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Abstract 

This study examined the effects of different association structures and multivariate longitudinal trajectories, including 

linear, quadratic and spline functions, on the estimation of time to event and cure proportion under the latent 

Gaussian model approach with application aortic valve replacement surgery data. The Bayesian framework assumed 

inverse-Wishart prior distribution for the covariance matrix of the random effects and Gaussian priors for the joint 

model fixed effects, while the penalised complexity prior was assumed for the Weibull shape parameters of the 

baseline hazard function. Posterior distributions were evaluated using Integrated Laplace approximation. The 

modelling approach was applied to aortic valve replacement surgery data to assess the effects of covariates on three 

longitudinal biomakers on risk of death as well as prediction of cure proportion. Spline trajectories for the 

multivariate longitudinal biomakers with current slope association was the best fit for the data. The full conditional 

distribution of latent incidence variable predicted a cure proportion of 36.33% and type of treatment valve with 

gender of patients were significant in the proportion of cure, risk of death and longitudinal outcomes. The probability 

of cure depended on the type of implanted aortic prosthesis and gender of patients. 

 
Keywords: Survival proportions; Association structure; Laplace approximation; Shared random effect; Nonlinear trajectory; Aortic 

valve. 
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1. Introduction 
Many experiments and trials give rise to opportunity for the collection of different types 

of datasets at the same time, for example longitudinal and survival datasets. These types of 

datasets are usually analyzed separately. However, since the two datasets are collected 

from the same individuals simultaneously, analyzing them separately can overlook latent 
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association of the two components that could shed better light to the subject of inquiry. 

Consequently, conclusions may be biased and insufficient as a result of measurement error 

and missing data. Joint modelling has become a pervasive approach in analyzing these two 

datasets as a way of remedying the separate analysis (See Tsiatis & Davidian, 2004). Joint 

modelling has been used in medical and health studies, engineering, finances etc. For 

example, Oliveira et al., (2024) applied joint modelling to assess the effect of serum 

chloride and main Strong Ion Difference (mSID) on the survival of severely ill COVID-19 

patients. Hickey et al., (2018a) gave a comprehensive review of literatures for 

implementation of joint models involving more than a single event time per subject. They 

considered the distributional and modelling assumptions, including the association 

structure, estimation approaches, software implementations, and clinical applications. 

Alsefri et al., (2020) gave a review of developments in Bayesian joint models covering 

articles published up to July 2019.   

Classical survival analysis models such as the Cox proportional hazard (PH) model 

(Cox, 1972) and the accelerated failure time (AFT) (Kalbfleisch & Prentice, 2002) model 

are based on the assumption that given enough follow up time, every subject will 

eventually experience the event of interest or censored. In some real situations, there are 

cases in which some individuals will never experience the event of interest, even if the 

follow-up is indefinite, or in the case of HIV/AIDS trials, with the availability of improving 

antiretroviral drugs, it is safe to say that some patients will die of old age or due to other 

reasons linked with the biological process of ageing. This kind of patient may never 

experience the event of interest of the HIV/AIDS even if followed up indefinitely. Classical 

survival models are not-well suited to take into consideration this case of long-term 

survivors or cured subjects (Martins et al., 2017). 

In the case of possibility of cured subjects, the population is assumed to be made up of 

two groups of subjects: the susceptible, who will one day experience the event of interest, 

and the cured, who may not experience the event of interest during the follow-up period. 

Cancer trials are also cases where there is a strong rationale for the existence of cured 

subjects because if the treatment is successful, the original cancer is removed and the 

subject will not experience recurrence of the disease. This is particularly true for patients in 

early cancer stages (Peng & Taylor, 2014). Cure models are particularly appropriate in 

cancer trials where there is scientific interest in factors associated with the probability of 

cure and factors associated with the time to recurrence for non-cured individuals. 

Joint modelling with multivariate longitudinal outcome with different survival model 

extensions abound in literature both in frequentist and Bayesian approaches. In frequentist 

approach, the common estimation method is the expectation-maximization (EM) algorithm 

and its extensions. For example, Hickey et al., (2018b) introduced Monte Carlo 

Expectation-Maximization (MCEM) algorithm for estimation of joint model of a 

multivariate linear mixed sub-model for the longitudinal outcomes and a Cox proportional 

hazards regression model with time-varying covariates. The algorithm is implemented in 

their R package joineRML. The association between models is captured through a zero-

mean multivariate latent Gaussian process. They suggested that the use of approximate 

methods for the numerical integration or data reduction methods for large volume of data 

could be employed in cases their algorithm did not cover. Philipson et al., (2020) proposed 

the Quasi-Monte Carlo (QMC) methods using quasi-random sequences, instead of pseudo-
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random samples for use in the joint modelling of time-to-event and multivariate 

longitudinal data. The QMC integration framework extends the MCEM approaches using 

ordinary and antithetic variates in order to increase the convergence speed with nodes that 

are scattered more uniformly. Murray & Philipson (2022) introduced an approximate EM 

algorithm for multivariate joint models with linear mixed model for longitudinal process 

that ameliorates the issue of dimensionality of many classic approaches. Li et al., (2021) 

proposed a flexible joint model framework that models the multiple biomarkers with a 

shared latent reduced rank longitudinal principal component model and correlates the latent 

process to the event time by the Cox model for dynamic prediction of the event time using 

EM algorithm for parameter estimation. 

Bayesian approach has seen more of Markov chain Monte Carlo (MCMC) for 

parameter estimation, for example, Chen et al., (2004) presented multiple longitudinal 

markers as well as a cure structure for the survival component based on the promotion time 

cure rate model with MCMC Gibbs sampling. Chi & Ibrahim (2007) used MCMC adaptive 

rejection algorithm and an extra Metropolis step was used for parameter estimation in joint 

modelling of multivariate longitudinal component and cure survival component. He & Luo 

(2016) employed MCMC in their shared random effects joint model of a multilevel item 

response theory model for the multiple longitudinal outcomes, and a Cox’s proportional 

hazard model with piecewise constant baseline hazards for the event time data. Alafchi et 

al., (2021) proposed a two-stage base model for joint modelling of multivariate 

longitudinal and multistate process. Maximum likelihood estimation was used for fixed 

effects coefficients in longitudinal and multistate model and empirical Bayes methods for 

random effects coefficients in longitudinal. Medina-Olivares et al., (2023a) proposed a 

joint model for bivariate endogenous time-varying covariates and discrete survival data 

using integrated nested Laplace approximation (INLA) for parameter estimation.  

Many studies in the literature report the computational constraint of Markov chain 

Monte Carlo (MCMC) technique in joint modelling, and they have been shown to be 

limited to relatively small samples and model specifications, as well as have slow 

convergence properties (Rustand et al., 2024a). The approximate Bayesian approach, 

INLA, introduced by Rue et al., (2009) has begun to gain usage for joint modelling as an 

alternative to MCMC with the Rue et al., (2009) discussing the advantages of INLA over 

MCMC. We refer to Mayer et al., (2019), van Niekerk et al., (2021), Medina-Olivares et 

al., (2023b), Rustand et al., (2023), Rustand et al., (2024a), Rustand et al., (2024b), 

Alvares et al., (2024) and Ekong et al., (2025) for more instances of INLA’s applicability 

and suitability. Lázaro et al., (2020) presented implementation INLA in general mixture 

cure survival model with covariate information for the latency and the incidence model 

within a general scenario with censored and non-censored information. van Niekerk et al., 

(2019) showed that a joint model with a linear bivariate Gaussian association structure is a 

latent Gaussian model (LGM) and thus can be implemented using most existing packages 

for LGMs especially R-INLA and van Niekerk et al., (2021) proposed a fully non-

parametric spline component to competing risk joint model with nonlinear longitudinal 

trajectories to capture non-linear behaviour over time in the form of a random walk order 

two model. Rustand et al., (2024a) presented joint models of multivariate longitudinal and 

survival data using integrated nested Laplace approximations algorithm implemented in the 

R package R-INLA. They compared the INLA method to existing alternatives (MCMC and 

MCEM) via simulations applied to five longitudinal markers and included competing risks 



Ekong et al. 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

________________________________________________________________________________________ 
4                                                                                                                            Braz. J. Biom., v.43, e-43776, 2025. 
 

of death and transplantation in application to clinical trial on primary biliary cholangitis. 

This study builds on the presentation of Rustand et al., (2024a) and extends the joint 

modelling of Ekong et al., (2025) to multivariate longitudinal outcomes to cure survival 

outcomes, with shared random effect. We examine the effects of different association 

structures and different functions for the longitudinal trajectories which includes linear, 

quadratic and spline functions, on the estimation of time to event as well as cure 

proportion. We considered application to real dataset of aortic valve replacement surgery 

from an observational study by Lim et al., (2008), on detecting effects of different heart 

valves, differing on type of tissue, implanted in the aortic position. Our interest in this 

study included the trajectories of the multivariate longitudinal measurements and the 

possibility of cure as a result of censoring, lost at follow-up or non-occurrence of the 

failure event at the end of follow-up or study period. The model will seek to address the 

questions of what proportion of patients that were cured by the effect of the treatment? 

 

2. Materials and  Methods 
Given sample observation of the p-th longitudinal variable as yimp, (p = 1, …, P) on the i-th 

patient (i = 1, …, NL) at the m-th time point, let Tim be the observed event time for the i-th 

patient at the m-th time point, which may be right censored. The event indicator is given as i 

= 1  if event is observed and i = 0 if censored and Zi then is the latent variable classifying the 

patient as cured or not at the end of the follow-up. We observe that any patient with survival 

time observation at a particular point in time is classified to the population of uncured patients. 

The observed data for the i-th patient without any covariate is Di = { yimp , Tim , i , Zi }. The 

Di 's  are assumed to be independent across patients, reflecting the belief that the disease 

process evolves independently for each patient. We also assume that Tim and yimp are 

conditionally independent given some covariates of interest and a set of unobserved subject-

level random effects. One problem associated with the cure model is identifiability and this 

arises due to the lack of information at the end of the follow-up period, since a significant 

proportion of patients are censored before the end of the follow-up period. Consequently, it 

can be difficult to differentiate models with high incidence of susceptible and long tails of the 

failure time process from low incidence of susceptible and short tails of the failure time 

process. Analysing survival cure model with longitudinal data simultaneously helps reduce 

the uncertainty about the tail of the failure time distribution for susceptible (Yu et al., 2008). 

 

2.1 Longitudinal model component 

Given p-th longitudinal variable observation yimp and assuming that for a marginal 

generalized linear model, the population is from some probability model with density 

𝑓(𝒀|𝑿; 𝜷; 𝑼). We also assume that the longitudinal outcomes yimp, are conditionally 

independent and follow a well-defined distribution, G, with some density function 𝑔, linear 

predictor L and hyperparameters θL, hence a structured additive model for the longitudinal 

component is given as follows: 

𝑔−1{𝐸(𝑦𝑖𝑚𝑝|𝑿, 𝜷, 𝑼)} = 𝜼𝐿 = 𝜷0 + 𝜷𝑿 + ∑ ∑ 𝑓𝑝(𝒖𝑖𝑝)

𝑃

𝑝=1

𝑁𝐿

𝑖=1

+ 𝒃𝑖𝒖𝑖 +  𝝐,             (1) 

where 𝑓𝑝(𝒖𝑖𝑝) is the p-th latent random effect of covariate 𝒖𝑖𝑝 for i-th patient. We shall 
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look at both a quadratic and spline function for the latent random effect to account for 

possible nonlinear trajectories in the longitudinal variables. β represent the fixed effects of 

the covariates X, ϵ is the unstructured random effects. 𝒃𝑖 is the vector of random effects of 

intercept and slope, where 𝜷0 plus 𝒃𝑖𝑝 gives the combined effect of the intercept and 

random intercepts terms specifying that the event depends on the patient-specific level of 

the longitudinal profile at time 𝑡 = 0. The random effects  𝒃𝑖 measure the intra-and-inter-

variable correlation between the repeated measurements of an individual (Rustand et al., 

2024a) and are assumed to be multivariate normally distributed: 

𝒃𝑖 = [

𝑏𝑖1

⋮
𝑏𝑖𝑝

] ~ 𝑀𝑉𝑁 ([
𝟎
⋮
𝟎

] , [

𝚺𝑏𝑖1
… 𝚺𝑏𝑖1𝑏𝑖𝑝

⋮ ⋱ ⋮
𝚺𝑏𝑖1𝑏𝑖𝑝

⋯ 𝚺𝑏𝑖1

]). 

2.2 Cure survival model component 
Given the observed event time 𝑇𝑖𝑚, let Zi be a cure random variable defined as Zi = 0 if that 

patient is susceptible for experiencing the event of interest, and Zi = 1 if the patient is cured. Cure 

and uncured probabilities are P(Zi = 1) =  and P(Zi = 0) = 1 - , respectively. The survival 

functions for patients in the cured and uncured population, Sc(t) and Su(t), t > 0, respectively, are 

𝑆𝑢(𝑡) = 𝑃(𝑇𝑖𝑚 > 𝑡 |𝑍𝑖 = 0) 

𝑆𝑐(𝑡) = 𝑃(𝑇𝑖𝑚 > 𝑡 |𝑍𝑖 = 1) = 1. 

The general survival function for 𝑇𝑖𝑚 can be expressed in terms of a mixture of both cured and 

uncured populations in the form 

𝑆(𝑡) = 𝑃(𝑇𝑖𝑚 > 𝑡) =  + (1 − )𝑆𝑢(𝑡).                                               (2) 

Cure fraction  is also known as the incidence model and event time 𝑇𝑖𝑚 in the uncured 

population is also referred to as the latency model (Peng and Taylor, 2014). 

2.2.1 Covariates in the incidence model 

Note that for a patient who has experienced the event (i = 1), we know Zi = 1, but for a 

censored patient (i = 0), we do not observed Zi, hence, the effect of a baseline covariate vector x1 

on the cure proportion is typically modelled by means of a logistic link function expressed as 

logit[ (𝛃1)] =  𝜷1
′ 𝒙1 ≡ (𝛽1) =

exp{𝜷1
′ 𝒙1}

1 + exp{𝜷1
′ 𝒙1}

,                                    (3) 

where 𝛃1 is the vector of regression coefficients associated to x1 and  is the cure proportion. 

2.2.2 Covariates in the latency model 

For patients with Zi = 1, the time to event is assumed to follow a parametric distribution. The 

Cox proportional hazards model is usually formulated in terms of the hazard function for the event 

time as 

ℎ𝑢(𝑡 |ℎ𝑢0, 𝜷2) = lim
Δ𝑡→∞

𝑃(𝑡 ≤ 𝑇𝑖𝑚 < 𝑡 + Δ𝑡 |𝑇 ≥ 𝑡)

Δ𝑡
= ℎ𝑢0(𝑡) exp{𝜷2

′ 𝒙2},          (4) 

where ℎ𝑢0(𝑡) is the baseline hazard function that determines the shape of the hazard function. 

Model (4) can also be presented in terms of the survival function of 𝑇𝑖𝑚 as 
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𝑆𝑢(𝑡|𝑆𝑢0, 𝜷2) = [𝑆𝑢0(𝑡)]𝑒𝑥𝑝{𝜷2
′ 𝒙2},                                                  (5) 

where 𝑆𝑢0(𝑡) = exp {− ∫ ℎ𝑢0(𝑠)d𝑠
𝑡

0
} represents the survival baseline function and some 

hyperparameter θS. 

2.3 Joint Model of Multivariate Longitudinal and Cure Survival Outcomes as LGMs  
The modelling approach assumes a logistic distribution for the probability of cure in the 

incidence model in (3) and the Cox proportional hazard (4) for the survival time with a Weibull 

baseline hazard function ℎ𝑢0(𝑡|𝜆, 𝛼) = 𝜆𝛼𝑡𝛼−1 with 𝜆 and 𝛼 as the scale and shape parameters 

respectively. 𝛾𝑝 is the association parameter estimating the strength of association between the 

survival and the pth longitudinal component, thus we define 

ℎ𝑖(𝑠) = ℎ𝑢0(𝑠)𝜂𝑖
𝑆(𝑠) (exp {− ∫ ℎ𝑖(𝑢)du

𝑡

0

} + logit[ ]).                                  (6) 

The linear predictors of the joint model becomes 

𝜂𝑖
𝐿,𝐽(𝑡) = 𝜼𝑖

𝐿(𝑡) 

𝜂𝑖
𝑆,𝐽(𝑠) = 𝜂𝑖

𝑆(𝑠) + 𝛾𝑝 (𝜼𝑖
𝐿(𝑠)).                                                           (7) 

Here 𝛾𝑝 as a smooth function facilitates the joint estimation of the models associating the 

longitudinal trajectories and mixture cure process using the entire longitudinal predictors as shared 

random effect where each random effect’s individual deviation is associated to an association 

parameter in the survival latency component. We consider in this study three association structures 

as defined in INLAjoint (Rustand et al., 2024b) package, extending the univariate longitudinal case 

studied in Ekong et al., (2025) to include the associations through sharing of the current value of 

the linear predictors (CV), association through sharing current slope (CS) and association through 

sharing the individual deviation from the mean at time t as defined by the random effects (SRE). 

More details of the different association structures can be found in Rustand et al., (2024b). 

2.3.1 Likelihood function of Joint Model 

The likelihood of the longitudinal outcomes given the parameters 𝜷0, 𝛃, θ𝐿 , 𝜼𝐿 , 𝑓𝑝(∙), 𝒃𝑖  and 𝝐 

can be given as  

ℒ𝐿(𝒚|𝜼𝐿) = ∏ ∏ 𝑔 (𝑦𝑖𝑚𝑝|𝜼𝑖
𝐿(𝑡))

𝑁𝐿

𝑖=1

𝑃

𝑝=1

.                                                       (8) 

Given survival observations d = {Tim , im , zim} and parameter vector 𝑹 =
(𝜷1, 𝜷2, 𝛼, 𝜆, 𝜼𝑆, θ𝑆, 𝛾𝑝), the likelihood for the mixture cure survival becomes  

ℒ𝑆(𝒅|𝑹) = ∏ ℒ𝑖(𝑹|𝑑)

𝑁

𝑖=1

= ∏ 𝜂𝑖
𝑆𝑹𝑧𝑖

𝑁

𝑖=1

(1 − 𝜂𝑖
𝑆𝑹)

1−𝑧𝑖
ℎ𝑖𝑢(𝑡𝑖|𝑹)𝛿𝑖(1−𝑧𝑖)𝑆𝑖𝑢(𝑡𝑖|𝑹)1−𝑧𝑖 .      (9) 

The complete likelihood becomes 
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𝑝(𝑫𝑖|𝝌𝑖, 𝜽) = ∫ [∏ ℒ𝑖(𝑹|𝑑)

𝑁

𝑖=1

∏ ∏ 𝑔 (𝑦𝑖𝑚𝑝|𝜼𝑖
𝐿(𝑡))

𝑁𝐿

𝑖=1

𝑃

𝑝=1

𝑝(𝒃𝑖)]
 

𝒃𝑖

𝑑𝒃𝑖,                (10) 

where we define the latent field  = (𝛃, 𝛃1, 𝛃2, 𝜼𝑆, 𝜼𝐿 , 𝑓𝑝(∙), 𝒃𝑖, 𝜆, 𝝐) and a vector of 

hyperparameters 𝛉 = (θ𝐿 , θ𝑆, 𝛼, 𝜏−1, 𝛾𝑝). Under the assumption that the Gaussian field is 

conditionally independent, i.e., the latent field is a Gauss Markov Random Field (GMRF) (Rue & 

Held, 2005; Blangiardo & Cameletti 2015), the likelihood function in equation (10) provides the 

distribution of the pm observations, where each data point 𝑫𝑖 is associated with only one element in 

the latent field 𝝌𝑖. This suggests that 𝑫𝑖 and 𝝌𝑖 have the same dimension and that the parameters 

are constant. 

The main task is to present equation (10) as LGMs by showing its specific hierarchical 

structure. The first level of the hierarchy involves presenting the likelihood function given the latent 

field  and the vector of hyperparameters 𝛉 as shown in equation (10). The next level of the 

hierarchy involves the conditional distribution of the latent field  which is assumed to have a 

multivariate Gaussian prior with zero mean, such that it forms a Gaussian Markov random field 

with sparse precision matrix matrix 𝑸(𝜽2), i.e. 𝝌~𝑀𝑉𝑁(𝟎, 𝑸−1(𝜽2)), this is given as  

𝑝(𝝌|𝜽) = (2𝜋)𝑝𝑚|𝑸(𝜽2)|−
1
2 exp (−

1

2
𝝌′𝑸(𝜽2)𝝌).                                      (11) 

Then at the final level of the hierarchy, a prior on the hyperparameter vector 𝑝(𝜽) can then 

be formulated for the set of hyperparameters 𝜽 = (𝜽1, 𝜽2), which could be non-normal. This 

enables us to assume normal prior for the vector of fixed effects for the pth longitudinal variable as 

𝜷𝑝~𝑁(𝟎, 𝜏𝜷𝑝
𝑰), where 𝜷𝑝 ∈ 𝝌 and 𝜏𝜷𝑝

∈ 𝜽. To complete the model specification, we assume the 

inverse-Wishart prior distribution for the covariance matrix of the random effects and Gaussian 

priors for the fixed effects, while the penalised complexity prior PC(5) is assumed for the Weibull 

shape parameters of the baseline hazard function. 

From this hierarchical Bayesian formulation the joint posterior distribution is then given as: 

𝑝(𝓧, 𝜽|𝑫) ∝  𝑝(𝜽)𝑝(𝓧|𝜽) ∏ 𝑝(𝑫𝑖|𝓧, 𝜽)

𝒊

,                                                

∝  𝑝(𝜽)|𝑸(𝜽2)|
1
2 exp (−

1

2
𝝌′𝑸(𝜽2)𝝌 + ∑ log(𝑫𝑖|𝝌𝑖, 𝜽)

𝒏

𝒊=𝟏

).                               (12) 

Within this framework the joint posterior density (10) and subsequently the marginal posterior 

densities, 𝑝(𝝌𝑖|𝑫); i = 1 , … , n and 𝑝(𝜽|𝑫) can be efficiently and accurately calculated using the 

integrated Laplace approximation (INLA) methodology developed by Rue et al., (2009). The 

marginal posterior densities becomes 

𝑝(𝝌𝑖|𝑫) = ∫ 𝑝(𝝌𝑖, 𝜽|𝑫) 𝑑𝜽 = ∫ 𝑝(𝝌𝑖, 𝜽|𝑫)𝑝(𝜽|𝑫) 𝑑𝜽,                       (13) 

and  

𝑝(𝜃𝑖|𝑫) = ∫ 𝑝(𝜽|𝑫) 𝑑𝜽−𝒊,                                                       (14) 
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where 𝑑𝜽−𝒊 denotes all the elements in 𝜽 except the i-th element. INLA computes these 

marginal posteriors by computing the marginal posterior distributions of the hyper-parameters 

𝑝(𝜽𝑖|𝑫), and then the conditional posterior distribution 𝑝(𝝌𝑖|𝜽, 𝑫), for use in approximating the 

marginal posterior of the parameters 𝑝(𝝌𝑖|𝑫), for which a mention of the procedure is given in the 

next section. 

2.3.2 Posterior Estimation using Integrated Laplace Approximation 

To obtain the posterior distribution of the model parameters under Bayesian framework, by 

Bayes’ theorem, the conditional posterior distribution 

𝑝(𝜽𝑖, 𝝌𝑖|𝑫𝑖) =
𝑝(𝑫𝑖|𝜽𝑖 , 𝝌𝑖)𝑝(𝜽𝑖, 𝝌𝑖)

𝑝(𝑫𝑖)
∝ 𝑝(𝑫𝑖|𝜽𝑖 , 𝝌𝑖)𝑝(𝝌𝑖|𝜽𝑖)𝑝(𝜽𝑖),          (15) 

 

where 𝑝(𝝌𝑖|𝜽𝑖) and 𝑝(𝜽𝑖) are prior distributions and the focus is on approximating the 

multidimensional integral from the marginal likelihood 𝑝(𝑫𝑖|𝜽𝑖 , 𝝌𝑖) and approximation technique 

of INLA has been shown to provide exact approximations to the posterior estimates at faster rates 

than sampling-based methods such as Markov Chain Monte Carlo (MCMC) especially for complex 

and hierarchical models (see Rustand et al., (2024a)). 

The posteriors of interest are quantitatively approximated by INLA using the Laplace 

transformation (Rue et al., 2009) for which we consider here using a second-order Taylor series 

expansion for the integral of the density function 𝑝(𝝌) by taking the form of (Blangiardo & 

Cameletti, 2015) 

∫ 𝑝(𝝌)

∞

−∞

𝑑𝝌 = ∫ exp(log 𝑝(𝝌))

∞

−∞

𝑑𝝌 = ∫ exp(𝑔(𝝌))

∞

−∞

𝑑𝝌.                   (16)  

Since for unimodal functions the integral value is mainly determined by the behaviour around 

the mode of 𝑔(𝝌), a second-order Taylor approximation of 𝑔(𝝌) can be substituted for 𝑔(𝝌) to 

calculate an approximate value of the integral. 

Let 𝝌∗ be the global maximum of 𝝌 which is defined as 

𝝌∗ = argmax 𝝌𝑔(𝝌), 

then  

𝜕𝑔(𝝌)

𝜕𝝌
|

𝝌=𝝌∗

= 0, 

for 𝑔(𝝌) to be approximated as 

𝑔(𝝌) ≈ 𝑔(𝝌∗) + 0.5(𝝌 − 𝝌∗)′𝐇𝑔(𝝌∗)(𝝌 − 𝝌∗), 
where 𝐇𝑔(𝝌∗) is the Hessian of 𝑔(𝝌∗), and equation (10) can be written as 

∫ 𝑝(𝝌)

∞

−∞

𝑑𝝌 = ∫ exp(𝑔(𝝌∗) + 0.5(𝝌 − 𝝌∗)′𝐇𝑔(𝝌∗)(𝝌 − 𝝌∗))

∞

−∞

𝑑𝝌     

= exp(𝑔(𝝌∗)) ∫ exp(0.5(𝝌 − 𝝌∗)′𝐇𝑔(𝝌∗)(𝝌 − 𝝌∗))

∞

−∞

𝑑𝝌 

= exp(𝑔(𝝌∗)) ∫ exp(−0.5(𝝌 − 𝝌∗)′{−𝐇𝑔(𝝌∗)}(𝝌 − 𝝌∗))

∞

−∞

𝑑𝝌 

= exp(𝑔(𝝌∗)) (2𝜋)
𝑛𝑚

2 |𝐇𝑔(𝝌∗)|−
1
2 × 
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∫ (2𝜋)−
𝑛𝑚

2 |𝐇𝑔(𝝌∗)|−
1
2

∞

−∞

exp(−0.5(𝝌 − 𝝌∗)′{−𝐇𝑔(𝝌∗)}(𝝌 − 𝝌∗)) 𝑑𝝌. 

The integral is associated with the density of a multivariate Gaussian distribution and putting 

−𝐇𝑔(𝝌∗) = 𝑸(𝝌∗), the precision matrix for the random vector 𝝌∗ yields  

∫ 𝑝(𝝌)

∞

−∞

𝑑𝝌 ≈ exp(𝑔(𝝌∗)) (2𝜋)
𝑛𝑚

2 |𝐇𝑔(𝝌∗)|−
1
2 ×     

∫ (2𝜋)−
𝑛𝑚

2 |𝑸(𝝌∗)|−
1
2

∞

−∞

exp(−0.5(𝝌 − 𝝌∗)′𝑸(𝝌∗)(𝝌 − 𝝌∗)) 𝑑𝝌 

≈ (2𝜋)
𝑛𝑚

2 |𝑸(𝝌∗)|−
1
2 exp(𝑔(𝝌∗)).                                              (17) 

The conditional posterior distribution of 𝑝(𝓧, 𝜽|𝑫) is defined from the joint posterior distribution 

in Equation (9) as 

𝑝(𝓧, 𝜽|𝑫) ∝ 𝑝(𝜽)|𝑸(𝜽)|
1
2 exp (−

1

2
𝝌′𝑸(𝜽)𝝌 + ∑ log 𝑝(𝑫𝑖|𝝌𝑖, 𝜽)

𝒏

𝒊=𝟏

), 

which can be rewritten as, ignoring elements with 𝝌 

𝑝(𝓧|𝜽, 𝑫) ∝ exp (−
1

2
𝝌′𝑸(𝜽)𝝌 + ∑ 𝑔𝑖(𝝌𝑖)

𝒏

𝒊=𝟏

).                       (18)  

 

2.3.2.1 Gaussian Approximation 

 

The Gaussian approximation of Equation (18), 𝑝𝐺(𝝌|𝜽, 𝑫) is reached by matching the mode 

and the curvature at the mode of 𝑝(𝓧|𝜽, 𝑫). The mode is computed iteratively by using a Newton 

Raphson method. Let 𝜇(0) be the initial value of the mode, and expand 𝑔𝑖(𝝌𝑖) around 𝝁𝑖
(0)

=

(𝜇𝑖1
(0)

, … , 𝜇𝑖𝑁
(0)

) to the second order Taylor expansion, 

𝑔𝑖(𝝌𝑖) ≈ 𝑔𝑖(𝝁𝑖
(0)

) + 𝒃𝑖
′𝝌𝑖 −

1

2
𝒄𝑖

′𝝌𝑖
′𝝌𝑖,                                           (19) 

where 𝒃𝑖 and 𝒄𝑖 depend on 𝝁(0). Substituting equation (19) into equation (18) yields 

𝑝𝐺(𝝌|𝜽, 𝑫) ≈ 𝑔𝑖(𝝁𝑖
(0)

) exp (−
1

2
𝝌′(𝑸 + 𝒄)𝝌 + 𝒃′𝝌) 

∝ exp (−
1

2
𝝌′(𝑸 + 𝒄)𝝌 + 𝒃′𝝌). 

A Gaussian approximation of 𝑝𝐺(𝝌|𝜽, 𝑫) is obtained, with the precision matrix (𝑸 +

diag(𝒄)) and mode 𝝁(1), which is the solution of (𝑸 + diag(𝒄))𝝁(1) = 𝒃. The process can then be 

iterated, with 𝝁(1)as the new starting value, until it converges to a Gaussian distribution with, say, 

mean 𝝁(𝑗) → 𝝁(∗) = 𝝌∗ and precision matrix 𝑸(𝑗) → 𝑸(∗) = 𝑸 + diag(𝒄∗), 𝑗 = 1,2, …, where an 

appropriate convergence criterion must be used. 

The resulting approximation will then be (Opitz, 2017): 

𝑝𝐺(𝝌|𝜽, 𝑫) ∝ exp (−
1

2
(𝝌 − 𝝌∗(𝜽))

′
(𝑸(𝜽) + diag(𝒄))(𝝌 − 𝝌∗(𝜽))),         (20) 

where c is the second-order term in the Taylor expansion of ∑ log 𝑝(𝑫𝑖|𝝌𝑖, 𝜽)𝒏
𝒊=𝟏  at modal 

value 𝝌∗(𝜽). 
For the marginal posterior conditional distribution 𝑝(𝝌𝑖|𝜽, 𝑫) included in the computation of 

the marginal posterior 𝑝(𝝌𝑖|𝑫), Rue et al., (2009) discussed three approximations 𝑝(𝜒𝑖|𝜽𝑘 , 𝑫) 



Ekong et al. 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

________________________________________________________________________________________ 
10                                                                                                                            Braz. J. Biom., v.43, e-43776, 2025. 
 

where 𝜽𝑘 are weighted points to be used in the integration, Gaussian, full Laplace and simplified 

Laplace approximation. The Gaussian approximation is generally not best if the true density of 

𝑝(𝝌𝑖|𝜽, 𝑫) is not symmetric, the full Laplace approximation is a correction of Gaussian 

approximation and accurate but at a very expensive computational cost, the simplified Laplace 

approximation which is based on the Taylor series expansion of the full Laplace approximation is 

sufficiently accurate for most applications (Blangiardo & Cameletti, 2015). 

If the mean of 𝝌 is 𝝁, the density of 𝝌 is 

𝑝(𝝌) = (2𝜋)−𝑛
2⁄ |𝑸|

1
2⁄ exp [−

1

2
(𝝌 − 𝝁)𝑇𝑸(𝝌 − 𝝁)].                            (21) 

The sparse matrix 𝑸 is factorised as Cholesky triangle product 𝑳𝑳𝑇, and only non-zero terms 

are computed due to the Markov property and 𝐿𝑗𝑖 = 0. Let 𝑳𝑇𝝌 = 𝒓 where 𝒓 ~ 𝑁(𝟎, 𝟏), then we 

have that 𝐿𝑖𝑖𝜒𝑖 = 𝑟𝑖 − ∑ 𝐿𝑘𝑖𝜒𝑘
𝑛
𝑘=𝑖+1  for 𝑖 = 𝑛, … , 1. Multiplying each side with 𝜒𝑗 , 𝑗 ≥ 𝑖 and taking 

the expectation yields the recursion 

Σ𝑖𝑗 =
𝜕𝑖𝑗

2

𝐿𝑖𝑖
−

1

𝐿𝑖𝑖
∑ 𝐿𝑘𝑖Σ𝑘𝑗

𝑛

𝑘=𝑖+1

         𝑗 ≥ 𝑖,    𝑖 = 𝑛, … , 1 

where 𝚺 = 𝑸−1 is the covariance matrix and 𝜕𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝜕𝑖𝑗 = 0 otherwise. These 

recursion results in Gaussian approximations 𝑝𝐺(𝝌|𝜽, 𝑫) with mean 𝜇𝑖(𝜽) and marginal variance 

𝜎𝑖
2(𝜽). 

 

3. Results and Discussion 
3.1 Descriptive analyses of the aortic valve replacement surgery data 

The aortic valve replacement surgery data is an observational study on detecting effects of 

different heart valves, differing on type of tissue, implanted in the aortic position carried out by Lim 

et al., (2008). The data consists of 300 patients who underwent aortic valve replacement from 1991 

to 2001 with at least a year of follow-up with a total of 1,273 serial echocardiographic 

measurements. Patients with two or more procedures were censored from the time point of the 

second procedure to ensure that they were analysed only once. Demographic, operative, and 

mortality data were obtained from individual hospital notes, death certificates, and autopsy reports. 

Details of the dataset can be found in Lim et al., (2008). The version of the aortic valve replacement 

surgery data (n = 256) used in this study was obtained from the R package joineRML (Hickey et al., 

2018b) and for the sake of comparison of results we selected variables used in the analysis in Lim et 

al., (2008) for our own analysis and they include hs, the type of implanted aortic prosthesis: 

Homograft or Stentless valve; sex, gender of patient (0 = Male and 1 = Female); time, observed 

time point, with surgery date as the time origin (years); fuyrs, maximum follow up time, with 

surgery date as the time origin (years); status, censoring indicator (1 = died and 0 = lost at follow 

up); size, size of the valve (millimeters); lv, preoperative left ventricular ejection fraction (1 = good, 

2 = moderate and 3 = poor);  grad, valve gradient at follow-up visit; lvmi, left ventricular mass 

index (standardised) at follow-up visit; and ef, ejection fraction at follow-up visit. The longitudinal 

multi-variables are grad, lvmi and ef. 

We examine the longitudinal trajectories of the valve gradient (grad), left ventricular mass 

index (lvmi) and ejection fraction (ef) from the 256 patients who aortic valve replacement surgery at 

follow-up visits, for three covariates of treatment hs, sex and lv in Figure 1, Figure 2 and Figure 3 

respectively. The longitudinal trajectories for three dependent variables do not seem to be linear but 

nonlinear for both groups of patients who received homograft value and stentless valve for 

replacement for patients in the grad profiles of Figure 1. There seemed to be similar nonlinear 

trajectories for each of the three longitudinal outcomes for the 123 patients who received the 

homograft value and the 133 patients who received the stentless valve replacement. The lvmi and ef 
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shows polynomial trajectories for which the spline functions can be used to model. 

The distribution of patients according to sex showed that 183 patients were male and 73 

patients were female. Similar patterns of nonlinear longitudinal outcomes profiles are seen for the 

two groups of male and female patients. Again there seemed to be similar nonlinear trajectories for 

male and female patients for the three longitudinal outcomes of grad, lvmi and ef as seen in Figure 

2. The patients’ distribution for the covariate of preoperative left ventricular ejection fraction, lv, 

showed that 147 patients had good preoperative left ventricular ejection fraction, 87 patients had 

moderate preoperative left ventricular ejection fraction, while 22 had poor preoperative left 

ventricular ejection fraction. From Figure 3 we see that the three preoperative left ventricular 

ejection fraction groups had similar longitudinal profiles and particularly those with poor 

preoperative left ventricular ejection fraction had lowest values of ejection fraction ef. It can also be 

observed that patients with highest lvmi values were males with moderate preoperative left 

ventricular ejection fraction who received homograft valve replacement. 

 
Figure 1. The Spaghetti Plot of longitudinal outcomes by treatment covariate hs. 
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Figure 2. The Spaghetti Plot of longitudinal outcomes by gender covariate sex. 

 

 
Figure 3. The Spaghetti Plot of longitudinal outcomes by preoperative left ventricular ejection fraction covariate lv. 

 

We also examined the survival curves for the three covariates of type of implanted aortic 

prosthesis received, gender of patient and preoperative left ventricular ejection fraction, hs, sex and 

lv. From Figure 4 which shows the different survival curves estimated by gender, it can be observed 

that survival seemed to lower quickly for patients who received stentless valve replacement before 

flattening at 50% rate at less than two years after treatment. The patients with homograft valve 

replacement showed slower decrease in survival rate before flattening at aver 70% at less than two 

years after treatment. This information suggest the possibility of cure fraction for some patients 

who may not observe the failure event of death at the end of the follow-up period and or beyond. 
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Figure 4. Survival estimates of patients according to treatment covariate hs. 

The survival curve for male and female patients in Figure 5 showed that the survival rate 

lowered quickly for female patients than for male patients, but were at approximately the same flat 

level of 60% at about after one year at commencement of follow-up. Again the possibility of cure is 

observed for the dataset. Also Figure 6 showed that the survival rate was highest in patients with 

good preoperative left ventricular ejection fraction, then in patients with moderate preoperative left 

ventricular ejection fraction and lowest for those patients with poor preoperative left ventricular 

ejection fraction.  

In investigating the survival time and censorship, association between these two variables 

may be explained by the longitudinal outcomes and as clinical state can be modelled on several 

covariates using longitudinal data, censoring also depends on these longitudinal outcomes (Gómez-

Rubio, 2020), we examine the multivariate joint modelling of the three longitudinal outcomes and 

the survival time with possibility of cure proportion. 

 
Figure 5. Survival estimates of patients according to gender covariate sex. 
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Figure 6. Survival estimates of patients according to preoperative left ventricular ejection fraction covariate lv. 

 

3.2 Multivariate joint cure modelling of aortic valve replacement surgery 
data 
Our approach here is to fit the multivariate joint model for the aortic valve replacement 

surgery data using the LGM framework as implemented with INLA by considering the 

possibilities of cure proportion in the survival component of the modelling. The modelling 

formulation as described in Section 2 is presented for the dataset thus. 

Longitudinal component with linear trajectories: 

grad𝑖(𝑡) =  (𝛽10 + 𝑏𝑖10) + (𝑏𝑖11 + 𝛽1𝑡𝑖𝑚𝑒)time𝑖 + 𝛽1ℎ𝑠hs𝑖 + 𝛽1𝑠𝑒𝑥sex𝑖 + 𝛽1𝑠𝑖𝑧𝑒size𝑖 + 𝛽1𝑙𝑣1lv𝑖

+ 𝛽1𝑙𝑣2lv𝑖 + 𝜀𝑖1(𝑡) = 𝜂𝑖1(𝑡) + 𝜀𝑖1(𝑡) 

lvmi𝑖(𝑡) =  (𝛽20 + 𝑏𝑖20) + (𝑏𝑖21 + 𝛽2𝑡𝑖𝑚𝑒)time𝑖 + 𝛽2ℎ𝑠hs𝑖 + 𝛽2𝑠𝑒𝑥sex𝑖 + 𝛽2𝑠𝑖𝑧𝑒size𝑖 + 𝛽2𝑙𝑣1lv𝑖

+ 𝛽2𝑙𝑣2lv𝑖 + 𝜀𝑖2(𝑡) = 𝜂𝑖2(𝑡) + 𝜀𝑖2(𝑡) 

ef𝑖(𝑡) =  (𝛽30 + 𝑏𝑖30) + (𝑏𝑖31 + 𝛽3𝑡𝑖𝑚𝑒)time𝑖 + 𝛽3ℎ𝑠hs𝑖 + 𝛽3𝑠𝑒𝑥sex𝑖 +  𝛽3𝑠𝑖𝑧𝑒size𝑖 + 𝛽3𝑙𝑣1lv𝑖

+ 𝛽3𝑙𝑣2lv𝑖 + 𝜀𝑖3(𝑡) = 𝜂𝑖3(𝑡) + 𝜀𝑖3(𝑡) 

Longitudinal component with quadratic trajectories: 

grad𝑖(𝑡) =  (𝛽10 + 𝑏𝑖10) + (𝑏𝑖11 + 𝛽1𝑡𝑖𝑚𝑒)time𝑖𝐹1(𝑡) + 𝛽1ℎ𝑠hs𝑖 + 𝛽1𝑠𝑒𝑥sex𝑖 +  𝛽1𝑠𝑖𝑧𝑒size𝑖

+ 𝛽1𝑙𝑣1lv𝑖 + 𝛽1𝑙𝑣2lv𝑖 + 𝜀𝑖1(𝑡) = 𝜂𝑖1(𝑡) + 𝜀𝑖1(𝑡) 

lvmi𝑖(𝑡) =  (𝛽20 + 𝑏𝑖20) + (𝑏𝑖21 + 𝛽2𝑡𝑖𝑚𝑒)time𝑖𝐹1(𝑡) + 𝛽2ℎ𝑠hs𝑖 + 𝛽2𝑠𝑒𝑥sex𝑖 +  𝛽2𝑠𝑖𝑧𝑒size𝑖

+ 𝛽2𝑙𝑣1lv𝑖 + 𝛽2𝑙𝑣2lv𝑖 + 𝜀𝑖2(𝑡) = 𝜂𝑖2(𝑡) + 𝜀𝑖2(𝑡) 

ef𝑖(𝑡) =  (𝛽30 + 𝑏𝑖30) + (𝑏𝑖31 + 𝛽3𝑡𝑖𝑚𝑒)time𝑖𝐹1(𝑡) + 𝛽3ℎ𝑠hs𝑖 + 𝛽3𝑠𝑒𝑥sex𝑖 + 𝛽3𝑠𝑖𝑧𝑒size𝑖

+ 𝛽3𝑙𝑣1lv𝑖 + 𝛽3𝑙𝑣2lv𝑖 + 𝜀𝑖3(𝑡) = 𝜂𝑖3(𝑡) + 𝜀𝑖3(𝑡) 

Longitudinal component with spline trajectories: 

grad𝑖(𝑡) =  (𝛽10 + 𝑏𝑖10)𝐹2(𝑡) + (𝑏𝑖11 + 𝛽1𝑡𝑖𝑚𝑒)time𝑖𝐹3(𝑡) + 𝛽1ℎ𝑠hs𝑖 + 𝛽1𝑠𝑒𝑥sex𝑖 +  𝛽1𝑠𝑖𝑧𝑒size𝑖

+ 𝛽1𝑙𝑣1lv𝑖 + 𝛽1𝑙𝑣2lv𝑖 + 𝜀𝑖1(𝑡) = 𝜂𝑖1(𝑡) + 𝜀𝑖1(𝑡) 

lvmi𝑖(𝑡) =  (𝛽20 + 𝑏𝑖20)𝐹2(𝑡) + (𝑏𝑖21 + 𝛽2𝑡𝑖𝑚𝑒)time𝑖𝐹3(𝑡) + 𝛽2ℎ𝑠hs𝑖 + 𝛽2𝑠𝑒𝑥sex𝑖 + 𝛽2𝑠𝑖𝑧𝑒size𝑖

+ 𝛽2𝑙𝑣1lv𝑖 + 𝛽2𝑙𝑣2lv𝑖 + 𝜀𝑖2(𝑡) = 𝜂𝑖2(𝑡) + 𝜀𝑖2(𝑡) 

ef𝑖(𝑡) =  (𝛽30 + 𝑏𝑖30)𝐹2(𝑡) + (𝑏𝑖31 + 𝛽3𝑡𝑖𝑚𝑒)time𝑖𝐹3(𝑡) + 𝛽3ℎ𝑠hs𝑖 + 𝛽3𝑠𝑒𝑥sex𝑖 +  𝛽3𝑠𝑖𝑧𝑒size𝑖

+ 𝛽3𝑙𝑣1lv𝑖 + 𝛽3𝑙𝑣2lv𝑖 + 𝜀𝑖3(𝑡) = 𝜂𝑖3(𝑡) + 𝜀𝑖3(𝑡) 

Latency model component: 
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ℎ𝑖(𝑡 |ℎ0) = (𝜆𝛼𝑡𝛼−1) exp{𝛾gradS
(𝜂𝑖1(𝑡)) + 𝛾lvmiS

(𝜂𝑖2(𝑡)) + 𝛾efS
(𝜂𝑖3(𝑡))

+ (𝛽4ℎ𝑠hs𝑖 + 𝛽4𝑠𝑒𝑥sex𝑖 +  𝛽4𝑠𝑖𝑧𝑒size𝑖 + 𝛽4𝑙𝑣1lv𝑖 + 𝛽4𝑙𝑣2lv𝑖)} 

Incidence model component: 

logit[𝜋𝑖] = 𝛽50 + 𝛽5ℎ𝑠hs𝑖 + 𝛽5𝑠𝑒𝑥sex𝑖 +  𝛽5𝑠𝑖𝑧𝑒size𝑖 + 𝛽5𝑙𝑣1lv𝑖 + 𝛽5𝑙𝑣2lv𝑖 

 

where 𝜀𝑖𝑗(𝑡), 𝑗 = 1, 2, 3 are independent Gaussian measurement errors for the longitudinal 

outcomes, 𝐹1(𝑡) is a quadratic function and 𝐹2(𝑡) and 𝐹3(𝑡) are natural cubic spline basis 

functions with internal knots at 2 years. For priors specification, as noted earlier, we assume a 

multivariate Gaussian prior for the latent field 𝝌 with precision matrix 𝑸(𝜽) conditioned on 𝜽, 

which we also assume prior distributions 𝑝(𝜽) for which all the regression coefficients and the 

Weibull log(λ) scale parameters follow a vague normal distribution centred at zero 

(𝒩(0,1000)) while the shape parameter, α, is assumed to follow the penalised complexity 

prior PC(5). The inverse-Wishart prior distribution is assumed for the covariance matrix of the 

random effects and Gaussian priors for all the fixed effects. 

The results of the multivariate joint modelling of the effects of different heart valves on 

valve gradient (grad), left ventricular mass index (lvmi) and ejection fraction (ef) and the risk 

of death after aortic valve replacement surgery implemented using R packages INLA and 

INLAjoint, is herein presented. Firstly, we fitted the multivariate joint cure modelling with the 

three longitudinal trajectories and three association specifications on the aortic valve 

replacement surgery data and compare the model fits using marginal log-likelihood, DIC and 

WAIC as given in Table 1, which includes the computation times for each model. From the 

table, it is seen that the spline-CS model was the best fit with the lowest marginal log-

likelihood, DIC and WAIC. The linear-CS model followed after spline-CS model and the 

computation times showed that the models with CS specification ran quickest than the others, 

irrespective of the longitudinal trajectory used. In what follows we considered the parameter 

estimates for the CS specification in each longitudinal trajectory, linear, quadratic and spline. 

 
Table 1. Comparisons of longitudinal trajectories and association specifications for the of aortic valve replacement 

surgery dataset 

trajectory association log-lik DIC WAIC 

Comp 
time 
(seconds) 

linear CV -28966.32 24634.46 24162.27 3759.84 

linear CS -18378.91 10782.04 10383.83 442.52 

linear SRE -18395.04 10870.84 10421.50 411.66 

quadratic CV -19502.73 11774.21 11321.52 574.11 

quadratic CS -18440.06 11001.98 10526.94 237.89 

quadratic SRE -18462.96 11069.63 10923.14 1035.21 

spline CV -21093.16 15500.44 15027.05 2448.63 

spline CS -18369.21 10704.01 10316.15 510.61 

spline SRE -18637.33 11880.84 11481.90 3241.64 

 
 

Table 2A and Table 2B shows the posterior mean and standard deviation for the multivariate 

joint modelling including cure proportion of the aortic valve replacement surgery data for linear, 

spline and quadratic longitudinal trajectories. The outputs include the longitudinal component, the 

latency and incidence survival parts, as well as the association parameters. The parameter estimates 

are similar for the three models. The three models showed that the significant predictors for valve 
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gradient were gender and preoperative left ventricular ejection fraction, for both left ventricular 

mass index and ejection fraction, the significant predictors were the type of implanted aortic 

prosthesis, gender, size of valve and preoperative left ventricular ejection fraction.  

 

Table 2A. Posterior mean and standard deviation of aortic valve replacement surgery data output for linear, spline 

and quadratic trajectories 
 

 Linear Spline Quadratic 
Fixed 

effects mean sd mean sd mean sd 

grad       

β10 1.81080 2.40770 2.30320 2.40160 1.47580 2.42780 

β1time -0.02560 0.29740 -1.96370 1.97310 -0.02150 0.03760 

β1hs 0.52360 1.37680 0.29250 1.30910 1.54430 1.51610 

β1sex 3.49240 1.33580 3.68830 1.29040 3.45750 1.47730 

β1size 0.63110 0.13410 0.63140 0.11520 0.64940 0.12640 

β1lv1 -1.22830 1.35800 -1.17300 1.30870 -1.19770 1.49970 

β1lv2 1.88340 1.84470 1.81160 1.80470 1.43300 1.91950 

σe1 291.41490 30.72360 303.22370 15.94920 266.8592 16.28620 

lvmi       

β20 0.52800 2.48920 0.59390 2.49110 0.49340 2.48910 

β2time 0.02970 0.82500 -0.00780 2.26570 -0.04530 0.17220 

β2hs -2.30440 2.31330 -1.85840 2.35470 -2.45380 2.31080 

β2sex -2.08050 2.31540 -1.68350 2.35760 -2.28300 2.31020 

β2size 6.56040 0.20370 6.52220 0.19050 6.63040 0.20190 

β2lv1 -0.04190 2.31100 -0.25680 2.35290 -0.31140 2.30810 

β2lv2 1.12580 2.41700 0.79080 2.43780 1.46370 2.40810 

σe2 1774.0180 130.6978 1608.7339 84.38370 1982.827 113.2824 

ef       

β30 7.04500 2.39550 6.12420 2.40710 8.40420 2.38340 

β3time 0.61290 0.29490 2.92200 2.12550 0.06880 0.03660 

β3hs -7.23330 1.29020 -7.32950 1.34660 -7.85900 1.22510 

β3sex 5.18530 1.27800 4.88770 1.34330 6.14730 1.21020 

β3size 2.55470 0.12340 2.66720 0.11880 2.54880 0.11370 

β3lv1 -1.39040 1.27680 -1.76150 1.33480 -1.85230 1.20830 

β3lv2 -6.32040 1.71170 -5.97150 1.78160 -6.89550 1.62160 

σe3 117.3553 9.22890 114.0684 5.74370 132.6199 7.50720 

Random effects      

σ2
b10 11.56870 98.39430 12.12570 11.85350 0.07930 0.12970 

σ2
b11 5272.3066 100057.0 2995.1126 1038.561 7.49290 9.47890 

σ2
b20 827.5162 18884.34 141.1984 54.8680 0.19480 0.19040 

σ2
b21 134.0140 3087.596 0.2164 0.1217 0.37120 0.88640 

σ2
b30 2.68520 13.61280 0.20270 0.12160 0.29660 1.22600 

σ2
b31 0.49120 0.75410 0.23480 0.13130 0.24300 0.16820 
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  The valve gradient was higher in female patients with male reference, decreased in patients 

with moderate preoperative left ventricular ejection fraction and increased in patients with poor 

preoperative left ventricular ejection fraction both with good preoperative left ventricular ejection 

fraction as reference. The left ventricular mass index with significant predictors as type of 

implanted aortic prosthesis, gender and size of valve was lower in female patients and patients 

treated with stentless valve. The ejection fraction had type of implanted aortic prosthesis, gender, 

size of valve and preoperative left ventricular ejection fraction as significant predictors in the three 

models. However, we see that the time effect in the spline model was significant to capture the 

longitudinal profile of ejection fraction. The ejection fraction decreased in patients with moderate 

and poor preoperative left ventricular ejection fraction against those with good preoperative left 

ventricular ejection fraction. 

From Table 2B, the type of implanted aortic prosthesis, gender, size of valve and 

preoperative left ventricular ejection fraction were also significant in the conditional failure 

time latency model, as evidenced in the survival curves plots in Section 3.1.  

 

Table 2B. Posterior mean and standard deviation of aortic valve replacement surgery data output for linear, spline 

and quadratic trajectories (continuation) 

 Linear Spline Quadratic 

 mean sd mean sd mean sd 

covariance       

covb10,b11 46.67060 1650.229 127.36600 96.95670 0.32260 0.77180 

covb10,b20 -4.31680 730.1053 14.10150 16.19890 
-

0.02750 0.09680 

covb10,b21 -2.53490 274.7368 -0.39150 0.84510 0.03130 0.29660 

covb10,b30 1.58300 29.83760 0.47300 0.49390 0.02110 0.21970 

covb10,b31 -0.34530 4.38210 -0.43090 0.75690 
-

0.00070 0.07860 

covb11,b20 
-

1957.1171 42950.23 
-

214.27530 138.3266 
-

0.85930 1.16730 

covb11,b21 
-

794.42290 17327.15 -1.78480 10.04970 
-

0.14240 2.11750 

covb11,b30 -51.23850 673.0084 6.44130 7.79560 0.17330 2.09330 

covb11,b31 7.37890 172.0917 -10.65570 10.18110 0.08390 0.99360 

covb20,b21 324.51240 7478.755 -1.01510 1.98350 0.02420 0.29720 

covb20,b30 21.18590 300.9063 0.54790 1.86490 
-

0.02890 0.21330 

covb20,b31 -3.74840 72.22530 0.82960 2.39560 
-

0.02880 0.13400 

covb21,b30 8.34740 111.3181 -0.06750 0.06270 
-

0.03210 0.67160 

covb21,b31 -1.50990 28.25780 -0.01810 0.08720 0.00860 0.20550 

covb30,b31 -0.53140 2.02600 0.01450 0.06340 0.01550 0.20890 

Latency estmates      

α 0.67380 0.07880 0.79550 0.03300 0.68980 0.08440 

λ 1.16960 2.35770 1.04930 2.05140 3.56830 7.17300 

β4hs 1.05270 0.36040 1.01650 0.35250 1.14750 0.36620 

β4sex 0.37480 0.32910 0.34300 0.31560 0.23530 0.32200 

β4size -0.04370 0.06240 -0.06190 0.06140 
-

0.09090 0.06250 

β4lv1 0.10690 0.31200 0.02910 0.29930 0.21920 0.30720 

β4lv2 0.26870 0.42950 0.16100 0.41000 0.25330 0.41880 
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Incidence estimates      

β50 0.14460 1.69820 0.14460 1.69820 0.14460 1.69820 

β5hs -0.17680 0.33870 -0.17680 0.33870 
-

0.17680 0.33870 

β5sex -0.50800 0.31040 -0.50800 0.31040 
-

0.50800 0.31040 

β5size -0.01210 0.07220 -0.01210 0.07220 
-

0.01210 0.07220 

β5lv1 0.04730 0.28090 0.04730 0.28090 0.04730 0.28090 

β5lv2 -0.04570 0.47220 -0.04570 0.47220 
-

0.04570 0.47220 

Association parameters      

γgrad_S 0.89560 0.83530 -0.83910 0.59860 0.11300 1.10870 

γlvmi_S 0.00700 0.06850 -0.03720 0.05240 
-

0.00300 0.11640 

γef_S -0.20070 0.38620 0.29350 0.22160 
-

1.44490 0.53140 

For the incidence model, the significant predictors were type of implanted aortic prosthesis and 

gender, where the cure variable is has a negative log-odds coefficients for patients treated with 

stentless valve and female patients. The association parameter estimates from the three models 

differ for the three longitudinal outcomes with risk of survival. The linear and spline trajectories 

showed significant association of the survival component with the longitudinal trajectory of valve 

gradient, while all three models showed significant association of survival component with the 

longitudinal ejection fraction variable. However, there were differences in the sign of the posterior 

mean values for the association parameters for valve gradient and ejection fraction in the linear and 

spline, and quadratic and spline models respectively. The case of negative association parameter 

indicates that higher values of the longitudinal outcome implies that there was a reduction in the 

probability in the risk of the event. The spline model then, seemed to give the best situation of the 

joint modelling of the three longitudinal outcomes (grad, lvmi and ef) with survival component 

including cure proportion, since the association parameter values had signs indicating the direction 

of the longitudinal outcomes in relation to the probability of survival, as was also observed in the 

descriptives of the dataset done in Section 3.1. 

We now turn to the discussion on the cure proportion from the model results, we particularly 

took the spline model as the best fit model for the dataset and examined the result for the cure 

proportions. The full conditional distribution of latent incidence variable Z gave a predicted cure 

proportion of 36.3281%. Table 3 shows the posterior mean, standard deviation and 95% credible 

interval of the posterior distribution of the cure proportion comprising patients in ten groups formed 

by the combinations of the covariate factor levels, for the factors hs (type of implanted aortic 

prosthesis) sex (male or female) and lv (state of preoperative left ventricular ejection fraction). The 

highest cure proportion estimates was in the groups of men treated with homograft valve, while the 

lowest values are in the groups of women treated with stentless valve.  
 

Table 3. Posterior mean, standard deviation, and 95% credible interval of the cure proportion for covariates’ levels 

combinations 

hs sex lv mean sd 
Lw 95% 

CI 
Up 95% 

CI 

Homograft male good 0.306 0.00315 0.303 0.309 

Homograft male moderate 0.306 0.00300 0.303 0.309 

Homograft male poor 0.303 NA 0.303 0.303 

Homograft female good 0.212 0.00192 0.21 0.214 

Homograft female moderate 0.211 0.00330 0.212 0.214 
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Stentless male good 0.263 0.00559 0.258 0.265 

Stentless male moderate 0.263 0.00503 0.26 0.266 

Stentless male poor 0.263 0.00535 0.26 0.265 

Stentless female good 0.178 0.00267 0.176 0.178 

Stentless female moderate 0.178 0.00000 0.178 0.178 

4. Conclusions 
This paper presented the modelling of multivariate longitudinal outcomes and mixture 

cure survival under shared random effect using latent Gaussian modelling approach, which 

involves the deterministic approximate Bayesian inference of Laplace approximation in 

evaluating the posterior distribution of the resulting Bayesian modelling and hence how the 

integrated Laplace approximation (INLA) introduced by Rue et al., (2009) can be used to 

evaluate its posteriors. For the longitudinal outcomes a linear, quadratic and spline 

specifications were studied in capturing the complex evolutions and the survival cure 

component was based on the specifications by Lázaro et al., (2020), in which latent 

indicators in the inferential process for classifying patients in the cured and uncured groups 

by a latent indicator variable was introduced. The multivariate joint cure modelling 

approach involved expressing the joint model as a hierarchical structure fitting the structure 

of latent Gaussian models under the Bayesian paradigm and then using the INLA to 

evaluate the marginal posterior distributions for the joint multivariate models. 

The multivariate joint cure modelling approach was applied to the aortic valve 

replacement surgery data to study the effects of different heart valves on valve gradient 

(grad), left ventricular mass index (lvmi) and ejection fraction (ef) and the risk of death 

after aortic valve replacement surgery. We fitted the multivariate joint cure modelling with 

the three longitudinal trajectories and three association specifications on the aortic valve 

replacement surgery data and compared the model fits using marginal log-likelihood, DIC 

and WAIC and saw that the spline trajectory with current slope association was the best fit 

with the lowest marginal log-likelihood, DIC and WAIC. The spline model gave the best 

situation of the joint modelling of the three longitudinal outcomes (grad, lvmi and ef) with 

survival component including cure proportion, and the signs of the association parameter 

values indicated the direction of the longitudinal outcomes in relation to the probability of 

survival. 

The full conditional distribution of latent incidence variable Z gave a predicted cure 

proportion of 36.33% and it was concluded that the type of treatment valve received and 

gender of patients were clinically significant in the proportion of cure as were in the case of 

latency and longitudinal outcomes processes of the aortic valve replacement surgery 

process. The survival profiles of the patients in the uncured group were very different and 

the worst survival expectations were found in the factor-level combinations of female 

patients who received stentless valve for replacement, irrespective of the patient’s 

preoperative condition of the left ventricular ejection fraction. However, female patients 

who received homograft valve for replacement had higher survival functions as do male 

patients. Hence, the probability of cure was seen to be a function of the type of implanted 

aortic prosthesis received by patients and gender of patients.  

The merit of this approach is that apart from capturing the nonlinear trajectory of the 

longitudinal outcomes, the association between the longitudinal component and survival 

components which included cure fractions was also estimated. This study adds to the body 
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of work on the application of the deterministic inference strategy, INLA, to other joint 

modelling development as well as other modelling approaches where they can be expressed 

as latent Gaussian model and affords the ease of computation even with large datasets with 

less powerful computers as seen in this study. The issue of missing values and observation 

of short credible intervals reported in the predictive distribution of the cure proportion 

raises areas of further study with INLA for joint model in the context of this study. 
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