STUDY OF EFFICIENCY TIME OF RECOMBINANT DNA INSULIN VIA ACCELERATED LIFE TESTING AND INTERVAL CENSORING
Main Article Content
Abstract
This paper aims to study the efficiency of recombinant DNA insulin via models for accelerated life tests. The potency loss of these insulin products was evaluated periodically, subject to the conditions of temperature of 8°C, 25°C and 37°C. Insulin samples with potency at less than 100% were considered unfit for consumption, which characterizes the event of interest. Samples suitable for consumption were considered to be censored. The response variable was observed periodically for 736 days. For data analysis, statistical models of stress-response regression were used. The deterministic part of these models is the Arrhenius model because the stress variable is the temperature, while the probabilistic part was comprised of the Exponential, Weibull, and Log-normal models. The techniques of accelerated life tests proved adequate to address the time of potency loss of the insulin for the various temperature levels. The times of occurrence of the events were treated in three different ways, which were compared in this study. First, interval censoring was considered, or only the upper and lower limits of the interval in which the failure occurred were known. Then, the midpoint of this interval was considered as a failure time. Finally, only the lower limit of the interval in which the failure occurred was considered. According to the results, it is concluded that the use of the interval lower limit is more appropriate for estimating the reliability curves, as the estimates are closer to those using interval censoring then using the midpoint of the interval. For the specific case of the recombinant DNA insulin data, it was observed that the Arrhenius-Weibull model and the Arrhenius-lognormal are suitable for adjusting the data. It follows also that the temperature affects the power of the insulin: The higher the temperature are, the lesser the efficiency.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).