A WEIGHTED NON-CONNECTIVITY PENALTY FOR DETECTION AND INFERENCE OF IRREGULARLY SHAPED CLUSTERS
Main Article Content
Abstract
Methods for the detection and inference of irregularly shaped geographic clusters with count data are important tools in disease surveillance and epidemiology. Recently, several methods were developed which combine Kulldorff’s Spatial Scan Statistic with some penalty function to control the excessive freedom of shape of spatial clusters. Different penalty functions were conceived based on the cluster geometric shape or on the adjacency structure and non-connectivity of the cluster associated graph. Those penalty functions were also implemented using the framework of multi-objective optimization methods. In particular, the non-connectivity penalty was shown to be very effective in cluster detection. Basically, the non-connectivity penalty function relies on the adjacency structure of the cluster’s associated graph but it does not take into account the population distribution within the cluster. Here we introduce a modification of the non-connectivity penalty function, introducing weights in the components of the penalty function according to the cluster population distribution. Our methods are able to identify multiple clusters in the study area. We show through numerical simulations that our weighted non-connectivity penalty function outperforms the original non-connectivity function in terms of power of detection, sensitivity and positive predictive value, also being computationally fast. Both single-objective and multi-objective versions of the algorithm are implemented and compared.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).