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Abstract

High-dimensional variable selection in time-to-event analysis is a critical area in biostatistics, especially in
the context of complex diseases like lung adenocarcinoma (LUAD). LUAD, the most common subtype of
lung cancer, presents unique diagnostic and prognostic challenges due to its molecular and genetic diver-
sity. This study introduces an integrated framework for high-dimensional survival analysis, combining
feature selection, advanced survival modeling, and robust missing data handling techniques. We devel-
oped the afthd R package, designed specifically for Bayesian survival analysis using the Accelerated Failure
Time (AFT) model. This package facilitates efficient variable selection in high-dimensional settings, em-
ploying regularized methods such as LASSO and Elastic Net, as well as Bayesian approaches for model
stability. An accompanying Shiny web application provides an accessible platform for non-programmers,
allowing researchers to perform high-dimensional analysis and view results interactively. Using a LUAD
dataset from The Cancer Genome Atlas (TCGA), our results identify key biomarkers associated with
patient survival, highlighting the practical utility of this framework in LUAD prognosis. This integrated
approach lays the groundwork for more precise prognostic modeling, with potential extensions to other
cancers and high-dimensional biomedical datasets.

Keywords: Bayesian inference; Biomarker discovery; High-dimensional survival analysis; Lung adeno-
carcinoma; Prognostic modeling

1. Introduction

Lung adenocarcinoma (LUAD), the most prevalent subtype of lung cancer, presents significant
diagnostic and prognostic challenges due to its extensive genetic, epigenetic, and molecular hetero-
geneity. Early diagnosis and precise prognosis are essential to managing LUAD effectively, given its
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high mortality rate and the potential for improved outcomes with timely, targeted treatment Cho
et al, 2018 Advancements in feature selection algorithms have recently made it possible to identify
crucial biomarkers for cancer subtyping, allowing for better differentiation between cancer types
and normal tissues with high accuracy Abdelwahab et al,,2022; Shin et al,, 2019, Qiu etal., for exam-
ple, demonstrated that integrating multi-omics data, such as gene expression and DNA methylation,
significantly increased LUAD prediction accuracy, highlighting the importance of feature selection
in biomarker discovery and emphasizing multi-dimensional insights Qiu e al,, 2022,

High-dimensional data, such as those from genomic and transcriptomic profiles, present unique
analytical challenges. These datasets typically include thousands of features, often exceeding the
number of patient samples, complicating variable selection and increasing the risk of overfitting in
predictive models. Additionally, high-dimensional datasets are prone to missing data, which can
introduce bias and reduce the reliability of survival estimates. To address these issues, regulariza-
tion methods like LASSO (Least Absolute Shrinkage and Selection Operator) and Elastic Net have
been developed to reduce dimensionality while retaining critical predictors, and multiple imputation
techniques provide robust strategies for managing missing values, helping to ensure the integrity of
the analysis Gabrio ef al, 2019.

To further advance high-dimensional survival analysis, we introduce the afthd R package, a
new analytical tool designed to simultaneously address feature selection and missing data handling
in Bayesian survival models. Built around the Accelerated Failure Time (AFT) model, afthd in-
corporates LASSO, Elastic Net, and Bayesian inference via Markov Chain Monte Carlo (MCMC)
simulations to support efficient variable selection. Moreover, it includes advanced imputation meth-
ods to handle missing values, enabling more accurate, interpretable models even when faced with
incomplete data Wang et al,,2022; Suantari et al,,2023; Syed et al,, 2017, R packages, including ‘ran-
domForestSRC’ and ‘survival,” support these analyses and offer visualization tools such as Kaplan-
Meier plots, which are essential for interpreting and communicating survival outcomes Jiao ef al,
2019; Fox & Carvalho, [2012, Additionally, integrating pathway enrichment analyses within sur-
vival models further enhances the interpretability of results by linking survival outcomes to relevant
biological pathways.

Through this integrated framework, we establish a robust approach for LUAD prognosis that
combines the strengths of feature selection, survival analysis, and data integrity techniques, laying
the groundwork for clinically applicable models to improve predictive accuracy and patient out-
comes. An additional contribution of this study is a user-friendly Shiny web application that broad-
ens access to high-dimensional survival analysis, allowing researchers, including non-programmers,
to analyze high-dimensional datasets interactively. Users can upload their data, select feature selec-
tion methods, and explore analysis results in real time, facilitating broader use of these techniques
in biomedical research without requiring extensive coding knowledge.

To demonstrate the utility of this framework, we apply it to a publicly available LUAD dataset
from The Cancer Genome Atlas (TCGA). By combining feature selection, robust missing data
imputation, and survival modeling techniques, this study identifies and validates key prognostic
biomarkers relevant to patient outcomes in LUAD. This integrated approach not only enhances
precision in survival modeling but also establishes a scalable framework that could be extended to
other high-dimensional datasets in oncology and complex disease research.

2. Data Methodology

To ensure that the framework developed in this study is applicable to real-world settings, we used
a publicly available gene expression dataset for lung adenocarcinoma from TCGA. This extensive
dataset, which includes protein expression values for 572 patients, provides a rich foundation for
high-dimensional analysis and can be accessed at https://portal.gdc.cancer.gov/. Each patient in
the dataset has information on survival time and status, either as ‘censored’ (if the outcome was
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unknown) or ‘observed’ (if the event occurred). In our sample, 361 patients had censored data, while
211 experienced the event. To prepare the data, we removed genes with more than 30% missing
values to ensure quality and reduce computational demands. This resulted in a focused set of 27,497
genes, each with complete data, ready for analysis. While some potentially relevant genes may have
been excluded, our focus here is on developing and evaluating robust methods rather than specific
clinical findings. Missing values for remaining genes were handled through mean imputation, where
each missing entry was filled with the average value for that gene. This ensured a complete dataset
for subsequent statistical analysis. The analysis then proceeded in three steps: first, we applied the
Least Absolute Shrinkage and Selection Operator (LASSO), a technique that simplifies the model by
focusing only on genes most closely related to survival. This narrowed down the 27,497 genes to
33 key predictors. Next, we used an additional selection technique that further reduced this number
to 16 genes. Finally, we applied the AFT model to identify statistically significant genes, which led
to four specific protein expressions—CRNDE, IGFBP1, LDLRAD3, and RPS6KL1—as the most
relevant for understanding survival outcomes in lung adenocarcinoma. All analyses were conducted
using R software, leveraging packages like glmnet for LASSO, afthd for Bayesian AFT modeling,
and rstpm?2 for additional survival modeling techniques. This approach not only shows the practical
utility of our framework but also highlights its potential in high-dimensional biomarker analysis,
paving the way for further research into survival-related biomarkers and potential treatment targets
in lung adenocarcinoma.

Survival analysis becomes especially challenging when dealing with high-dimensional data,
where the number of variables (such as genes) greatly exceeds the number of observed events. Tradi-
tional models often struggle with overfitting, where they fit random noise rather than true patterns,
making it hard to identify key factors. To handle this, techniques like LASSO help simplify the
model by reducing the influence of less relevant variables, focusing only on the most meaningful
predictors for survival. However, LASSO has limitations when variables are highly correlated, as
it may select only one from a related group, potentially missing broader patterns. An alternative,
called Elastic Net, combines the strengths of LASSO with another method to allow groups of related
variables to be selected together, which is particularly valuable in genomic studies where groups of
genes may collectively impact survival. Bayesian approaches add another layer of flexibility by al-
lowing researchers to incorporate prior knowledge about certain variables. In high-dimensional
contexts, Bayesian methods can use this prior knowledge to improve stability and reliability, even
with fewer samples. Missing data is another common challenge in high-dimensional survival anal-
ysis. Ignoring missing data can lead to biased outcomes, but complete case analysis (using only cases
with no missing data) often loses valuable information. Multiple imputation methods fill in missing
values by creating several plausible datasets and combining the results, making it a more robust ap-
proach. Newer methods, like penalized imputation and machine learning-based imputation (e.g.,
using Random Forests), have proven effective in filling in missing data, providing a more reliable
analysis.

A major strength of this study is the systematic evaluation of these methods using simulations that
represent real-world, high-dimensional survival data challenges. These simulations confirmed that
while LASSO effectively narrows down predictors, Elastic Net and Bayesian models offer superior
performance when variables are correlated. Additionally, machine learning-based imputation meth-
ods outperformed traditional approaches, especially in datasets with high rates of missing data. This
combination of penalization techniques, Bayesian approaches, and advanced imputation methods
creates a powerful framework for analyzing high-dimensional time-to-event data. These methods
improve both variable selection and model interpretation, offering new possibilities for analyzing
complex survival data with high reliability, paving the way for future research integrating these
methods with machine learning for even greater accuracy and insight.

Braz. |. Biom., v.43, e-43794, 2025. 3



Bhattacharjee er al.

3. Results

High-dimensional gene network analysis has become indispensable for unraveling complex gene
interactions and their roles in biological processes. These networks are essential for regulating var-
ious biological functions, and disruptions can lead to diseases. Weighted Gene Co-expression Net-
work Analysis (WGCNA) is widely used to identify gene modules associated with specific traits or
diseases, constructing networks based on correlations in gene expression data to reveal clusters of
genes with similar expression patterns. For instance, Zhang et al. (2018) leveraged WGCNA to
identify prognosis-related gene modules in acute myeloid leukemia, underscoring its effectiveness
in uncovering functional gene relationships Bhattacharjee er al,,2018|

Data visualization is critical in interpreting high-dimensional data, such as gene network anal-
yses. R offers a versatile ecosystem of tools, including ggplot2 for flexible visualizations like scatter
plots and heatmaps and plotly for interactivity, which enables users to dynamically explore data by
hovering, zooming, and filtering Wickham, 2016; Sievert, {2020, The igraph package is also ben-
eficial for visualizing complex gene networks, where nodes represent genes and edges represent
co-expression relationships, aiding in identifying key hub genes in biological pathways Csardi &
Nepusz, 2006, Additional packages, such as ComplexHeatmap and ggraph, extend visualization ca-
pabilities, enabling researchers to interpret high-dimensional data more comprehensively Gu et al,
2016} Pedersen, 2020l

High-dimensional time-to-event data analysis has increasingly become a focal point in apply-
ing machine learning techniques within the R programming environment, which provides a robust
platform for handling statistical and graphical challenges. The complexity of high-dimensional data
necessitates advanced algorithms that go beyond traditional models like the Cox proportional haz-
ards model, which can be limited by linear assumptions and variable selection constraints Wang &
Li, 2017; Wang et al, 2019l Machine learning approaches, such as Random Survival Forests (RSF)
and Support Vector Machines (SVM), offer enhanced performance by leveraging non-parametric
methods that handle censored data and accommodate complex interactions among variables Wang
& Li,[2017; Wang et al,, 2019 For example, RSF has proven effective in identifying significant pre-
dictors of survival outcomes across various medical contexts. Recent advancements in deep learning
further enhance survival analysis by capturing intricate relationships in high-dimensional genomic
data, thereby improving prognostic accuracy Lin ef al, 2021, Feature selection techniques, such
as LASSO and recursive feature elimination, play a vital role in refining these models by reduc-
ing dimensionality while retaining essential predictors Fanizzi ef al,[2023| R’s extensive package
library, including survival, randomForestSRC, and caret, makes implementing these advanced ma-
chine learning techniques accessible for high-dimensional survival analysis Wang er al,, 2019,

High-dimensional variable selection remains critical in survival analysis, especially when work-
ing with datasets containing numerous predictors. Penalization techniques, notably LASSO and its
adaptive variants, have shown promise in high-dimensional settings by simplifying models while
preserving interpretability. Fan and Li (2004) introduced methodologies that leverage LASSO
within Cox’s model for efficient variable selection, validated by subsequent studies highlighting
its utility in survival analysis Fan & Li, [2002; Benner er al,, 2010l Bayesian approaches add robust-
ness by incorporating prior knowledge, particularly valuable in sparse data contexts Fan er al, 2010,
Applications of LASSO across different studies, such as those by Li et al. (2020) and Kaneko et al.
(2015), underscore its versatility and practical relevance in real-world, large-scale datasets Li et al,
2022; Kaneko et al,,|2015|

In summary, integrating gene network analysis, advanced visualization techniques, and ma-
chine learning for high-dimensional time-to-event data provides a comprehensive framework for
understanding complex biological data. Combining machine learning with traditional survival anal-
ysis methods improves predictive models, enhancing clinical decision-making and patient outcomes.
Continued advancements in computational methods, high-throughput data generation, and sophis-
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ticated visualization tools promise to deepen insights into molecular mechanisms underlying health
and disease.

4. Data Visualizations

In Random Survival Forests (RSF), Variable Importance (VIMP) quantifies the impact of each
predictor on model predictions using out-of-bag (OOB) data, providing an unbiased estimate of
prediction error. By permuting predictor values in the OOB data and recalculating the error, the
model assesses the influence of each variable. A positive VIMP indicates a significant predictor, while
anegative VIMP suggests that the variable contributes noise. Figureshows the variable importance
for key gene expressions in a lung cancer dataset, analyzed using the randomForestSRC package,
with detailed importance values presented in Table |1} Genes such as IGFBP1, CRNDE, RPS6KLI1,
and LDLRAD?3 exhibit notable influence on the model.

Table 1. Variable Importance from the Random Survival Forest model

Gene Symbol  Importance  Relative Importance

IGFBP1 0.0823 1.0000
CRNDE 0.0693 0.8413
RPS6KL1 0.0588 0.7143
LDLRAD3 0.0495 0.6016
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Figure 1. Variable Importance Plot from Random Survival Forest Model.

To further explore gene expression patterns and survival outcomes, additional visualizations were
created. Principal Component Analysis (PCA) in Figure 2| captures most data variability, revealing
clustering by survival status, with ellipses denoting 95% confidence intervals.

Figure illustrates t-SNE, a non-linear dimensionality reduction technique that maintains local
data structure, clustering similar points with color-coded event status for easy identification.
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Figure 2. PCA biplot showing separation by survival status with 95% confidence ellipses.
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Figure 3. t-SNE visualization of lung cancer data based on event status.
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Correlation analysis provides insight into relationships among numerical variables. Figures
and display a heatmap and circular plot, respectively, summarizing correlations among gene ex-
pressions and aiding in pattern recognition.
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Figure 4. Heatmap showing correlations among variables.
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Figure 5. Correlation plot of gene expressions.

The parallel coordinates plot in Figure |§| visualizes multivariate relationships across gene ex-
pressions, distinguishing censored and event statuses. Scaling variables between 0 and 1 enhances

comparability, helping identify clusters, correlations, and outliers.
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Parallel Coordinates Plot for lung cancer dataset
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Figure 6. Parallel Coordinates Plot for lung cancer dataset.

Together, these visualizations offer a comprehensive overview of the high-dimensional lung
cancer data, supporting exploratory data analysis and uncovering key insights into gene expression
patterns associated with survival outcomes.

The application of our framework to the LUAD dataset from TCGA yielded significant findings.
Following preprocessing and dimensionality reduction, we retained a focused set of 27,497 genes
with minimal missing values, ensuring robust and computationally efficient analysis. Missing values
for the remaining genes were addressed using mean imputation, maintaining data integrity without
sacrificing statistical power.

4.1 Feature Selection

Using LASSO, the initial pool of 27,497 genes was narrowed down to 33 key predictors asso-
ciated with survival outcomes. Further refinement through Elastic Net Vishwakarma er al, [2021b
and Bayesian variable selection techniques reduced this subset to 16 genes, highlighting those most
strongly correlated with survival in LUAD patients. This step-by-step selection process emphasized
the utility of regularized methods in managing high-dimensional data, preserving only the most
relevant variables for survival prediction.

4.2 Identification of Prognostic Biomarkers

The AFT model was applied to the final subset of genes, yielding four significant biomark-
ers—CRNDE, IGFBP1, LDLRAD3, and RPS6KL1—that demonstrated a strong association with
LUAD patient survival outcomes. These biomarkers provide valuable insights into potential thera-
peutic targets and markers for patient stratification, underscoring the framework’s ability to identify
clinically relevant variables in high-dimensional data.

4.3 Survival Analysis and Model Performance

The AFT model, supported by Bayesian inference, demonstrated robust predictive performance,
effectively modeling time-to-event data. Model performance metrics indicated that this approach
outperformed traditional Cox PH models Vishwakarma e al, 2022} particularly in handling LUAD’s
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high-dimensional dataset. R packages such as randomForestSRC and survival facilitated visualiza-
tion of survival outcomes, with Kaplan-Meier plots illustrating the survival probabilities associated
with each identified biomarker, enhancing interpretability for clinical application Jiao et al,[2019;
Fox & Carvalho, [2012|

4.4 Data Visualization and Interpretability

To complement the statistical analysis, data visualization techniques, including Principal Com-
ponent Analysis (PCA) and t-SNE, were employed to explore clustering by survival status. These
visualizations revealed clear separation between high- and low-risk groups, reinforcing the prog-
nostic relevance of the selected biomarkers. Additional visualization tools such as heatmaps and
correlation plots provided further insights into the relationships between gene expressions, aiding
in the identification of potential interactions that could inform future research.

4.5 Pathway Enrichment and Biological Relevance

Pathway enrichment analysis linked the identified biomarkers to critical biological pathways
involved in tumor progression and metastasis, further validating the clinical relevance of these find-
ings. Integrating pathway enrichment analysis within the survival models demonstrated enhanced
interpretability, associating survival outcomes with relevant biological mechanisms in LUAD. Over-
all, these results establish a robust foundation for using high-dimensional feature selection, survival
analysis, and data visualization techniques to improve LUAD prognosis. The framework’s successful
application to TCGA data demonstrates its practical value and sets the stage for further exploration
across diverse high-dimensional datasets in oncology and related fields.

5. Statistical Inference

In high-dimensional survival analysis, traditional inference methods often struggle with the
complexity posed by a vast number of predictors, known as the curse of dimensionality. Our
study utilized penalized regression techniques and Bayesian methods to provide reliable inference,
ensuring accurate estimation, hypothesis testing, and confidence interval construction for LUAD
prognostic biomarkers. Penalized Regression and Selective Inference LASSO and Elastic Net were
instrumental in handling high-dimensional data, reducing the gene pool to focus on the most sig-
nificant predictors for survival. Selective inference was applied to the LASSO-penalized model,
producing valid p-values and confidence intervals by conditioning on selected variables. This ap-
proach provided an interpretable framework to assess the relevance of each biomarker, avoiding the
bias introduced by traditional hypothesis testing in regularized models.

For instance, selective inference allowed us to identify CRNDE, IGFBP1, LDLRAD3, and
RPS6KL1 as statistically significant biomarkers associated with survival outcomes. By adjusting
for selection bias, these biomarkers demonstrated stable predictive power, providing clinicians with
reliable markers for potential risk stratification.

5.1 Bayesian Credible Intervals and Inference

The Bayesian framework in afthd allowed for the use of prior information, improving the sta-
bility and reliability of estimates in this high-dimensional context. Posterior distributions enabled
the construction of credible intervals, offering a probabilistic interpretation of biomarker signifi-
cance. For example, a 95% credible interval for each selected biomarker indicated the range within
which the true effect size lies with 95% probability, given the observed data and prior knowledge
Kelter, 2020, This Bayesian approach, particularly useful when dealing with smaller sample sizes
in high-dimensional settings, enhances the interpretability of findings by allowing more nuanced
probability-based conclusions.
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5.2 Handling Missing Data and Model Robustness

Missing data in high-dimensional survival analysis can lead to biased estimates and unreliable in-
ference, compromising the accuracy of survival predictions and model performance. By incorporat-
ing mean imputation within the afthd package’s functions, we minimized potential biases, ensuring
robust statistical inference for survival outcomes. The model demonstrated resilience against the in-
complete data typically encountered in genomic studies, enhancing the reliability of our prognostic
estimates for LUAD Gabrio et al,[2019; Vishwakarma et al,,2021a| Vishwakarma et al,,2023|

5.3 Interpretive Insights and Clinical Implications

The interpretive power of our framework is further augmented through visualizations, such as
Kaplan-Meier plots and pathway enrichment analyses, which link survival outcomes to underly-
ing biological mechanisms. These tools aid clinicians in visualizing patient stratification and under-
standing how each biomarker impacts survival, enhancing decision-making in LUAD management.
Additionally, Bayesian credible intervals and selective inference provide a framework to confidently
interpret significant biomarkers, ensuring that the findings are clinically meaningful and potentially
applicable to precision oncology.

In summary, our framework successfully integrates selective inference, Bayesian credible inter-
vals, and missing data imputation, enabling accurate, interpretable outcomes in high-dimensional
survival analysis. By addressing the complexities of high-dimensional inference, this study lays a
foundation for further investigations that incorporate advanced modeling and visualization tech-
niques, ultimately supporting the development of reliable, clinically applicable models for LUAD
and other cancers.

5.4 Interpretation of Outcomes

Interpreting results in high-dimensional models requires careful consideration due to the com-
plex relationships between predictors and outcomes. Penalization methods often shrink smaller
coeflicients toward zero, introducing potential bias that must be accounted for when interpreting
these estimates. Techniques like debiased LASSO and selective inference help address this issue,
offering more accurate estimates and ensuring valid inferential statements.

Bayesian methods add the advantage of a probabilistic interpretation, enabling statements such
as, “there is a 95% probability that the true value of the parameter lies within the credible interval.”
This differs from traditional confidence intervals in frequentist inference, which describe the behav-
ior of intervals over repeated sampling rather than providing a direct probability statement about
the parameter.

In summary, recent advances in high-dimensional inference enable reliable hypothesis testing,
valid confidence interval construction, and meaningful interpretation of model parameters, even
with a large number of predictors relative to observed events.

6. Shiny Application and R Package Overview

This study presents the afthd R package, a comprehensive tool for high-dimensional survival
analysis using Bayesian AFT models. Designed to address the challenges of high-dimensional data,
afthd integrates advanced feature selection methods, robust missing data handling, and survival
modeling capabilities. By incorporating regularization techniques such as LASSO and Elastic Net
alongside Bayesian inference through Markov Chain Monte Carlo (MCMC) simulations, afthd
provides a reliable, flexible framework tailored to high-dimensional survival data, especially relevant
in genomic and clinical research contexts.

Braz. |. Biom., v.43, e-43794, 2025. 11
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6.1 Key Capabilities of the afthd R Package

The afthd package includes various tools for high-dimensional survival analysis:

* Variable Selection: Utilizing LASSO, Elastic Net, and Bayesian variable selection methods,
afthd effectively reduces the feature space, identifying the most relevant biomarkers while con-
trolling for overfitting. This approach is particularly advantageous in genomic datasets, where
the number of predictors often exceeds the sample size.

* Missing Data Handling: Recognizing the prevalence of missing data in clinical datasets, afthd
incorporates multiple imputation methods to preserve data integrity and minimize potential
biases. This functionality ensures robust estimates in survival analysis, even when confronted
with incomplete data.

* Survival Modeling: Based on the AFT model, afthd provides a more flexible alternative to
the Cox Proportional Hazards (Cox PH) model, accommodating complex data structures and
allowing for more precise survival time predictions in high-dimensional settings. Bayesian in-
ference further enhances model stability by incorporating prior knowledge, yielding credible
intervals that offer interpretable probabilistic estimates.

In addition to these core capabilities, the afthd package supports a range of parametric distribu-
tions, including log-normal, Weibull, and log-logistic models, catering to diverse survival analysis
needs. With built-in diagnostic plots for MCMC convergence and posterior distributions, afthd
facilitates a thorough examination of model performance and stability.

6.2 Shiny Web Application: Enhancing Accessibility for Non-Programmers

To make high-dimensional survival analysis more accessible, we developed a Shiny web appli-
cation that interfaces with afthd. This app is designed to accommodate researchers, clinicians, and
analysts who may not have extensive programming knowledge, allowing them to perform com-
plex survival analyses through a user-friendly interface. The Shiny application can be accessed at
https://atanu.shinyapps.io/app2/.

Key features of the Shiny application include:

* Data Upload and Preprocessing: Users can upload high-dimensional datasets in CSV format
directly into the app. Once uploaded, data preprocessing options are provided to ensure data
quality before analysis.

* Interactive Feature Selection: The Shiny app offers interactive options for selecting variable
selection methods, such as LASSO or Elastic Net, enabling users to fine-tune the model for their
specific datasets.

* Survival Analysis and Visualization: With the click of a button, users can run AFT models and
visualize survival outcomes through Kaplan-Meier plots and other interactive graphics. Pathway
enrichment analysis is also integrated to help link survival outcomes to biological pathways,
further enhancing result interpretability.

* Real-Time Results and Interpretation: The Shiny app generates results in real-time, includ-
ing model coefhicients, p-values, and credible intervals, allowing users to easily interpret and
export their findings. Interactive visualizations support a more in-depth exploration of the re-
sults, aiding in understanding the relationships between predictors and survival outcomes.

By facilitating the functionalities of afthd, the Shiny application allows non-programmers to
perform high-dimensional survival analyses, visualize results, and explore prognostic markers with-
out needing to write code. This accessibility broadens the use of advanced survival analysis tech-
niques in clinical research, making it a practical tool for various users, from academic researchers to
healthcare practitioners.

12 Braz. |. Biom., v.43, e-43794, 2025.
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In summary, the afthd R package and Shiny app together offer a versatile, accessible solution for
high-dimensional survival analysis. By combining robust variable selection, missing data handling,
and survival modeling capabilities with an intuitive, user-friendly interface, this framework supports
meaningful, interpretable analyses applicable to LUAD and other complex diseases.

7. Discussion

This study presents a comprehensive analytical framework tailored for the prognostic analysis of
LUAD, the most prevalent subtype of lung cancer. Given lung cancer’s position as one of the leading
causes of cancer-related mortality worldwide, accurate prognosis and early diagnosis are essential to
improve patient outcomes. However, LUAD’s molecular and genetic heterogeneity complicates the
identification of reliable biomarkers, which are crucial for distinguishing it from other lung cancer
subtypes and for predicting survival outcomes. Our framework tackles this issue by combining
high-dimensional feature selection, survival modeling, and advanced imputation techniques, aiming
to make prognostic modeling more robust and clinically meaningful.

The contribution of this work extends to the development of the afthd R package, specifically
designed for high-dimensional survival data typical of LUAD and other cancers. This package pro-
vides a range of penalized and Bayesian feature selection methods that enable precise identification
of relevant biomarkers, despite the high-dimensional nature of genomic and transcriptomic data
associated with cancer research. By focusing on techniques like LASSO, Elastic Net, and Bayesian
methods, afthd reduces model complexity while retaining critical prognostic factors, thereby en-
hancing interpretability and clinical relevance.

Moreover, the user-friendly Shiny application developed in this study allows easy access to com-
plex survival analysis, making high-dimensional prognostic modeling accessible to a wider audience,
including clinicians and researchers without programming expertise. This application enables users
to conduct high-dimensional data analyses, apply multiple feature selection methods, and visualize
results interactively, thus bridging the gap between complex statistical modeling and practical, user-
centered analysis. We acknowledge that the afthd package and its shiny application are designed
exclusively for time-to-event data and are not applicable to other types of data, such as longitudinal
data. Additionally, we note that the posterior estimates in the multivariable case are currently limited
to scenarios involving up to five covariates due to computational constraints.

In the context of lung cancer, where early detection and precise prognosis remain challenges, our
study’s contribution lies in its adaptable framework that leverages robust variable selection, missing
data imputation, and advanced survival modeling. The integration of these methodologies helps
address the specific demands of LUAD research, enabling improved identification of prognostic
biomarkers and enhancing the potential for personalized treatment strategies. By developing tools
that facilitate the application of these methods in real-world clinical datasets, we hope to contribute
to more targeted, effective interventions for LUAD patients and potentially extend this framework
to other cancer types with similar analytical challenges.

8. Conclusion

This study introduces an integrated framework that leverages high-dimensional feature selec-
tion, robust survival modeling, and advanced missing data handling to improve the prognostic ac-
curacy of LUAD. By developing the afthd R package and a Shiny web application, we provide re-
searchers with powerful tools for high-dimensional survival analysis, enabling precise identification
of biomarkers essential for LUAD prognosis. The inclusion of LASSO, Elastic Net, and Bayesian
inference within afthd, along with robust imputation methods, addresses common challenges in
analyzing complex datasets, thereby enhancing both model interpretability and reliability.
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The application of this framework to the LUAD dataset from TCGA demonstrates its utility in
identifying key biomarkers linked to survival outcomes. These findings underscore the framework’s
potential for clinical applications, paving the way for personalized treatment strategies in LUAD
and contributing to the broader field of precision oncology. The Shiny app further democratizes
access to high-dimensional survival analysis, allowing a broader range of users, including non-
programmers, to interactively explore and analyze survival data.

Future research can build upon this work by extending the afthd framework to incorporate
additional machine learning techniques, such as deep learning, to capture non-linear relationships
and further enhance predictive accuracy. Additionally, expanding the framework’s applicability to
other cancers and complex diseases would validate its generalizability and adaptability. Integrating
pathway enrichment analysis within survival models and exploring multi-omics data integration
offer promising directions for deepening insights into disease mechanisms and improving clinical
decision-making. Through these ongoing advancements, the framework presented in this study
contributes to more accurate and interpretable prognostic modeling in LUAD and beyond.
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