Stratified sampling for roots biomass quantification in shifting cultivation in Amazon Brazil

Main Article Content

João Thiago Rodrigues de Sousa
Mike Lovatto
Marllon Fernando
Santiago Germán Delgado
Idemauro Antonio Rodrigues de Lara

Abstract

Several countries have been paying attention to carbon stocks and balances in the soil, a characteristic related to land management and use. Among the biomes that have great participation in the maintenance of these stocks, the Amazon biome stands out, which has great diversity by area. With the advances in markets aimed at buying carbon credits, estimates of the values of these stocks are highly susceptible to the intrinsic characteristics of the location. In order to solve these problems, several soil sampling techniques have been used to estimate these values. However, soil sampling techniques vary greatly in the amount of soil sampled, directly impacting the values of these estimates. In this sense, the present work aims to evaluate the point and interval estimates of carbon stocks in the soil in a peripheral region of the Brazilian Amazon, in the state of Maranhão. For this, three soil sampling techniques were compared, the large monolith (LM), the small monolith (SM) and the auger (RA). Considering a stratified sampling plan (STR), in which the different sampled depths are considered as strata, its efficiency was compared to a simple random sampling (SRS) and its amplitudes with the simulation through the Bootstrap technique. The samples were obtained by washing the samples and separating them into < 2mm and > 2mm for two biological groups (babassu roots and other roots). For interval estimates with the LM collection method, roots larger than 2 mm have a total of 2.56 to 4.62 t ha–1, and for smaller roots, 1.67 to 4.33 t ha–1. As for babassu roots, these values ranged from 0.38 to 1.44 t ha–1 and those smaller than 2 mm from 0.86 to 2.43. In contrast, the LM collection method can be replaced by SM and RA only for thick roots (> 2 mm). Regarding the STR sampling plan, the variance of the total was reduced in relation to the SRS. The bootstrap technique managed to reduce the amplitude of the intervals to the total, showing an improvement in accuracy. Therefore, estimates of carbon stocks can be made for the RA method for stored carbon, but the method for carbon that will return to the atmosphere the LM method is the most suitable.

Article Details

How to Cite
Rodrigues de Sousa, J. T. ., Lovatto, M. ., Soares dos Santos, M. F., Germán Delgado, S., & Rodrigues de Lara, . I. A. . (2024). Stratified sampling for roots biomass quantification in shifting cultivation in Amazon Brazil. Brazilian Journal of Biometrics, 42(3), 202–212. https://doi.org/10.28951/bjb.v42i3.663
Section
Articles

References

Addo-Danso, S. D., Prescott, C. E. & Smith, A. R. Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. Forest Ecology and Management 359, 332–351 (2016). https://doi.org/10.1016/j.foreco.2015.08.015

Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29, 692–699 (2014). https://doi.org/10.1016/j.tree.2014.10.006

Bengough, A. in Root ecology 151–171 (Springer, 2003).

Böhm, W. Methods of studying root systems (Springer Science & Business Media, 2012).

Bolfarine, H. & de Oliveira Bussab, W. Elementos de amostragem (Editora Blucher, 2005).

Caldwell, M. M., Manwaring, J. H. & Durham, S. L. Species interactions at the level of fine roots in the field: influence of soil nutrient heterogeneity and plant size. Oecologia 106, 440–447 (1996). https://doi.org/10.1007/BF00329699

Caldwell, M. & Eissenstat, D. in Plant Response to Stress. 95–106 (Springer, 1987).

Cochran, W. G. Sampling techniques (John Wiley & Sons, 1977).

Comte, I., Davidson, R., Lucotte, M., de Carvalho, C. J. R., de Assis Oliveira, F., da Silva, B. P. & Rousseau, G. X. Physicochemical properties of soils in the Brazilian Amazon following firefree land preparation and slash-and-burn practices. Agriculture, ecosystems & environment 156, 108–115 (2012). https://doi.org/10.1016/j.agee.2012.05.004

De Moraes, C. C. & de Souza, T. A. Panorama mundial do desperdício e perda de alimentos no contexto de cadeias de suprimentos agroalimentares. Revista em Agronegócio e Meio Ambiente 11, 901–924 (2018). http://dx.doi.org/10.17765/2176-9168.2018v11n3p901-924

Dixon, P. M. Bootstrap resampling. Encyclopedia of environmetrics (2006). https://doi.org/10.1002/9780470057339.vab028

Embrapa, E. S. Sistema brasileiro de classificação de solos 2006.

Falloon, P. et al. Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, ecosystems & environment 122, 114–124 (2007). https://doi.org/10.1016/j.agee.2007.01.013

Fidalgo, E., Benites, V. d. M., Machado, P. d. A., Madari, B., Coelho, M., de Moura, I. & de Lima, C. Estoque de carbono nos solos do Brasil. Embrapa Solos-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E) (2007).

Freschet, G. T. et al. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist 232, 973–1122 (2021). https://doi.org/10.1111/nph.17572

Friedlingstein, P. et al. Global carbon budget 2019. Earth System Science Data 11, 1783–1838 (2019).

Friedlingstein, P. et al. Global carbon budget 2021. Earth System Science Data 14, 1917–2005 (2022).

Gehring, C., Zelarayán, M. L. C., Almeida, R. B. & Moraes, F. H. R. Allometria da palmeira babaçu em um agroecossistema de derruba-e-queima na periferia este da Amazônia. Acta Amazonica 41, 127–134 (2011). https://doi.org/10.1590/S0044-59672011000100015

Gomes, E. P. C., Sugiyama, M., de Oliveira Junior, C. J. F., Prado, H. M., Ribeiro Filho, A. A. & Adams, C. Post-agricultural succession in the fallow swiddens of southeastern Brazil. Forest Ecology and Management 475, 118398 (2020). https://doi.org/10.1016/j.foreco.2020.118398

Heuvelink, G. &Webster, R. Modelling soil variation: past, present, and future. Geoderma 100, 269–301 (2001). https://doi.org/10.1016/S0016-7061(01)00025-8

Keller, M., Palace, M. & Hurtt, G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. Forest Ecology and Management 154, 371–382 (2001). https://doi.org/10.1016/S0378-1127(01)00509-6

Kish, L. Survey sampling. 1965. New Yory: Wiley Pty Ltd (1985).

Köppen, W. in Grundriß der Klimakunde (de Gruyter, 2020).

Maarel, E & Titlyanova, A. Above-ground and below-ground biomass relations in steppes under different grazing conditions [Veronica spicata, Avenula pratensis]. Oikos (Denmark) (1989). https://doi.org/10.2307/3565622

Majdi, H., Pregitzer, K., Moren, A.-S., Nylund, J.-E. & I Ågren, G. Measuring fine root turnover in forest ecosystems. Plant and soil 276, 1–8 (2005). https://doi.org/10.1007/s11104-005-3104-8

Majdi, H., Smucker, A. J. & Persson, H. A comparison between minirhizotron and monolith sampling methods for measuring root growth of maize (Zea mays L.) Plant and Soil 147, 127–134 (1992). https://doi.org/10.1007/BF00009378

Mamolos, A., Elisseou, G. & Veresoglou, D. Depth of root activity of coexisting grassland species in relation to N and P additions, measured using nonradioactive tracers. Journal of Ecology, 643–652 (1995). https://doi.org/10.2307/2261632

Materechera, S., Dexter, A.&Alston, A. Formation of aggregates by plant roots in homogenised soils. Plant and Soil 142, 69–79 (1992). https://doi.org/10.1007/BF00010176

Mommer, L, Wagemaker, C., De Kroon, H & Ouborg, N. Unravelling below-ground plant distributions: a real-time polymerase chain reaction method for quantifying species proportions in mixed root samples. Molecular Ecology Resources 8, 947–953 (2008). https://doi.org/10.1111/j.1755-0998.2008.02130.x

Mooney, H. The carbon balance of plants. Annual review of ecology and systematics, 315–346 (1972). https://doi.org/10.1146/annurev.es.03.110172.001531

Muniz, F. H. A vegetação da região de transição entre a Amazônia e o Nordeste, diversidade e estrutura. Moura, EG, coord. Agroambientes de transição entre o trópico úmido e o semi-árido do Brasil. São Luis, Universidade Estadual do Maranhão, 53–69 (2004).

Oliveira, M. L. M. d. & Aquino, J. A. d. Amostragem. Tratamento de minério: Práticas laboratoriais. Rio de Janeiro, CETEM/MCT (2007).

Ottman, M. & Timm, H. Measurement of Viable Plant Roots with the Image Analyzing Computer 1. Agronomy journal 76, 1018–1020 (1984). https://doi.org/10.2134/agronj1984.00021962007600060036x

Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11, 789–799 (2013). https://doi.org/10.1038/nrmicro3109

Pivello, V. R. in Savannas and Dry Forests 129–154 (Routledge, 2017).

Ratke, R. F., dos Santos, J. d. D. G. & de Souza, J. G. P. Métodos para estudo da dinâmica de raízes. Ciência em Foco, 120 (2019). https://doi.org/10.46420/9786581460006cap11

Ratuchne, L. C., Koehler, H. S.,Watzlawick, L. F., Sanquetta, C. R. & Schamne, P. A. Estado da arte na quantificação de biomassa em raízes de formações florestais. Floresta e Ambiente 23, 450–462 (2016). https://doi.org/10.1590/2179-8087.131515

Raven, P. H., Evert, R. F. & Eichhorn, S. E. in Biologia vegetal 830–830 (2007).

Rosan, T. M. et al. A multi-data assessment of land use and land cover emissions from Brazil during 2000–2019. Environmental Research Letters 16, 074004 (2021). http://dx.doi.org/10.1088/1748-9326/ac08c3

Roumet, C., Picon-Cochard, C., Dawson, L. A., Joffre, R., Mayes, R., Blanchard, A. & Brewer, M. J. Quantifying species composition in root mixtures using two methods: near-infrared reflectance spectroscopy and plant wax markers. New Phytologist 170, 631–638 (2006). https://doi.org/10.1111/j.1469-8137.2006.01698.x

Silva, A. G. R. d., de Andrade, E. M., Rosa, G. Q., Prado, Ú. B. & da Silva, F. H. O. Dinâmica do desenvolvimento radicular em floresta tropicarl seca e suas relações com o regime pluviométrico. Encontros Universitários da UFC (2018).

Smith, F. A. Plant roots. Growth, activity and interaction with soils 2007.

Tibshirani, R. J. & Efron, B. An introduction to the bootstrap. Monographs on statistics and applied probability 57, 1–436 (1993). https://doi.org/10.1201/9780429246593

Zhao, J., Xie, H., Ma, J. &Wang, K. Integrated remote sensing and model approach for impact assessment of future climate change on the carbon budget of global forest ecosystems. Global and Planetary Change 203, 103542 (2021). https://doi.org/10.1016/j.gloplacha.2021.103542