A framework for building enviromics matrices in mixed models

Main Article Content

Bruno Achcar Trevisan
https://orcid.org/0009-0007-0189-181X
Vinícius Silva Junqueira
Bruna de Mello Florêncio
Alexandre Siqueira Guedes Coelho
Gustavo Eduardo Marcatti
Rafael Tassinari Resende

Abstract

This study unravels a framework for constructing enviromics matrices within mixed models to integrate genetic and envirotypic data, enhancing phenotypic predictions in plant breeding. Enviromics leverages diverse data sources, such as climate and soil, to characterize genotype-by-environment (G×E) interactions. The approach uses block-diagonal structures in the design matrix to incorporate random effects from genetic and envirotypic covariates across trials. The covariance structure is modeled through the Kronecker product of the genetic relationship matrix and an identity matrix representing envirotypic effects, effectively capturing both genetic and environmental variability. This dual representation facilitates more accurate predictions of crop performance across environments, enabling improved selection strategies in breeding programs. The framework is compatible with widely used mixed model software, including rrBLUP and BGLR, and is adaptable to account for more complex interactions. By integrating genetic relationships and environmental influences, this approach provides a robust tool for advancing G×E studies and accelerating the development of superior crop varieties.

Article Details

How to Cite
Achcar Trevisan, B., Silva Junqueira, V., de Mello Florêncio, B., Siqueira Guedes Coelho, A., Eduardo Marcatti, G., & Tassinari Resende, R. (2025). A framework for building enviromics matrices in mixed models. Brazilian Journal of Biometrics, 43(4), e-43865. https://doi.org/10.28951/bjb.v43i4.865
Section
Articles

References

1. Amadeu, R. R., Garcia, A. A. F., Munoz, P. R. & Ferrão, L. F. V. AGHmatrix: genetic relationship

matrices in R. Bioinformatics 39 (ed Schwartz, R.) ISSN: 1367-4811. doi:10 . 1093 /

bioinformatics/btad445. http://dx.doi.org/10.1093/bioinformatics/btad445 (2023).

2. Anthony, J. C., Eaton, W. W. & Henderson, A. S. Looking to the Future in Psychiatric Epidemiology.

Epidemiologic Reviews 17, 240–242. ISSN: 0193-936X. doi:10.1093/oxfordjournals.

epirev.a036182. http://dx.doi.org/10.1093/oxfordjournals.epirev.a036182 (1995).

3. Barros, A. C. A. V. B. d., Silva, M. A., Marques, R. D., Villegas, C. & Luciano, A. C. d. S.

Classification of sugarcane areas in Landsat images using machine learning algorithms. Brazilian

Journal of Biometrics 42, 147–157. ISSN: 2764-5290. doi:10 . 28951 / bjb . v42i2 . 693. http :

//dx.doi.org/10.28951/bjb.v42i2.693 (2024).

4. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Usinglme4.

Journal of Statistical Software 67. ISSN: 1548-7660. doi:10.18637/jss.v067.i01. http:

//dx.doi.org/10.18637/jss.v067.i01 (2015).

5. Burgueño, J., Crossa, J., Cornelius, P. L., Trethowan, R., McLaren, G. & Krishnamachari,

A. Modeling Additive × Environment and Additive × Additive × Environment Using Genetic

Covariances of Relatives of Wheat Genotypes. Crop Science 47, 311–320. ISSN: 1435-0653.

doi:10.2135/cropsci2006.09.0564. http://dx.doi.org/10.2135/cropsci2006.09.0564 (2007).

6. Costa-Neto, G. & Fritsche-Neto, R. Enviromics: bridging different sources of data, building

one framework. Crop Breeding and Applied Biotechnology 21. ISSN: 1518-7853. doi:10 . 1590 /

1984-70332021v21sa25. http://dx.doi.org/10.1590/1984-70332021v21Sa25 (2021).

7. Costa-Neto, G., Fritsche-Neto, R. & Crossa, J. Nonlinear kernels, dominance, and envirotyping

data increase the accuracy of genome-based prediction in multi-environment trials. Heredity

126, 92–106. ISSN: 1365-2540. doi:10.1038/s41437-020-00353-1. http://dx.doi.org/10.

1038/s41437-020-00353-1 (2021).

8. Crossa, J., Burgueño, J., Cornelius, P. L., McLaren, G., Trethowan, R. & Krishnamachari,

A. Modeling Genotype × Environment Interaction Using Additive Genetic Covariances of

Relatives for Predicting Breeding Values of Wheat Genotypes. Crop Science 46, 1722–1733.

ISSN: 1435-0653. doi:10.2135/cropsci2005.11-0427. http://dx.doi.org/10.2135/cropsci2005.

11-0427 (2006).

9. Crossa, J., Fritsche-Neto, R., Montesinos-Lopez, O. A., Costa-Neto, G., Dreisigacker, S.,

Montesinos-Lopez, A. & Bentley, A. R. The Modern Plant Breeding Triangle: Optimizing the

Use of Genomics, Phenomics, and Enviromics Data. Frontiers in Plant Science 12. ISSN: 1664-

462X. doi:10.3389/fpls.2021.651480. http://dx.doi.org/10.3389/fpls.2021.651480 (2021).

10. Cruz, D. D. M., Heinemann, A. B., Marcatti, G. E. & Resende, R. T. Defining the target population

of environments (TPE) for enviromics studies using R-based GIS tools. Crop Breeding

and Applied Biotechnology 25. ISSN: 1518-7853. doi:10.1590/1984- 70332024v25n1s09. http:

//dx.doi.org/10.1590/1984-70332024v25n1s09 (2025).

11. Cuevas, J., Crossa, J., Montesinos-López, O. A., Burgueño, J., Pérez-Rodríguez, P. & de los

Campos, G. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel

Models. G3 Genes|Genomes|Genetics 7, 41–53. ISSN: 2160-1836. doi:10.1534/g3.116.035584.

http://dx.doi.org/10.1534/g3.116.035584 (2017).

12. Cuevas, J., Granato, I., Fritsche-Neto, R., Montesinos-Lopez, O. A., Burgueño, J., Bandeira

e Sousa, M. & Crossa, J. Genomic-Enabled Prediction Kernel Models with Random Intercepts

for Multi-environment Trials. G3 Genes|Genomes|Genetics 8, 1347–1365. ISSN: 2160-

1836. doi:10.1534/g3.117.300454. http://dx.doi.org/10.1534/g3.117.300454 (2018).

13. Endelman, J. B. Ridge Regression and Other Kernels for Genomic Selection with R Package

rrBLUP. The Plant Genome 4, 250–255. ISSN: 1940-3372. doi:10.3835/plantgenome2011.08.

0024. http://dx.doi.org/10.3835/plantgenome2011.08.0024 (2011).

14. Gevartosky, R., Carvalho, H. F., Costa-Neto, G., Montesinos-López, O. A., Crossa, J. &

Fritsche-Neto, R. Enviromic-based kernels may optimize resource allocation with multi-trait

multi-environment genomic prediction for tropical Maize. BMC Plant Biology 23. ISSN: 1471-

2229. doi:10.1186/s12870-022-03975-1. http://dx.doi.org/10.1186/s12870-022-03975-1

(2023).

15. Gianola, D. Priors in Whole-Genome Regression: The Bayesian Alphabet Returns. Genetics

194, 573–596. ISSN: 1943-2631. doi:10.1534/genetics.113.151753. http://dx.doi.org/10.1534/

genetics.113.151753 (2013).

16. Henderson, C. R. A Simple Method for Computing the Inverse of a Numerator Relationship

MatrixUsed in Prediction of Breeding Values. Biometrics 32, 69. ISSN: 0006-341X. doi:10.2307/

2529339. http://dx.doi.org/10.2307/2529339 (1976).

17. Henderson, C. R. Estimation of Variance and Covariance Components. Biometrics 9, 226. ISSN:

0006-341X. doi:10.2307/3001853. http://dx.doi.org/10.2307/3001853 (1953).

18. Jarquín, D. et al. A reaction norm model for genomic selection using high-dimensional genomic

and environmental data. Theoretical and Applied Genetics 127, 595–607. ISSN: 1432-2242.

doi:10.1007/s00122-013-2243-1. http://dx.doi.org/10.1007/s00122-013-2243-1 (2014).

19. Martini, J. W. R., Crossa, J., Toledo, F. H. & Cuevas, J.On Hadamard and Kronecker products

in covariance structures for genotype × environment interaction. The Plant Genome 13. ISSN:

1940-3372. doi:10.1002/tpg2.20033. http://dx.doi.org/10.1002/tpg2.20033 (2020).

20. Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Toledo, F. H., Pérez-Hernández,

O., Eskridge, K. M. & Rutkoski, J. A Genomic Bayesian Multi-trait and Multi-environment

Model. G3 Genes|Genomes|Genetics 6, 2725–2744. ISSN: 2160-1836. doi:10 . 1534 / g3 . 116 .

032359. http://dx.doi.org/10.1534/g3.116.032359 (2016).

21. Patterson, H. D. & Thompson, R. Recovery of inter-block information when block sizes are

unequal. Biometrika 58, 545–554. ISSN: 1464-3510. doi:10.1093/biomet/58.3.545. http://dx.

doi.org/10.1093/biomet/58.3.545 (1971).

22. Pérez, P. & de los Campos, G. Genome-Wide Regression and Prediction with the BGLR

Statistical Package. Genetics 198, 483–495. ISSN: 1943-2631. doi:10.1534/genetics.114.164442.

http://dx.doi.org/10.1534/genetics.114.164442 (2014).

23. Queiroz de Oliveira, A., Poczynek, M., Maris Machado Bittar, C. & Gonçalves de Lima, C.

Linear mixed-effects models and least confounded residuals in the modelling of Holstein calves’

performance. Brazilian Journal of Biometrics 42, 103–118. ISSN: 2764-5290. doi:10.28951/bjb.

v42i2.681. http://dx.doi.org/10.28951/bjb.v42i2.681 (2024).

24. Rao, C. R. Estimation of Heteroscedastic Variances in Linear Models. Journal of the American

Statistical Association 65, 161–172. ISSN: 1537-274X. doi:10.1080/01621459.1970.10481070.

http://dx.doi.org/10.1080/01621459.1970.10481070 (1970).

25. Rao, C. Estimation of variance and covariance components—MINQUE theory. Journal of Multivariate Analysis 1, 257–275. ISSN: 0047-259X. doi:10 .1016/0047- 259x(71)90001- 7. http :

//dx.doi.org/10.1016/0047-259X(71)90001-7 (1971).

26. Rao, C. Minimum variance quadratic unbiased estimation of variance components. Journal

of Multivariate Analysis 1, 445–456. ISSN: 0047-259X. doi:10.1016/0047- 259x(71)90019- 4.

http://dx.doi.org/10.1016/0047-259X(71)90019-4 (1971).

27. Resende, R. T., Hickey, L., Amaral, C. H., Peixoto, L. L., Marcatti, G. E. & Xu, Y. Satelliteenabled

enviromics to enhance crop improvement. Molecular Plant 17, 848–866. ISSN: 1674-

2052. doi:10.1016/j.molp.2024.04.005. http://dx.doi.org/10.1016/j.molp.2024.04.005

(2024).

28. Resende, R. T., Piepho, H.-P., Rosa, G. J. M., Silva-Junior, O. B., e Silva, F. F., de Resende,

M. D. V. & Grattapaglia, D. Enviromics in breeding: applications and perspectives on

envirotypic-assisted selection. Theoretical and Applied Genetics 134, 95–112. ISSN: 1432-2242.

doi:10.1007/s00122-020-03684-z. http://dx.doi.org/10.1007/s00122-020-03684-z (2021).

29. Resende, R. T., Xavier, A., Silva, P. I. T., Resende, M. P. M., Jarquin, D. & Marcatti, G. E.

GIS-based G×E modeling of maize hybrids through enviromic markers engineering. New

Phytologist 245, 102–116. ISSN: 1469-8137. doi:10.1111/nph.19951. http://dx.doi.org/10.1111/

nph.19951 (2025).

30. Rogers, A. R. & Holland, J. B. Environment-specific genomic prediction ability in maize

using environmental covariates depends on environmental similarity to training data. G3

Genes|Genomes|Genetics (ed Lipka, A) ISSN: 2160-1836. doi:10.1093/g3journal/jkab440. http:

//dx.doi.org/10.1093/g3journal/jkab440 (2022).

31. Searle, S. R. & Khuri, A. I. Matrix algebra useful for statistics ISBN: 978-1-118-93514-9. https:

/ /www.wiley.com/en- us /Matrix+Algebra+Useful+for+Statistics%2C+2nd+Edition- p-

9781118935149 (JohnWiley & Sons, 2017).

32. Solaymani, S., Ayatollahi Mehrgardi, A., Esmailizadeh, A., Tusell, L. & Momen, M. Performance

of pedigree and various forms of marker-derived relationship coefficients in genomic

prediction and their correlations. Journal of Animal Breeding and Genetics 137, 423–437. ISSN:

1439-0388. doi:10.1111/jbg.12467. http://dx.doi.org/10.1111/jbg.12467 (2020).

33. Teixeira, A. P. et al. Cell functional enviromics: Unravelling the function of environmental

factors. BMC Systems Biology 5. ISSN: 1752-0509. doi:10.1186/1752-0509-5-92. http://dx.doi.

org/10.1186/1752-0509-5-92 (2011).

34. VanRaden, P. Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science 91,

4414–4423. ISSN: 0022-0302. doi:10.3168/jds.2007-0980. http://dx.doi.org/10.3168/jds.2007-

0980 (2008).

35. Wright, S. Systems of mating. I. The biometric relations between parent and offspring. Genetics

6, 111–123. ISSN: 1943-2631. doi:10 .1093/genetics /6.2. 111. http : / /dx.doi .org/10.1093/

genetics/6.2.111 (1921).

36. Xavier, A., Muir, W. M. & Rainey, K. M. bWGR: Bayesian whole-genome regression. Bioinformatics. 36 (ed Schwartz, R.) 1957–1959. ISSN: 1367-4811. doi:10.1093/bioinformatics/btz794.

http://dx.doi.org/10.1093/bioinformatics/btz794 (2020).

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.