STATISTICAL PROCESS CONTROL AS A TOOL TO CONTROL AND PREVENT MALARIA EPIDEMICS IN THE LEGAL AMAZON REGION
Main Article Content
Abstract
Malaria is still a fatal disease in many countries around the world. Establishing measures to control and prevent this disease has been a worldwide concern since 1950, when the World Health Organization launched a Malaria Eradication Plan. In Brazil, malaria was eliminated in much of the territory, but resisting in an area known as the Legal Amazon. That said, the main scope of this work is to develop statistical control charts that consider the temporal dependency structure in the data and are suitable for the current and future monitoring of malaria cases, in order to detect possible outbreaks or epidemics in states in the Legal Amazon region. The tools presented here could also collaborate in directing control actions and combating the spread of the disease. In particular, we intend to: (i) build a statistical model to predict the occurrence of cases of the disease, which considers the existence of a possible temporal dependency structure between the collected data; (ii) use the Statistical Process Control (SPC) techniques, notably the control charts, to monitor (separately for each form of the disease) cases of malaria of the types Plasmodium Vivax, Plasmodium Falciparum and Plasmodium Mista in the Amazon region; (iii) establish epidemic thresholds based on the obtained control charts. Considering data from 2013 to 2017, this study revealed, among others, that the generalized autoregressive and moving average models with Negative Binomial distribution (Negative Binomial GARMA models) were more efficient, fitting better, compared to Poisson GARMA models, due to the overdispersion existing in the analyzed data.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
AKAIKE,H. On entropy maximization principle. In: Krishnaiah, P.R. (Ed.), Applications of Statistics, North-Holland, 1977.
AKINWANDE,M.O.; DIKKO, H. G.; SAMSON, A. Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open Journal of Statistics, v.5, n.07, p.754, 2015.
ALBARRACIN,O. Y. E.; ALENCAR, A. P.; HO, L. L. Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model. Journal of Statistical Computation and Simulation, v.89, n.10, p.1819-1840, 2019.
ANDRADE, B. S. GARMA models, a new perspective using Bayesian methods and transformations. 103f. Tese de Doutorado em Estatística - Universidade Federal de São Carlos, São Carlos-SP, 2016
ANSCOMBE,F.J.Contribution to the discussion of H. Hotelling’s paper. Journal of the Royal Statistical Society: Series B (Statistical Methodology), v.15, p.229-230, 1953.
BELSLEY, D. A.; KUH, E.; WELSCH, R. E. Regression Diagnostics. New York: John Wiley & Sons, 1980.
BENJAMIN,M. A.; RIGBY, R.A.; STASINOPOULOS, D.M. Generalized autoregressive moving average models. Journal of the American Statistical Association, v.98, n.461, p.214-223, 2003.
BENNEYAN, J. C. Statistical quality control methods in infection control and hospital epidemiology - Part I: introduction and basic theory. Infection Control and Hospital Epidemiology,v.19, n.3, p.194-214, 1998.
BISRI,H.; SINGGIH, M. L. Improvement of Shewhart Control Chart for Autocorrelated Data in Continuous Production Process. In: 2018 4th International Conference on Science and Technology (ICST).IEEE, p.1-6, 2018.
BRAZ, R.M. Detecção precoce de epidemias de malária no Brasil: uma propostade automação. 122f. Dissertação (Mestrado em Saúde Pública) - Escola Nacionalde Saúde Pública, Rio de Janeiro- RJ, 2005.
BURNS,C. M.; BENNETT, C. J.; MYERS, C. T.; WARD, M. The use of cusum analysis in the early detection and management of hospital bed occupancy crises. Medical Journal of Australia, v.183, n.6, p.291-294, 2005.
CORDEIRO,G. M.; ANDRADE, M. G. Transformed generalized linear models. Journal of Statistical Planning and Inference, v.139, n.9, p.2970-2987, 2009.
CULLEN,J. R.; CHITPRAROP, U.; DOBERSTYN, E.B.; SOMBATWATTA-NANGKUL, K. An epidemiological early warning system for malaria control in northern Thailand. Bulletin of the World Health Organization, v.62, n.1, p.107-114, 1984.
CZADO,C.;GNEITING, T.; HELD, L. Predictive model assessment for count data. Biometrics, v.65, n.4, p.1254–1261, 2009.
DURBIN, J.; KOOPMAN, S. J. Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika,v.84, n.3, p.669–684, 1997.
FERREIRA,M. E. M. C. “Doenças tropicais”: o clima e a saúde coletiva. Alterações climáticas e a ocorrência de malária na área de influência do reservatório de Itaipu, PR. Terra Livre, v.1, n.20, p.179-192, 2015
GNEITING, T.;BALABDAOUI, F.; RAFTERY, A. E. Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), v.69, n.2, p.243–268, 2007.
HAWORTH, D. A. Regression control charts to manage software maintenance. Journal of Software Maintenance: Research and Practice, v.8, n.1, p.35-48, 1996.
JENSEN, W. A.; JONES-FARMER, L. A.; CHAMP, C. W.; WOODALL, W. H. Effects of parameter estimation on control chart properties: a literature review. Journal of Quality Technology, v.38, n.4, p.349-364, 2006.
LAPOUBLE, O. M. M.; SANTELLI, A.C. F.; MUNIZ-JUNQUEIRA, M.I. Situação epidemiológica da malária na região amazônica brasileira, 2003 a 2012. Revista Panamericana de Salud Pública, v.38, p.300–306, 2015.
LIBOSCHIK, T.; FOKIANOS, K.; FRIED, R. tscount: An R package for analysis of count time series following generalized linear models. Journal of Statistical Software, v.82, n.5, p.1–51, 2017.
LYRIO, B.C.; MONROY, N.A. J.; MOLINARES, F.A. F. Modelagem espaço-temporal da incidência de dengue na região da Grande Vitória (RGV) -ES. Revista Brasileira de Biometria, v.37, n.2, p.135-148, 2019.
MANDEL, B. J. The regression control chart. Journal of Quality Technology, v.1,n.1,p.1-9,1969.
MCCULLAGH,P.; NELDER, J. A. Generalized Linear Models. 2nd Edition, Chapman and Hall. London, UK, 1989.
MONTGOMERY D. C. Introduction to Statistical Quality Control. 8.ed., New York: John Wiley & Sons, 2019.
NOSKIEVICOVÁ, D. Statistical analysis of the blast furnace process output parameter using ARIMA control chart with proposed methodology of control limits setting. Metalurgija, v.48, n.4, p.281-284, 2009.
PAFIADACHE,C.; ZANINI, R.; SOUZA, A. M.; ROSA, L. C.; PERIPOLLI, A. Uma Aplicação de Gráficos de Controle Estatístico e Modelos de Previsão De Box-Jenkins para Monitoramento de Sistemas de Saúde no Rio Grande do Sul, Brasil. Revista ESPACIOS, v.36, n.17, p.6, 2015.
PARK, K.; JUNG, D.; KIM, J. M. Control charts based on randomized quantile residuals. Applied Stochastic Models in Business and Industry, v.36, n.4, p.716-729, 2020.
PIERCE,D. A.; SCHAFER, D. W. Residuals in generalized linear models. Journal of the American Statistical Association,v.81, n.396, p.977–986, 1986.
QI, X.; LI, Q.; ZHU, F. Modeling time series of count with excess zeros and ones based on INAR (1) model with zero-and-one inflated Poisson innovations. Journal of Computational and Applied Mathematics, v.346, p.572-590, 2019.
RCORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 2021.
SCHILLING, W. Analysis of the data of a public health organization by the control chart method. Journal of the American Statistical Association, v.39, n.227, p.311-324,1944.
SCHWARZ, G. Estimating the dimension of a model. The Annals of Statistics, v.6,n.2,p.461-464,1978.
SELLICK,J.A.The use of statistical process control charts in hospital epidemiology. Infection Control and Hospital Epidemiology, v.14, n.11, p.649-656,1993.
SHEPHARD, N.; PITT, M. K. Likelihood analysis of non-Gaussian measurement time series. Biometrika, v.84, n.3, p.653–667, 1997.
SHEWHART,W.A. Economic Control of Quality of Manufactured Product. London: Macmillanand Co Ltd,1931.
SKINNER, K. R.; MONTGOMERY, D. C.; RUNGER, G. C. Process monitoring for multiple count data using generalized linear model-based control charts. International Journal of Production Research, v.41, n.6, p.1167-1180, 2003.
TANTITHAMTHAVORN, C.; MCINTOSH, S.; HASSAN, A.E.; MATSUMOTO,K. An empirical comparison of model validation techniques for defect prediction models. IEEE Transactions on Software Engineering, v.43, n.1, p.1-18, 2016.
WALD, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large.Transactions of the American Mathematical Society,v.54,n.3,p.426–482,1943.
YANG,M. Statistical models for count time series with excess zeros. PhD thesis, University of Iowa, 2012.
ZANINI, R. R.; SOUZA, A. M.; JACOBI, L. F.; PERIPOLLI, A.; DAPPER, S.N.; SILVA, A.C. J. A utilização dos gráficos de controle para acompanhamento de processos de vigilância. Revista ESPACIOS, v.37, n.27, p.5, 2016.