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Abstract
In sampling theory, the researchers are often dependent on estimators that use only current sample
data to estimate population parameters. However, the hybrid exponentially weighted moving average
(HEWMA) approach incorporates both current and past sample information and helps increasing the ef-
ficiency of the estimators. This enables us to develop an improved estimation procedure for temporal sur-
veys based on HEWMA. We develop memory-type log estimator of population mean based on HEWMA
under simple random sampling (SRS). We derive the bias and mean square error (MSE) of the developed
estimator to the first-order approximation. The efficiency conditions are established by comparing the
MSE of the proposed estimator with the MSE of the available traditional and memory-type estimators.
To validate our theoretical findings, we conduct a simulation study utilizing hypothetically drawn popu-
lation. A real data illustration of the developed methods is also presented. The findings demonstrate that
our approach integrates past and present sample information and enhances the estimators’ efficacy.
Keywords: Hybrid exponentially weighted moving average; Mean square error; Bias; Efficiency.

1. Introduction
Sampling theory plays a crucial role in several fields, including statistics, economics, sociology,

and epidemiology, among others. It gives a framework for making inferences about a population
based on the sample chosen from that population. The conventional sampling methods often depend
solely on the information obtained from the sample itself to drawn inferences about the population
parameters. However, in many real-life situations, the auxiliary information may be considered to
improve the efficiency and accuracy of the estimation procedures.

In sampling theory, the utilization of auxiliary information also provides many advantages,
namely, reducing sampling costs, decreasing the sample size required to achieve a desired level of
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precision, saving time and resources, among others. By auxiliary information with relevant auxil-
iary variables, estimators can better capture the underlying population parameters, leading to more
reliable inference. Furthermore, incorporating auxiliary information allows for the construction of
more robust sampling designs adapted to specific study objectives and population characteristics.
Researchers may strategically choose auxiliary variables that are correlated with the study variables,
thereby improving the efficiency of the estimation procedures. When the study variable is positively
correlated with the auxiliary variable, Cochran (1940) suggested to employ the ratio estimator pre-
scribed hereunder as

tr = ȳ
(

X̄
x̄

)
(1.1)

where x̄ = n–1
∑

n
i=1 xi and ȳ = n–1

∑
n
i=1 yi are the sample means of the auxiliary variable x and study

variable y, respectively. Also, X̄ = N–1
∑

N
i=1 xi is the population mean of auxiliary variable x. The

MSE of the ratio estimator tr is given by

MSE(tr) = qȲ2(C2
y + C2

x – 2ρxyCxCy) (1.2)

where q = 1/n, Ȳ = N–1
∑

N
i=1 yi is the population mean of study variable y, (Cx, Cy) are the population

coefficient of variations of variables (x, y), respectively.
Bhushan and Gupta (2015) suggested the log type estimator for population mean as

tbg = ȳ
{

1 + log
(

x̄
X̄

)}β

(1.3)

where β is a properly selected scalar.
The minimum MSE at optimum value of β(opt) = –ρxy(Cy/Cx) is given by

min.MSE(tbg) = qȲ2C2
y (1 –ρ2

xy) (1.4)

Bhushan and Gupta (2015) also suggested an improved version of log estimator for population
mean given as

ts = αȳ
{

1 + log
(

x̄
X̄

)}β

(1.5)

where α and β are properly selected scalars.
The minimum MSE of the estimator ts at optimum value of α(opt) = B/A is given below as

min.MSE(ts) = Ȳ2
(

1 –
B2

A

)
(1.6)

where A = 1 + qC2
y + 2β(β– 1)qC2

x + 4βqρxyCxCy and B = 1 +
(
β2

2 –β
)

qC2
x +βqρxyCxCy.

In several sectors such as finance, signal processing, and data science, the accurate estimation of
parameters from time-series data is of great importance. Conventional estimation procedures often
face challenges in efficiently handling large amounts of data, while, maintaining high accuracy and
adaptability to changing conditions. Memory type estimators incorporate information from both
present and past observations and give a promising solution to these challenges by capturing the
underlying trends and dynamics of the data stream.

Among memory-type estimators, the exponentially weighted moving average (EWMA) has
earned a widespread popularity for its simplicity and effectiveness in capturing recent data trends,
while, reducing the impact of past observations. Noor-Ul-Amin (2019) introduced memory-type
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ratio and product estimators of population mean employing EWMA for temporal surveys under
SRS. Aslam et al. (2020) and Aslam et al. (2021) developed memory-type ratio and product esti-
mators of population mean based on EWMA statistic under stratified sampling and ranked-based
sampling, respectively. Qureshi et al. (2022) proposed memory-type ratio and product estimators
for population variance employing EWMA statistics for temporal surveys. Bhushan et al. (2023)
suggested memory-type log estimators for temporal surveys based on EWMA statistic.

The conventional EWMA-based estimators may suffer from limitations in adaptability to dy-
namic environments and may not fully leverage the available information in the data. To ad-
dress these limitations, a new approach known as hybrid exponentially weighted moving aver-
age (HEWMA) has emerged which combines the advantages of EWMA with other memory-
based methods to achieve superior performance in terms of accuracy, efficiency, and adaptability.
HEWMA provides a flexible framework for incorporating both short-term and long-term memory
into the estimation procedure allowing for better capture of complex data patterns and dynamics.
Noor-Ul-Amin (2020) introduced the memory-based ratio and product estimators for population
mean utilizing HEWMA for temporal surveys under SRS. Bhushan et al. (2022) evaluated the
performance of the memory-type log estimators employing HEWMA. In this paper, we develop
HEWMA-based efficient memory-type log estimator under SRS.

In the next section, we review the existing HEWMA-based memory-type estimators and their
properties. In Section 3, we propose the efficient memory-type log estimators and explore the theo-
retical foundations of the proposed estimators, properties, and advantages over existing conventional
and HEWMA-based estimators. In Section 4, the mathematical conditions are reported under which
the proposed estimators will dominate the existing estimators. We investigate the practical imple-
mentation of proposed memory-type estimators, including algorithmic details and interpretation
of findings in Section 5. A real data illustration is also presented in Section 6. The manuscript is
concluded in Section 7.

2. Review of memory-type estimators
The HEWMA statistic presents a novel approach in statistical analysis, particularly in the realm

of process monitoring and control charting. Developed by Haq (2013), HEWMA builds upon the
foundation of the conventional EWMA statistic pioneered by Robert (1959). HEWMA combines
the strengths of EWMA with additional memory-based methods, allowing for the incorporation
of both current and past information in the estimation process. This hybrid approach improves the
adaptability and efficiency of the statistic enabling more robust detection of changes in the under-
lying process mean over time. Let X1,X2, ...,Xn denote the independent and identically distributed
random variables. Using these random variables, we define the sequence HE1,HE2, ...,HEn by em-
ploying the following recursive expressions.

Et = λ2X̄t + (1 –λ2)Et–1 0 < λ2 ≤ 1, HEt = (1 –λ1)HEt–1 +λ1Et 0 < λ1 ≤ 1 (2.1)

where the scalars λi, i = 1,2, are properly selected coefficients. In addition, the EWMA and HEWMA
statistics are symbolized by Et and HEt, respectively. The primary amounts of these statistics are re-
garded as the expected mean which may be computed from preliminary data such as a pilot survey.
For this study, these initial values are set to zero, i.e., HE0 = E0 = 0. Haq (2013) calculated the mean
and variance of the HEWMA statistic. However, Haq (2016) subsequently identified errors in the
expressions derived in the previous work. As a result, Haq (2016) provided corrected expressions for
the mean and variance of the HEWMA statistic which are given by:

E(HEt) = Ȳ, V(HEt) =
λ2

1λ
2
2

(λ1 –λ2)2


(1–λ1)2(1–(1–λ1)2t)

1–(1–λ1)2 + (1–λ2)2(1–(1–λ2)2t)
1–(1–λ2)2

– 2(1–λ1)(1–λ2)(1–(1–λ1)t(1–λ2)t)
1–(1–λ1)(1–λ2)

 σ2
y

n
(2.2)
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For t ≥ 1, σ2
y denotes the variance of the variable y. The limiting expression for the variance is given

as

V(HEt) =
λ2

1λ
2
2

(λ1 –λ2)2

{
(1 –λ1)2

1 – (1 –λ1)2 +
(1 –λ2)2

1 – (1 –λ2)2 –
2(1 –λ1)(1 –λ2)

1 – (1 –λ1)(1 –λ2)

}
σ2

n
(2.3)

V(HEt) =
λ2

1λ
2
2

(λ1 –λ2)2 δ
σ2

y

n
(2.4)

where δ = (1–λ1)2

1–(1–λ1)2 + (1–λ2)2

1–(1–λ2)2 – 2(1–λ1)(1–λ2)
1–(1–λ1)(1–λ2) . It is remarkable that the value of δ will be substituted

with δ1 as specified by

δ1 =
{

(1–λ1)2(1–(1–λ1)2t)
1–(1–λ1)2 + (1–λ2)2(1–(1–λ2)2t)

1–(1–λ2)2 – 2(1–λ1)(1–λ2)(1–(1–λ1)t(1–λ2)t)
1–(1–λ1)(1–λ2)

}
(2.5)

Noor-ul-Amin (2020) utilized the HEWMA statistic to introduce memory-type estimation proce-
dures for population mean under SRS. The variable y has HEWMA statistic as

Ety = λ2ȳt + (1 –λ2)Ety–1, Zt = λ1Ety + (1 –λ1)Zt–1, (2.6)

and the variable x has HEWMA statistic as

Etx = λ2x̄t + (1 –λ2)Etx–1, Qt = λ1Etx + (1 –λ1)Qt–1. (2.7)

The statistics Qt and Zt are unbiased estimators for the population means X̄ and Ȳ, respectively. For
more details, see Appendix A.

Employing the HEWMA statistics Qt and Zt, Noor-ul-Amin (2020) introduced the memory-
type ratio estimator under SRS as

tmr = Zt

(
X̄
Qt

)
. (2.8)

To establish the properties of the memory-type estimators, we assume that Zt = Ȳ(1 + e0) and Qt =
X̄(1 + e1) such that E(e0) = E(e1) = 0 and E(e2

0) = qζC2
y , E(e2

1) = qζC2
x, E(e0e1) = qζρxyCxCy, where

ζ = δ{(λ1λ2)2/(λ1 –λ2)2}.
The MSE of the ratio estimator approximated to the first order is expressed as

MSE(tmr ) = qȲ2ζ(C2
y + C2

x – 2ρxyCxCy). (2.9)

Bhushan et al. (2022) presented the memory-type log estimator within the framework of SRS as

tmbg = Zt

[
1 + log

(
Qt

X

)]β1

(2.10)

where β1 is a properly selected scalar.
The optimum MSE at β1(opt) = –ρxyCy/Cx of the estimator tmbg is provided below

MSE(tmbg)(opt) = qζȲ2C2
y (1 –ρ2

xy) (2.11)
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3. Proposed memory-type estimators
The memory-type estimators based on HEWMA statistics represent a powerful tool for ac-

curate parameter estimation in dynamic systems. Their ability to handle non-linear relationships,
skewed distributions, and efficiently manage memory makes them well-suited for a wide range
of applications, from financial forecasting to industrial process control. In this paper, we propose
HEWMA-based improved memory-type log estimator for population mean under SRS as

tms = α1Zt

{
1 + log

(
Qt

X̄

)}β1

(3.1)

where α1 and β1 are the properly selected scalars.

Remark 3.1. For α1 = 1, the proposed estimator tms reduces into memory-type log estimator tmbg envisaged
by Bhushan et al. (2022).

Theorem 3.1. The bias and minimum MSE of the proposed memory-type estimator are given to the first
order approximation as

Bias(tms ) = Ȳ
[
α1

{
1 +

(
β2

1
2

–β1

)
ζqC2

x +β1ζqρxyCxCy

}
– 1

]
(3.2)

min.MSE(tms ) = Ȳ2
(

1 –
Q2

1
P1

)
(3.3)

where P1 = 1+ζqC2
y +2β1 (β1 – 1)ζqC2

x +4β1ζqρxyCxCy and Q1 = 1+
(
β2

1
2 –β1

)
ζqC2

x +β1ζqρxyCxCy.

Proof. Utilizing the notations defined in previous section, the suggested memory-based log estima-
tor for the population mean in SRS may be expressed as

tms =α1Zt

{
1 + log

(
Qt

X̄

)}β1

=α1Ȳ(1 + e0)
{

1 + log
(

X̄(1 + e1)
X̄

)}β1

=α1Ȳ(1 + e0)
{

1 +
(

e1 –
e2
1
2

)}β1

(3.4)

Employ Taylor series expansion, multiply, and ignore the error terms having power greater than
two, we get

tms =α1Ȳ(1 + e0)
{

1 +β1

(
e1 –

e2
1
2

)
+
β1(β1 – 1)

2
e2
1

}
=α1Ȳ

{
1 + e0 +β1e1 +β1e0e1 +

(
β2

1
2

–β1

)
e2
1

}
Subtract Ȳ on both side in the above expression, we get

tms – Ȳ = Ȳ
[
α1

{
1 + e0 +β1e1 +β1e0e1 +

(
β2

1
2

–β1

)
e2
1

}
– 1

]
(3.5)
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Taking expectation on both side to (3.5), we get

Bias(tms ) = Ȳ
[
α1

{
1 +

(
β2

1
2

–β1

)
ζqC2

x +β1ζqρxyCxCy

}
– 1

]
(3.6)

Squaring and taking expectation on both side to (3.5), we get the MSE of proposed memory-type
estimator tms as:

MSE(tms ) = Ȳ2

[
1 +α2

1
{

1 +ζqC2
y + 2β1(β1 – 1)ζqC2

x + 4β1ζqρxyCxCy
}

–2α1

{
1 +

(
β2

1
2 –β1

)
ζqC2

x +β1ζqρxyCxCy

} ]
MSE(tms ) = Ȳ2(1 +α2

1P1 – 2α1Q1) (3.7)

where P1 = 1+ζqC2
y +2β1(β1 –1)ζqC2

x +4β1ζqρxyCxCy and Q1 = 1+
(
β2

1
2 –β1

)
ζqC2

x +β1ζqρxyCxCy.
Minimizing (3.7) with respect to α1, we get

α1(opt) =
Q1

P1

Putting the optimum value of α1(opt) in (3.7), we get the minimum MSE as

min.MSE(tms ) = Ȳ2
(

1 –
Q2

1
P1

)

4. Mathematical conditions
In this section, we obtain the mathematical conditions by comparing the MSE expressions of the

proposed and available traditional and memory-type estimators.
• Comparing the proposed estimator tms with the conventional ratio estimator tr , we get

min.MSE(tms ) < MSE(tr) =⇒ Q2
1

P1
> 1 – q

(
C2

y + C2
x – 2ρxyCxCy

)
• Comparing the proposed estimator tms with the conventional log estimator tbg, we get

min.MSE(tms ) < MSE(tbg) =⇒ Q2
1

P1
> 1 – qC2

y (1 –ρ2
xy)

• Comparing the proposed estimator tms with the improved log estimator ts, we get

min.MSE(tms ) < MSE(ts) =⇒ Q2
1

P1
>

B2

A
• Comparing the proposed estimator tms with the memory-type ratio estimator tmr , we get

min.MSE(tms ) < MSE(tmr ) =⇒ Q2
1

P1
> 1 –ζq

(
C2

y + C2
x – 2ρxyCxCy

)
• Comparing the proposed estimator tms with the memory-type log estimator tmbg, we get

min.MSE(tms ) < MSE(tmbg) =⇒ Q2
1

P1
> 1 –ζqC2

y (1 –ρ2
xy)

Under the aforesaid mathematical conditions, the developed estimator represses the reviewed es-
timators. This fact can only be checked through empirical study which is conducted in the next
section.
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5. Empirical study
In this section, the theoretical results are validated numerically using simulation and real data

application.

5.1 Simulation
In the simulation, we assess the execution of the HEWMA-based memory-type log estimator

under different conditions. These conditions may include varying levels of smoothing parameter
λ2, sample sizes n, and correlation coefficients ρxy. By systematically varying these parameters, we
can assess the robustness, accuracy, and efficiency of the estimators across different scenarios. The
algorithm of the simulation is delineated below.

(i). Use R software and artificially generate the following populations:
(a). Generate a normal (symmetric) population of size N = 1000 utilizing X̄ = 10, Ȳ = 20, σ2

x = 25,
σ2

y = 36, and varying correlation coefficient ρxy = 0.1,0.3,0.5,0.7,0.9.
(b). Following Singh and Horn (1998) and Kumar and Siddiqui (2024), generate Chi-square
(asymmetric) population of size N=1000 units with variables x and y through the following
model:

Y = 10.6 +
√

(1 –ρ2
xy) Y∗ +ρxy

(Sy

Sx

)
X∗

X = 6.2 + X∗

where x∗i ∼ χ2
(11) and y∗i ∼ χ2

(12).
(ii). Draw several samples of sizes n = 15, 30, 60, 120, 240, 480 from the above generated populations

and calculate the necessary statistics.
(iii). Consider 20,000 iterations and tabulate MSE of different estimators using (5.1) for above se-

lected samples for varying values of ρxy=0.1, 0.3, 0.5, 0.7, 0.9 and smoothing constant λ2 =
0.15, 0.55, 0.95 at fixed value of λ1 = 0.1.

MSE(t) =
1

20,000

20,000

∑
i=1

(ti – Ȳ)2 (5.1)

where t = tr , tbg, ts, tmr , tmbg, tms .
(iv). Report results by MSE in Tables 1-2 for normal and Chi-square (χ2) populations, respectively.

From the results reported in Tables 1-2, it is noticed that the MSE of the conventional and memory-
type estimators boils down as the amounts of ρxy vary from 0.1 to 0.9. For instance, from the results
of Table 1, at n = 15, the MSE of the suggested estimator tms is 0.072 and 0.014 for ρxy = 0.1 and
ρxy = 0.9, respectively. Also, from the results of Table 2, at n = 15, the MSE of the suggested estimator
tms is 0.048 and 0.009 for ρxy = 0.1 and ρxy = 0.9, respectively.

The conventional and memory-type estimators’ MSE boils down as the sample size increases for
every value of correlation coefficient. For example, from the results of Table 1, at fixed ρxy = 0.1 and
λ2 = 0.55, the MSE of the proposed estimator tms is 0.105 and 0.004 for n = 15 and n = 480, respectively.
Also, from the results of Table 2, at fixed ρxy = 0.1 and λ2 = 0.55, the MSE of the proposed estimator
tms is 0.071 and 0.002 for n = 15 and n = 480, respectively.

From the results of Tables 1-2, the MSE of the memory-type estimators increases for varying
value of smoothing constant λ2 = 0.15 to 0.95 at fixed value of λ1 = 0.1. Here, the value of λ1 is
fixed because the parameter λ2 directly governs the degree of smoothing in the short-term moving
average (Et), which in turn significantly influences the responsiveness of the HEWMA statistic to

Braz. J. Biom., v.43, e-43791, 2025. 7



Kumar et al.

recent data variations. Therefore, varying λ2 allows us to assess the estimator’s sensitivity to short-
term memory, which is critical in dynamic environments. The parameter λ1, on the other hand,
controls the overall memory depth (HEt) and is held fixed to isolate the effects of λ2 for clearer
interpretation of the simulation outcomes.

Table 1. MSE of conventional and memory-type estimators for normal population whenλ1 = 0.1 andλ2 = (0.15, 0.55, 0.95)

λ2 = 0.15 λ2 = 0.55 λ2 = 0.95

ρxy n tr tbg ts tmr tmbg tms tmr tmbg tms tmr tmbg tms

0.1 15 8.734 4.025 2.217 0.280 0.129 0.072 0.412 0.190 0.105 0.455 0.210 0.116
30 4.291 2.098 1.161 0.138 0.067 0.037 0.202 0.099 0.055 0.224 0.109 0.061
60 2.128 1.071 0.594 0.068 0.034 0.019 0.100 0.050 0.028 0.111 0.056 0.031

120 1.060 0.541 0.300 0.034 0.017 0.010 0.050 0.025 0.014 0.055 0.028 0.016
240 0.528 0.272 0.151 0.017 0.009 0.005 0.025 0.013 0.007 0.028 0.014 0.008
480 0.264 0.136 0.076 0.008 0.004 0.002 0.012 0.006 0.004 0.014 0.007 0.004

0.3 15 6.824 3.807 2.089 0.219 0.122 0.068 0.322 0.179 0.1 0.356 0.198 0.110
30 3.346 1.979 1.093 0.107 0.063 0.035 0.158 0.093 0.052 0.174 0.103 0.057
60 1.658 1.008 0.559 0.053 0.032 0.018 0.078 0.048 0.026 0.086 0.053 0.029

120 0.825 0.509 0.282 0.026 0.016 0.009 0.039 0.024 0.013 0.043 0.027 0.015
240 0.411 0.256 0.142 0.013 0.008 0.005 0.019 0.012 0.007 0.021 0.013 0.007
480 0.206 0.128 0.071 0.007 0.004 0.002 0.010 0.006 0.003 0.011 0.007 0.004

0.5 15 5.086 3.167 1.729 0.163 0.102 0.056 0.240 0.149 0.083 0.265 0.165 0.092
30 2.492 1.642 0.905 0.080 0.053 0.029 0.117 0.077 0.043 0.130 0.086 0.048
60 1.235 0.836 0.462 0.040 0.027 0.015 0.058 0.039 0.022 0.064 0.044 0.024

120 0.614 0.421 0.234 0.020 0.014 0.008 0.029 0.020 0.011 0.032 0.022 0.012
240 0.306 0.212 0.117 0.010 0.007 0.004 0.014 0.010 0.006 0.016 0.011 0.006
480 0.153 0.106 0.059 0.005 0.003 0.002 0.007 0.005 0.003 0.008 0.006 0.003

0.7 15 3.417 2.150 1.165 0.110 0.069 0.038 0.161 0.101 0.056 0.178 0.112 0.062
30 1.673 1.114 0.612 0.054 0.036 0.020 0.079 0.053 0.029 0.087 0.058 0.032
60 0.829 0.567 0.313 0.027 0.018 0.010 0.039 0.027 0.015 0.043 0.030 0.016

120 0.412 0.286 0.158 0.013 0.009 0.005 0.019 0.013 0.007 0.021 0.015 0.008
240 0.206 0.143 0.080 0.007 0.005 0.003 0.010 0.007 0.004 0.011 0.007 0.004
480 0.103 0.072 0.040 0.003 0.002 0.001 0.005 0.003 0.002 0.005 0.004 0.002

0.9 15 1.800 0.791 0.415 0.058 0.025 0.014 0.085 0.037 0.021 0.094 0.041 0.023
30 0.879 0.411 0.222 0.028 0.013 0.007 0.041 0.019 0.011 0.046 0.021 0.012
60 0.435 0.209 0.115 0.014 0.007 0.004 0.021 0.010 0.005 0.023 0.011 0.006

120 0.217 0.105 0.058 0.007 0.003 0.002 0.010 0.005 0.003 0.011 0.005 0.003
240 0.108 0.053 0.029 0.003 0.002 0.001 0.005 0.002 0.001 0.006 0.003 0.002
480 0.054 0.027 0.015 0.002 0.001 0.000 0.003 0.001 0.001 0.003 0.001 0.001

Moreover, from the results of Tables 1-2, the proposed improved memory-type log estimator
tms dominate the traditional ratio estimator tr , conventional log estimator tbg, improved log estimator
ts, memory-type ratio estimator tmr , and memory-type log estimator tmbg for varying correlation
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coefficients, sample sizes, and smoothing constants.

Table 2. MSE of conventional and memory-type estimators for Chi-square population when λ1 = 0.1 and λ2 =
(0.15, 0.55, 0.95)

λ2 = 0.15 λ2 = 0.55 λ2 = 0.95

ρxy n tr tbg ts tmr tmbg tms tmr tmbg tms tmr tmbg tms

0.1 15 4.030 2.702 1.495 0.129 0.087 0.048 0.190 0.127 0.071 0.210 0.141 0.078
30 2.015 1.402 0.778 0.065 0.045 0.025 0.095 0.066 0.037 0.105 0.073 0.041
60 1.007 0.714 0.396 0.032 0.023 0.013 0.047 0.034 0.019 0.052 0.037 0.021

120 0.503 0.360 0.200 0.016 0.012 0.006 0.024 0.017 0.009 0.026 0.019 0.010
240 0.252 0.181 0.100 0.008 0.006 0.003 0.012 0.009 0.005 0.013 0.009 0.005
480 0.126 0.091 0.050 0.004 0.003 0.002 0.006 0.004 0.002 0.007 0.005 0.003

0.3 15 3.517 2.483 1.373 0.113 0.080 0.044 0.166 0.117 0.065 0.183 0.129 0.072
30 1.758 1.289 0.715 0.056 0.041 0.023 0.083 0.061 0.034 0.092 0.067 0.037
60 0.878 0.656 0.364 0.028 0.021 0.012 0.041 0.031 0.017 0.046 0.034 0.019

120 0.439 0.331 0.184 0.014 0.011 0.006 0.021 0.016 0.009 0.023 0.017 0.010
240 0.220 0.166 0.092 0.007 0.005 0.003 0.010 0.008 0.004 0.011 0.009 0.005
480 0.110 0.083 0.046 0.004 0.003 0.001 0.005 0.004 0.002 0.006 0.004 0.002

0.5 15 2.802 2.047 1.131 0.090 0.066 0.036 0.132 0.096 0.054 0.146 0.107 0.059
30 1.400 1.062 0.589 0.045 0.034 0.019 0.066 0.050 0.028 0.073 0.055 0.031
60 0.699 0.541 0.300 0.022 0.017 0.010 0.033 0.025 0.014 0.036 0.028 0.016

120 0.350 0.273 0.151 0.011 0.009 0.005 0.016 0.013 0.007 0.018 0.014 0.008
240 0.175 0.137 0.076 0.006 0.004 0.002 0.008 0.006 0.004 0.009 0.007 0.004
480 0.088 0.069 0.038 0.003 0.002 0.001 0.004 0.003 0.002 0.005 0.004 0.002

0.7 15 1.895 1.392 0.767 0.061 0.045 0.025 0.089 0.066 0.036 0.099 0.073 0.040
30 0.947 0.722 0.400 0.030 0.023 0.013 0.045 0.034 0.019 0.049 0.038 0.021
60 0.473 0.368 0.204 0.015 0.012 0.007 0.022 0.017 0.010 0.025 0.019 0.011

120 0.236 0.185 0.103 0.008 0.006 0.003 0.011 0.009 0.005 0.012 0.010 0.005
240 0.118 0.093 0.052 0.004 0.003 0.002 0.006 0.004 0.002 0.006 0.005 0.003
480 0.059 0.047 0.026 0.002 0.001 0.001 0.003 0.002 0.001 0.003 0.002 0.001

0.9 15 0.793 0.519 0.283 0.025 0.017 0.009 0.037 0.024 0.014 0.041 0.027 0.015
30 0.396 0.269 0.148 0.013 0.009 0.005 0.019 0.013 0.007 0.021 0.014 0.008
60 0.198 0.137 0.076 0.006 0.004 0.002 0.009 0.006 0.004 0.010 0.007 0.004

120 0.099 0.069 0.038 0.003 0.002 0.001 0.005 0.003 0.002 0.005 0.004 0.002
240 0.050 0.035 0.019 0.002 0.001 0.001 0.002 0.002 0.001 0.003 0.002 0.001
480 0.025 0.017 0.010 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.001

5.2 Real data application
In this section, an illustration of the proposed estimators is provided utilizing two real popula-

tions outlined below:
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Population 1: Singh (2003), pages 1116-1118 is the source of this population. The data is con-
sisting of the fish caught by marine recreational fishermen categorized by species group and year
along with the Atlantic and Gulf coasts in the time period 1992 to 1995. In this population, “the
amount of fish caught in 1995" denotes as the study variable, whereas “the amount of fish caught in
1994" denotes as an auxiliary variable. The density representing the auxiliary and study variables of
this population are shown in Figure 1 and Figure 2, respectively. The characteristics of this popu-
lation are described as: N = 69, n = 30, X̄ = 4954.435, Ȳ = 4514.899, S2

x = 49829270, S2
y = 37199578,

and ρxy = 0.9601.
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Figure 1. Density plot of study variable for population 1.
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Figure 2. Density plot of auxiliary variable for population 1.
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Population 2: The data is taken from Kadilar and Cingi (2003) which is consisting of the
amount of apple production (taken as variable y) and number of apple trees (taken as variable x) in
106 villages of Marmara region in Turkey during the year 1999. The density plots of the study and
auxiliary variables are provided in Figure 3 and Figure 4, respectively. The required parameters to
compute the characteristics of different estimators are given as follows: N = 106, X̄ = 24375.59, Ȳ =
1536.77, Sx = 49189.08, Sy = 6425.08 and ρ = 0.81.
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Figure 3. Density plot of study variable for population 2.
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Figure 4. Density plot of auxiliary variable for population 2.

From the findings of Table 3, it can be observed that the MSE and RE of the proposed efficient
memory-type log estimator are lesser and greater than the MSE and RE of the conventional ra-
tio estimator tr , log estimator tbg, improved log estimator ts, memory-type ratio estimator tmr , and
memory-type log estimator tmbg in both the populations. Moreover, it is also noticed that the MSE
and RE of the memory-type estimators decrease and increase as the value of smoothing parameter
λ2 increases in both the populations. For instance, at λ2 = 0.1, the MSE of the proposed estimator
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tms is 1665.36, while, at λ2 = 0.9, the MSE of estimator tms is 2442.35.

Table 3. MSE and RE of the traditional and memory-type estimators for fixed value of λ1 = 0.05 and varying values of
λ2 = (0.1,0.3,0.5,0.7,0.9)

Population 1 Population 2
λ2 Estimators MSE RE MSE RE

tr 108072.60 11.47 735811.50 2.24
tbg 96976.81 12.78 552728.00 2.98

ts 69053.33 17.95 415661.20 3.97

0.1 tmr 1865.83 664.57 12703.53 129.98
tmbg 1674.27 740.61 9542.65 173.04

tms 1665.36 744.57 9489.04 174.01

0.3 tmr 2430.48 510.18 16547.93 99.78
tmbg 2180.94 568.55 12430.50 132.84

tms 2165.83 572.52 12339.69 133.81

0.5 tmr 2595.15 477.80 17669.06 93.45
tmbg 2328.70 532.47 13272.67 124.41

tms 2311.47 536.44 13169.18 125.38

0.7 tmr 2681.65 462.39 18258.02 90.44
tmbg 2406.32 515.30 13715.09 120.39

tms 2387.93 519.27 13604.62 121.37

0.9 tmr 2743.25 452.01 18677.44 88.40
tmbg 2461.60 503.73 14030.15 117.69

tms 2442.35 507.70 13914.56 118.67

6. Conclusions
This work presents an effective memory-type log estimator utilising SRS based on the HEWMA

approach. To the first order approximation, the MSE of the suggested estimator is produced. By
contrasting the MSEs of the suggested and current conventional and memory-type estimators, the
efficiency conditions were determined. We have shown the effectiveness and efficiency of the sug-
gested estimator in a number of cases thorough testing and analysis, demonstrating its improved
performance over current estimators. The suggested estimators are appropriate for real-world sit-
uations where memory-type estimation is crucial because they strike a compromise between com-
putational cost and accuracy. In addition, the conclusions of the paper offer valuable perspectives on
the fundamental techniques of log estimation and establish a foundation for further investigation in
this field.
The suggested estimator has potential applications in finance, healthcare, economics, and environ-
mental research, among other fields. For instance, in finance, it may help with more effective
assessment of asset returns or market indexes, resulting in improved investment decision-making.
A precise population mean estimate has the potential to improve epidemiological research in the
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healthcare industry, which might result in improved public health treatments and policies. Addi-
tionally, the suggested estimator may be applied in environmental sciences to estimate the population
mean of ecological indicators or pollutant levels, supporting environmental management and mon-
itoring procedures. It is thus recommended that survey practitioners use the suggested population
mean estimation approach to their practical issues.
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Appendix A
This section consider the proof of Zt and Qt as an unbiased estimators of Ȳ and X̄.
We consider the recursive definitions of the HEWMA statistics for the study and auxiliary vari-

ables:

Ety = λ2ȳt + (1 –λ2)Ety–1, Ety0 = 0 (A.1)

Zt = λ1Ety + (1 –λ1)Zt–1, Z0 = 0 (A.2)

Etx = λ2x̄t + (1 –λ2)Etx–1, Etx0 = 0 (A.3)
Qt = λ1Etx + (1 –λ1)Qt–1, Q0 = 0 (A.4)

Taking expectation on both sides of (A.1), we get

E[Ety] = λ2E[ȳt] + (1 –λ2)E[Ety–1]

Since E[ȳt] = Ȳ, we get

E[Ety] = λ2Ȳ + (1 –λ2)E[Ety–1]

Solving this recurrence with Ety0 = 0, we obtain

E[Ety] = Ȳ (1 – (1 –λ2)t)

As t → ∞, (1 –λ2)t → 0, so

lim
t→∞

E[Ety] = Ȳ

Taking expectation on both sides of (A.2), we get

E[Zt] = λ1E[Ety] + (1 –λ1)E[Zt–1]

Substitute E[Ety] = Ȳ (1 – (1 –λ2)t), then solve this recurrence with Z0 = 0, to get

E[Zt] = Ȳ (1 – (1 –λ1)t)

Thus, limt→∞E[Zt] = Ȳ, i.e., Zt is asymptotically unbiased for Ȳ.
By symmetry, the same steps hold for the auxiliary variable as

E[Qt] = X̄ (1 – (1 –λ1)t) ⇒ lim
t→∞

E[Qt] = X̄

Hence, the HEWMA-based estimators Zt and Qt are asymptotically unbiased estimators of the
population means Ȳ and X̄, respectively:

lim
t→∞

E[Zt] = Ȳ, lim
t→∞

E[Qt] = X̄.
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