STOCHASTIC MODELING OF VEHICLE INSURANCE CLAIMS: AN APPLICATION IN THE SOUTH OF MINAS GERAIS/BRAZIL

Main Article Content

Luiz Otávio de Oliveira PALA
https://orcid.org/0000-0002-9941-7951
Marcela de Marillac CARVALHO
Thelma SÁFADI
https://orcid.org/0000-0002-4918-300X

Abstract

Risk and exposure factors are important features to be considered, providing financial and actuarial information for the insurer. Pricing methods are
supported by the mutualism theory, ensuring a level of indemnity and expected cost, making possible to constitute monetary reserves. The aim of our paper is to model and analyze the distribution of vehicle insurance claims in the south of Minas Gerais/Brazil. The data represents policies with a claim occurrence in the year of 2018. Under the
Bayesian approach, we consider the Gamma and Log-normal distributions that allow asymmetric data modeling and they can be used in loss models. The Jeffreys’s prior class was applied considering the data of the first semester of 2018. The information level was updated to construct an informative prior to analyze the data of the second
semester. To compare models, we estimated the Bayes Factor and the logarithm of the marginal likelihood, that showed the Log-normal more likely. After selecting a model, we estimate metrics as the Conditional Tail Expectation (CTE) and the percentiles of the adjusted distribution to evaluate extreme costs. The results showed the applicability
of Bayesian inference to fit insurance data, allowing to insert prior knowledge as the portfolio experience and to use a wide class of probability distributions.

Article Details

How to Cite
PALA, L. O. de O., CARVALHO, M. de M., & SÁFADI, T. (2022). STOCHASTIC MODELING OF VEHICLE INSURANCE CLAIMS: AN APPLICATION IN THE SOUTH OF MINAS GERAIS/BRAZIL. Brazilian Journal of Biometrics, 40(3). https://doi.org/10.28951/bjb.v40i3.555
Section
Articles

References

AHMAD, Z. A.; MAHMOUDI, E. M.; HAMEDANI, G. G. A family of loss distributions with an application to the vehicle insurance loss data. Pakistan Journal of Statistics and Operation Research, v.15, n.3, p.731–744, 2019.

ALBA, H. Bayesian estimation of outstanding claim reserves. North American Actuarial Journal, v.6, n.4, p.1–20, 2002.

BRAZAUSKAS, V.; JONES, B.; PURI; M., ZITIKIS, R. Estimating conditional tail expectation with actuarial applications in view. Journal of Statistical Planning and Inference, Elsevier, v.138, n.11, p.3590–3604, 2008.

CASELLA, G.; BERGER, R. Inferˆencia Estatística. [S.l.]: Cengage Learning,2014.

CASELLA, G.; GEORGE, E. I. Explaining the gibbs sampler. The American Statistician, v.46, n.3, p.167–174, 1992

CHUN, S.; SHAPIRO, A.; URYASEV, S. Conditional value-at-risk and average value-at-risk: Estimation and asymptotics. Operations Research, v.60, n.4,p.739-756, 2012.

FRANCIS, J.; KIM, D. Modern Portfolio Theory: Foundations, Analysis, and New Developments. John Wiley & Sons, 2013.

GAMERMAN, D.; LOPES, H. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. [S.l.]: Chapman & Hall, 2006.

GAO, G. Bayesian Claims Reserving Methods in Non-life Insurance with Stan. Berlin: Springer, 2018.

GILENKO, E.; MIRONOVA, E. Modern claim frequency and claim severity models: An application to the Russian motor own damage insurance market. Cogent Economics & Finance, v.5, n.1311097, p.1–12, 2017.

GOFFARD, P.; LAUB, P. Approximate Bayesian Computations to fit and compare insurance loss models. Insurance: Mathematics and Economics, v. 100, p.350-371,2021.

GUILLEN, M.; PRIETO, F. Modelling losses and locating the tail with the pareto positive stable distribution. Insurance Mathematics & Economics, v.49, p.454–461,11 2011.

HABERMAN, S.; RENSHAW, A. Generalized linear models and actuarial science. Journal of the Royal Statistical Society, v.45, p.407–436, 1996.

HEIDELBERGER, P.; WELCH, P. Simulation run length control in the presence of an initial transient. Operations Research, v. 31, n.6, p.1109–1144, 1983.

HUANG, Y.; MENG, S. A bayesian nonparametric model and its application in insurance loss prediction. Insurance: Mathematics and Economics, v. 93, p.84 – 94,2020.

HUNT, A.; BLAKE, D. A Bayesian approach to modeling and projecting cohort effects. North American Actuarial Journal, p.1–20, 2020.

KLUGMAN, S.; PANJER, H.; WILLMOT, G. Loss Models. [S.l.]: John Wiley &Sons, 2012.

KODUVELY, H. M. Learning Bayesian Models with R. [S.l.]: Birmingham: Packt Publishing, 2015.

KORN, R.; KORN, E.; KROISANDT, G. Monte Carlo methods and models infinance and insurance. [S.l.]: CRC press, 2010.

LALLY, N.; HARTMAN, B. Estimating loss reserves using hierarchical Bayesian gaussian process regression with input warping. Insurance: Mathematics and Economics, v.82, p.124 – 140, 2018.

MAKOV, U. Principal applications of Bayesian methods in actuarial science. North American Actuarial Journal, v.5, n.4, p.53–57, 2001.

MAKOV, U. E.; SMITH, A.; LIU, Y.-H. Bayesian methods in actuarial science. Journal of the Royal Statistical Society, v.45, n.4, p. 503–515, 1996.

MARLIN, P. Fitting the log-normal distribution to loss data subject to multiple deductibles. The Journal of Risk and Insurance, v.51, n.4, p.687–701, 1984.

MEYERS, G. G. Estimating predictive distributions for loss reserve models. Variance, v.1, n.2, p.248–272, 2007.

NASCIMENTO, M.; FONSECA E SILVA, F.; S ́AFADI, T.; NASCIMENTO, A.;FERREIRA, R.; CRUZ, C. Abordagem bayesiana para avaliação da adaptabilidade e estabilidade de genótipos de alfafa. Pesquisa Agropecuária Brasileira, v.46, p.26– 32, 2011.

NECIR, A.; RASSOUL, A.; ZITIKIS, R. Estimating the conditional tail expectation in the case of heavy-tailed losses. Journal of Probability and Statistics,v.2010, 2010.

PALA, L.; CARVALHO, M.; GUIMAR ̃AES, P.; S ́AFADI, T. Vehicle claims in the south of Minas Gerais: An approach using classification models. Semina: Ciˆencias Exatas e Tecnológicas, v.41, n.1, p.79–86, 2020.

PERES, V.; MALDONADO, W.; CˆANDIDO, O. Seguros de automóvel no Brasil: Concentração e demanda de mercado. Revista Contabilidade e Finanças, v.30,n.81, p.396–408, 2019.

PLA-SANTAMARIA, D.; BRAVO, M. Portfolio optimization based on downside risk: a mean-semivariance efficient frontier from Dow Jones blue chips. Annals of Operations Research, v.205, n.1, p.189-201, 2013.

PLUMMER, M.; BEST N. COWLES, K.; VINES, K. Coda: Convergence diagnosis and output analysis for MCMC. R News, v.6, n.1, p.7–11, 2006.

PUNZO, A.; BAGNATO, L.; MARUOTTI, A. Compound unimodal distributions for insurance losses. Insurance: Mathematics and Economics, v.81, p.95-107, 2017.

PUNZO, A.; MAZZA, A.; MARUOTTI, A. Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated gamma distributions .Journal of Applied Statistics, v.45, n.14, p. 2563-2584, 2018.

R Core Team.R: A Language and Environment for Statistical Computing. Vienna, Austria, 2021. Available at: 〈https://www.R-project.org/〉.

RAFTERY, A.; NEWTON, M.; SATAGOPAN, J.; KRIVITSKY, P. Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. Bayesian statistics, v.8, p.1–45, 2007

RAFTERY, A. E.; LEWIS, S. M. One long run with diagnostics: Implementation strategies for Markov Chain Monte Carlo. Statist. Science, The Institute of Mathematical Statistics, v.7, n.4, p.493–497, 1992.

RAVI, S. Statistical and Probabilistic Methods in Actuarial Science. Journal of the Royal Statistical Society Series A, v.172, n.2, p.530–530, 2009.

SCOLLNIK, D. Actuarial modeling with mcmc and bugs. North American Actuarial Journal, v.5, n.2, p.96–124, 2001.

SRIRAM, K.; SHI, P. Stochastic loss reserving: A new perspective from a dirichlet model. Journal of Risk and Insurance, p.1–36, 2020.

Superintendˆencia de Seguros Privados. Autoseg: Sistema de Estatísticas de Automóveis. [S.l.], 2020. Available at: http://www2.susep.gov.br/menuestatistica/Autoseg/principal.aspx.

TEIXEIRA, F. J.; SCALON, J. D. A dependˆencia espacial do valor do prˆemio de automóvel. Revista Brasileira Risco e Seguro, v.11, n. 20, p.29–54, 2016.

ZUANETTI, D.; DINIZ, C.; LEITE, J. A lognormal model for insurance claimsdata.REVSTAT, v.2, 2006