the Type I error rate and still showed lower power for
∆ ≥ 0.4.

When p increased to 10, a more noticeable change in test power was observed. Among those
that controlled the Type I error rate, MNV was the most powerful, with a significant difference
from the other tests. However, it is important to note that, according to Table 2, MNV did not
control the Type I error rate for p = 10 and (n1, n2) = (10, 20). The other tests, except for HT,
which did not control the Type I error rate, and HTNTB, which was strongly conservative, had
similar power levels, with AT being the most powerful and ATB and HTNT being very similar.
When the sample sizes n were increased while keeping p constant, in scenario (IV), the tests showed
the same effect as described in Figure 2, in scenario (II).

Finally, the last two scenarios highlight the effect of p on traditional tests like HT and MNV,
which were extremely affected, becoming increasingly liberal and powerful and, therefore, not
recommended. Another test affected by the increase in p was HTNT. Takahashi et al. (2013) had
already observed that HTNT was sensitive to large p values in situations of homoscedasticity and
heavy-tailed distributions. Thus, in these last two scenarios, the tests AT, ATB, and HTNTB were
consistent in controlling the Type I error rate. Among them, AT was the most powerful, but ATB
had power levels very close to AT, while HTNTB remained the least powerful.
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Source: Author (2024).

Figure 2. Power and Type I Error Rates for Hotelling’s T2 Test (HT), MNV, HTNT, Ahmad’s Test (AT), HTNTB, and ATB, con-
sidering α = 0.05, heteroscedasticity, multivariate normal distribution, and low dimensionality.

In Figure 3, the following scenarios for the multivariate t3 and uniform (0, 1) distributions are
presented: t3 with p = 2 and (n1, n2) = (20, 40) (I), uniform (0, 1) with p = 2 and (n1, n2) = (20, 40)
(II), t3 with p = 10 and (n1, n2) = (20, 40) (III), uniform (0, 1) with p = 10 and (n1, n2) = (20, 40)
(IV), t3 with p = 100 and (n1, n2) = (50, 100) (V) and uniform (0, 1) with p = 100 and (n1, n2) = (50,
100) (VI). Firstly, in the multivariate t3 distribution, a very similar behavior to that observed in
the multivariate normal case was seen for the tests. However, it is worth noting that, in general,
the tests were slightly less powerful than in the normal distribution. In the multivariate uniform
(0, 1) distribution, similar to what was observed in 3.1.2, the tests exhibited high levels of power.
Among those that controlled the Type I error rate in all scenarios, the power values were quite
similar for each ∆ value, except for HTNTB, which showed lower power for ∆ = 0.2. The MNV
test demonstrated high power in scenario (IV), but only for ∆ = 0.2. As expected, the HT test did
not control the Type I error rate in any of the scenarios.

In high dimensionality, Figure 4 presents the following scenarios for multivariate normal and
uniform (0, 1) distributions: normal with p = 50 and (n1, n2) = (10, 20) (I), uniform (0, 1) with
p = 50 and (n1, n2) = (10, 20) (II), normal with p = 100 and (n1, n2) = (10, 20) (III), uniform (0,
1) with p = 100 and (n1, n2) = (10, 20) (IV), normal with p = 300 and (n1, n2) = (10, 20) (V) and
uniform (0, 1) with p = 300 and (n1, n2) = (10, 20) (VI). There is a very strong similarity with
the low dimensionality case, both in the multivariate normal scenarios (I), (III), and (V), and in
the multivariate uniform (0, 1) scenarios (II), (IV), and (VI). Overall, the most powerful test was
AT, followed by HTNT and ATB, and finally HTNTB, which remained highly conservative in all
cases. Another important point to note, which becomes more evident in high dimensionality for
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Source: Author (2024).

Figure 3. Power and Type I Error Rates for Hotelling’s T2 Test (HT), MNV, HTNT, Ahmad’s Test (AT), HTNTB, and ATB, con-
sidering α = 0.05, heteroscedasticity, multivariate t3 and uniform (0, 1) distributions, and low dimensionality.

this heteroscedasticity structure, is the consistency in the tests’ powers, highlighting their robustness
to changes in p.

In general, for this scenario of heteroscedasticity in the covariance matrices, it can be concluded
that the tests that controlled the Type I error rate in all scenarios were ATB and HTNTB, with ATB
having the highest power among them, slightly lower than that presented by AT but more robust in
this scenario, as was the case with homoscedasticity. HTNTB, on the other hand, was an extremely
conservative test with very low power values.
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Source: Author (2024).

Figure 4. Power and Type I Error Rates for Hotelling’s T2 Test (TH), MNV, HTNT, Ahmad’s Test (TA), HTNTB, and ATB, con-
sidering α = 0.05, heteroscedasticity, multivariate normal and uniform (0, 1) distributions, and high dimensionality.

3.2.3 Type I Error Rates (CS, AR(1))
Moving further away from the ideal scenario, we now consider the case where the structures

of the covariance matrices are significantly different, making this the most extreme scenario in this
study. It is worth highlighting here that even in this structure, the multivariate normal and t3
distributions produced very similar results, although in t3 the tests had slightly fewer liberal cases,
displaying the same pattern as in the normal distribution. Therefore, only the multivariate normal
and uniform (0, 1) distributions are presented in Table 3.

As can be seen in Table 3, the performance of most tests was quite different from the previously
studied cases. In this scenario, it is generally noticeable that the HT, HTNTB, and ATB tests were
the most affected by the change in the covariance matrix structure. It is noteworthy that HT was
the only test that, in low dimensionality, controlled the Type I error rate in all cases. Other tests
that performed well in controlling the Type I error rate in low dimensionality were the MNV and
AT tests, which had few liberal cases. Among these, MNV stood out at α = 0.01 and AT at α = 0.10,
with one outperforming the other in controlling the Type I error rate at each of these α levels and
being similar at α = 0.05. Still in low dimensionality, HTNT had a performance similar to that
observed in 3.2.1, just like AT, although HTNT had slightly more liberal cases. Another highlight
was HTNTB, which shifted from being highly conservative to highly liberal, and, finally, ATB,
which had controlled the Type I error rate in all cases in 3.2.1, became liberal in many cases in this
scenario.
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Table 3. Type I Error Rates for the Tests TH, MNV, HTNT, AT, HTNTB, and ATB, considering the number of variables (p), sample
sizes (n1, n2), covariance matrix structures (CS, AR(1)), multivariate normal and uniform (0, 1) distributions, low and high
dimensionality, and a nominal significance level (α) of 0.05, under H0.

Σ1 : CS, ρ = 0.5 and Σ2 : AR(1), ρ = 0.5
p n1, n2 HT MNV HTNT AT HTNTB ATB

Multivariate Normal - Low Dimensionality
10, 20 0.0530 0.0535 0.0520 0.0555 0.0190– 0.0500

2 20, 40 0.0470 0.0505 0.0615 0.0500 0.0200– 0.0560
50, 100 0.0490 0.0480 0.0770+ 0.0530 0.0170– 0.0545
10, 20 0.0410 0.0535 0.0715+ 0.0645+ 0.0590 0.0700+

10 20, 40 0.0390 0.0480 0.0475 0.0515 0.0520 0.0665+

50, 100 0.0405 0.0460 0.0535 0.0580 0.0600 0.0660+

50 20, 40 0.0365– 0.0430 0.0825+ 0.0615 0.1100+ 0.1065+

50, 100 0.0315– 0.0740+ 0.0695+ 0.0535 0.1095+ 0.0900+

100 50, 100 0.0305– 0.1125+ 0.0770+ 0.0490 0.1195+ 0.0980+

Multivariate Normal - High Dimensionality
50 10, 20 – – 0.1055+ 0.0715+ 0.1210+ 0.0900+

100 10, 20 – – 0.1055+ 0.0595 0.1325+ 0.0835+

20, 40 – – 0.0960+ 0.0670+ 0.1390+ 0.1065+

10, 20 – – 0.1315+ 0.0660+ 0.1600+ 0.1015+

300 20, 40 – – 0.1130+ 0.0590 0.1480+ 0.1130+

50, 100 – – 0.1065+ 0.0500 0.1485+ 0.1170+

Multivariate Uniform (0, 1) - Low Dimensionality
10, 20 0.0495 0.0540 0.0580 0.0710+ 0.0210– 0.0480

2 20, 40 0.0600 0.0595 0.0655+ 0.0595 0.0215– 0.0565
50, 100 0.0470 0.0475 0.0625 0.0485 0.0165– 0.0595
10, 20 0.0515 0.0660+ 0.0615 0.0625 0.0545 0.0675+

10 20, 40 0.0440 0.0540 0.0540 0.0565 0.0520 0.0710+

50, 100 0.0445 0.0510 0.0465 0.0550 0.0575 0.0635
50 20, 40 0.0400 0.0585 0.0875+ 0.0585 0.1205+ 0.0955+

50, 100 0.0250– 0.0725+ 0.0705+ 0.0550 0.1065+ 0.0895+

100 50, 100 0.0265– 0.0960+ 0.0905+ 0.0650+ 0.1435+ 0.1135+

Multivariate Uniform (0, 1) - High Dimensionality
50 10, 20 – – 0.1005+ 0.0515 0.1155+ 0.0770+

100 10, 20 – – 0.1195+ 0.0675+ 0.1430+ 0.0935+

20, 40 – – 0.0990+ 0.0660+ 0.1315+ 0.1045+

10, 20 – – 0.1300+ 0.0735+ 0.1665+ 0.1090+

300 20, 40 – – 0.1115+ 0.0695+ 0.1590+ 0.1160+

50, 100 – – 0.1085+ 0.0610 0.1450+ 0.1125+

–: Significantly (p-value < 1%) lower than α.
+: Significantly (p-value < 1%) higher than α.

Source: Author (2024).

In high dimensionality, corroborating the positive results obtained by Ahmad (2018) for AT in
controlling the Type I error rate, the test with the best performance was AT, which stood out by
controlling the Type I error rate in all cases at α = 0.10. However, even though it did not control
the Type I error rate as desired for the other α levels, it was the test with the fewest liberal cases.
The other tests did not achieve an acceptable performance, as can be seen in Table 3.

3.2.4 Power (CS, AR(1))
In Figure 5, the following scenarios are presented for the multivariate normal, t3, and uniform

(0, 1) distributions: normal with p = 10 and (n1, n2) = (20, 40) (I), normal with p = 300 and (n1,
n2) = (20, 40) (II), t3 with p = 10 and (n1, n2) = (20, 40) (III), t3 with p = 300 and (n1, n2) = (20, 40)
(IV), uniform (0, 1) with p = 10 and (n1, n2) = (20, 40) (V) and uniform (0, 1) with p = 300 and (n1,
n2) = (20, 40) (VI). In the normality scenarios, the tests in low dimensionality (I) can be divided into
two groups regarding power values: the most powerful group (HTNT, AT, HTNTB, and ATB) and
the less powerful group (HT and MNV). In the first group, as seen in 3.2.3, the best-performing test
was AT, and in the second group, HT stood out. When moving to high dimensionality in the same
distribution, it is noticeable that despite AT showing lower power, as observed in 3.2.3, it remained
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the test with the best control over the Type I error rate.
Additionally, in Figure 5, we have the multivariate t3 distribution in (III) and (IV). In this case,

the results differ slightly from the previous distribution, as the division into two groups of tests is
not as clear. In low dimensionality (III), the test with the highest power was ATB, though this
test showed more liberal cases than AT in other scenarios for this distribution. AT was the second
most powerful test, but in general, the tests were less powerful in this distribution compared to the
normal one, as observed in other cases. In high dimensionality, the pattern was more similar to the
multivariate normal distribution, with conclusions similar to those drawn in (II).

Source: Author (2024).

Figure 5. Power and Type I Error Rates for Hotelling’sT2 Test (TH), MNV, HTNT, Ahmad’s Test (TA), HTNTB, and ATB, consid-
ering α = 0.05, heteroscedasticity, multivariate normal, t3 and uniform (0, 1) distributions in low and high dimensionality
cases.

Finally, the multivariate uniform (0, 1) distribution exhibited the same pattern as the multivariate
normal distribution in both low and high dimensionality, but with two significant differences. The
first is that power values were much higher, and the second is that there were very few scenarios in
which the tests managed to control the Type I error rate.

4. Conclusions
The evaluation of the tests revealed clear differences in terms of Type I error rate control and

power, particularly when varying the significance levels, dimensions, and assumptions of the tests.
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The bootstrap tests, ATB and HTNTB, demonstrated superior performance in terms of robustness
and consistency. ATB, in particular, stood out by controlling the Type I error rate in all scenarios,
except in more extreme cases, such as when different covariance matrix structures were present. This
makes it ideal for situations involving violations of classical assumptions and high dimensionality. In
contrast, HTNTB, although conservative, exhibited lower power. Traditional tests, such as HT and
MNV, showed greater power in ideal scenarios but revealed limitations in robustness, being more
affected by heteroscedastic scenarios and high dimensionality, as they cannot be applied in such
cases. The AT test presented a reasonable balance between Type I error rate control and power,
but with some inconsistencies in non-ideal scenarios. Therefore, the choice of the test should take
into account the specific application scenario, with ATB being the most versatile and robust option,
while classical tests may be preferred in ideal, low-dimensionality situations where assumptions are
met, and AT being suitable for more extreme cases in high dimensionality.
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