Robust local quantile regression for reference curves

Main Article Content

Gianni M.S.Santos
Carmen D.S. de André
Julio M. Singer

Abstract

We propose two non-parametric methods to construct locally fitted quantile reference curves that are robust with respect to outliers in the predictor variable. The first includes a weighting procedure and the second, the detection and subsequent elimination of outlying predictor variable values before the local fitting process. The reference curves fitted by the proposed methods generate quantile limits that are less affected in regions with a low frequency of the predictor variable values. The proposed procedures are used to fit reference curves to data extracted from a study conducted at the Heart Institute of the University of São Paulo Medical School.

Article Details

How to Cite
M.S.Santos, G. ., D. S de André, C., & M. Singer, J. (2023). Robust local quantile regression for reference curves. Brazilian Journal of Biometrics, 41(1), 58–69. https://doi.org/10.28951/bjb.v41i1.599
Section
Articles

References

ANAS KNEFATI, M., CHAUVET, P. E., NGUYEN, S.; BASSAM, D. Reference curves estimation using conditional quantile and radial basis function network with mass constraint. Neural Process Letters, 43, 17-30 (2016).

BUCHANSKY, M. Recent advances in quantile regression models: A pratical guide for empirical research, Journal of Human Resources, 33, 88-126 (1998).

CADE, B. S.; TERREL, J.W.; SCHROEDER, R.L. Estimating effects of limiting factors with regression quantiles, Ecology), 80, 311-323 (1999).

de PAULA, R.S.; ANTELMI, I.; VINCENZI, M.A.; ANDRÉ, C.D.S.; ARTES, R.; GRUPI, C.G.; MANSUR, A.J. Influence of age, gender and serum triglycerides on heart rate in a cohort of asymptomatic individuals without heart disease. International Journal of Cardiology, 105, 152 - 158 (2005).

EINBECK, J.; ANDRÉ, C.D.S.; SINGER, J.M. Local smoothing with robustness against outlying predictors. Environmetrics, 15, 541-554 (2004).

FAN, J.; GIJBELS, I. Local Polynomial Modelling and Its Applications, Mono graphs on Statistics and Applied Probability, London: Chapman & Hall, (1996).

FITZENBERG B.; KOENKER, R.; MACHAD, J.A.F. Economic Applications of Quantile Regression, Berlin: Springer, (2002).

FREEMAN, J.V.; COLE, T.J.; CHINN, S.; JONES, P.R.M.; White, E.M.; PREECE, M.A.

Cross sectional stature and weight reference curves for the UK, 1990. Archives of Disease in Childhood, 73, 17-24 (1995).

HARRIS, E.K.; BOYD, J.C. Statistical Bases of Reference Values in Laboratory Medicine,New York: Marcel Dekker, 1995.

HEALY, M.J.R.; RASBACH, J.; YANG, M. Distribution-free estimation of age-related centiles. Annals of Human Biology, 15, 17-22 (1988).

HUANG, M.L.; NGUYEN, C. A nonparametric approach for quantile regression, Journal of Statistical Distributions and Applications, 5,(1), 1-3 (2018).

KOENKER, R.; BASSETT, G. Regression quantiles. Econometrica, 46, 33-50 (1978).

KOENKER, R.; HALLOCK, K.F. Quantile regression: An introduction. Journal of Economic Perspectives, 15, 143-156 (2001).

LIU, X.; YU, K.; XU, Q.; TANG, X. Improved local quantile regression. Statistical Modelling, 19, 501-523 (2019).

MARTINS, P.S.; PEREIRA, P.T. Does education reduce wage inequality? Quantile regresion evidence from 16 countries. Labour Economics, 11, 355-371 (2004).

MUGGEO, V.M.R.; TORRETTA, F.; EILERS, P.H.C.; SCIANDRA, M.; ATTANASIO, M. Multiple smoothing parameters selection in additive regression quantiles, Statistical Modelling, 21, 428-448 (2021).

ROYSTON, P. Constructing time-specific reference ranges. Statistics in Medicine, 10, 675-690, (1995).

RUPPERT, D.; SHEATHER, S.J.;WAND, M.P. An effective bandwidth selector for local least squares regression. Journal of the American Staiatical Association, 90, 1257-1270 (1995).

SCHARF, F.S.; JUANES, F.; SUTHERLAND, M. Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology, 79, 448-460, (1998).

SILVERMAN, B.W. Density Estimation for statistics and Data Analysis, London: Chapman & Hall, (1986).

WALDMANN, E. Quantile regression: a short story on how and why. Statistical Modelling, 18, 203-218 (2018).

YU, K,; JONES, M.C. Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237 (1998).