A Tarso model for studying the level of the Cuiaba river
Main Article Content
Abstract
The Cuiabá River registers cyclical occurrences of floods and droughts over the years, according to the hydrological periods, thus characterizing a non-linear behavior. The prediction of the level of the Cuiabá river is important to help institutions such as the Civil Defense of the state of Mato Grosso and many other institutions that are concerned with the prevention and mitigation of natural disasters. Thus, this study considered the nonlinear Threshold Autoregressive Self-Excking Open-loop (TARSO) model with 2 regimes, with a Bayesian approach. We tested models to which values of the linimetric quota (riverwater level in millimeters) with and without rainfall (mm) were associated. All models were compared using the lowest DIC, MAPE and MSE criterion, and the TARSO (2; 1, 0, 3, 1, 1) model performed best according to these criteria. Finally, the selected model was shown to produce reliable predictions.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Chakraborty, K., Mehrotra, K., Mohan, C. K. & Ranka, S. Forecasting the behavior of multivariate time series using neural networks. Neural networks 5, 961–970 (1992).
De Almeida, E. M., de Oliveira, A. C. S., Sanches, L. & de Pascoa, M. A. R. Comportamento e previsão do nível do rio Cuiabá por meio de modelos SETAR. Sigmae 2, 1–13 (2020).
Geman, S. & Geman, D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Recognition 6, 721–741 (1984).
Goerl, R. F. & Kobiyama, M. Considerações sobre as inundações no Brasil. XVI Simpósio Brasileiro de Recursos Hídricos (2005).
IBGE. Perfil dos estados e dos municípios brasileiros, 2013 (Coordenação de População e Indicadores Sociais - Rio de Janeiro, Rio de Janeiro, 2014).
Jian, W.-B., Yao, H.,Wen, X.-H. & Chen, B.-R. A Nonlinear Time Series Model for Spring Flow: An Example from Shanxi Province, China. Groundwater 36, 147–150 (1998).
MATO GROSSO. Diagnostico da bacia hidrográfica do Rio Cuiabá. Relatório final de diagnostico ambiental realizado pela empresa Ecoplan (2003).
Morettin, P. & Toloi, C. M. C. Análise de séries temporais (Edgard Blucher, 2006).
Paes, R. P. d. Análise da translação da onda de cheia efluente do reservatório da UHE Manso na bacia hidrográfica do rio Cuiabá, Mato Grosso PhD thesis (Universidade de São Paulo, 2011).
R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing (Vienna, Austria, 2020). https://www.R-project.org/.
Sáfaddi, T. & Morettin, P. A. A. AnáLise Bayesiana do modelo Open Loop Threshold Autoregressive. Revista Brasileira de Estatística 62, 91–105 (2001).
SEDEC. Anuário brasileiro de desastres naturais: 2013 (Ministério da Integração Nacional. Secretaria Nacional de Proteção e Defesa Civil. Centro Nacional de Gerenciamento de Riscos e Desastres - CENAD, Brasíia, 2013).
Tong, H. & Lim, K. S. Threshold Autoregression, Limit Cycles and Cyclical Data. Journal of the Royal Statistical Society: Series B (Methodological) 42, 245–268 (1980).
Tong, H. Non-linear time series: a dynamical system approach (Clarendon Press, Oxford, 1990).
Tsay, R. S. Testing and Modeling Multivariate Threshold Models. Journal of the American Statistical Association 93, 1188–1202 (1998).
Tucci, C. E. Gerenciamento integrado das inundações urbanas no Brasil. Rega/Global Water Partnership South America 1, 59–73 (2004).
Vasas, K., Elek, P. & Márkus, L. A two-state regime switching autoregressive model with an application to river flow analysis. Journal of Statistical Planning and Inference 137. Special Issue: Bayesian Inference for Stochastic Processes, 3113–3126 (2007).
Zamparoni, C. G. Riscos e desastres naturais em ambiente urbano: o exemplo de Cuiabá/MT. Revista Brasileira de Climatologia 10 (2012).