ESTIMATION OF THE CRITICAL POINTS OF AN EPIDEMIC BY MEANS OF A LOGISTIC GROWTH MODEL

Main Article Content

Ivan Bezerra ALLAMAN
https://orcid.org/0000-0003-0883-0466
Enio Galinkin JELIHOVSCHI

Abstract

The study of epidemiological models are important because they help researchers to understand and propose possible strategies to combat any epidemic virus. Most of the research in those models, however, focuses on the response variable, modeling how it varies as a function of epidemiological parameters. In this paper, on the other hand, we focus on the explanatory variable ”time,” examining the critical points of the logistic model curve. These are: the maximum acceleration point(map), inflection point(ip), maximum deceleration point(mdp), and asymptotic deceleration point(adp). We first estimated a time series of the cases of people infected by COVID 19 as a function of time, and then used the cumulative estimates of the time series to fit a reparameterization of the logistic model. Data from China and Italy were used as an example, reporting the economic and political factors within each interval between the estimated critical points. The estimates of each critical point for China and Italy were respectively (map:34.93-50.92, ip:41.68-65.53;mdp:48.43-80.14;adp:57-94). This methodology adds to the literature and shows researchers how the social, political, economic, and sanitary factors that were adopted in each of the countries influenced the difference of the intervals between the critical points in each country.

Article Details

How to Cite
ALLAMAN, I. B., & JELIHOVSCHI, E. G. . (2022). ESTIMATION OF THE CRITICAL POINTS OF AN EPIDEMIC BY MEANS OF A LOGISTIC GROWTH MODEL. Brazilian Journal of Biometrics, 40(2). https://doi.org/10.28951/bjb.v40i2.576
Section
Articles

References

AKAIKE, H. A new look at the statistical model identification, IEEE T. Automat.Contr., v.19, n.6, p.716-723, 1974.

BISWAS,K.; KHALEQUE, A.; SEN, P. Covid-19 spread: Reproduction ofdata and prediction using a SIR model on Euclidean network, arXiv preprintarXiv: 2003.07063, 2020.

CHEN,Y.-C.; LU,P.-E.; CHANG, C.-S. A time-dependent SIR model for COVID-19, arXiv preprint arXiv:2003.00122, 2020.

CHOWELL, G.; HINCAPIE-PALACIO, D.; OSPINA, J.; PELL, B.; TARIQ,A.; DAHAL, S.; MOGHADAS, S.; SMIRNOVA, A.; SIMONSEN, L.; VIBOUD,V. Using phenomenological models to characterize transmissibility and forecastpatterns and final burden of Zika epidemics, PLoS currents., v.8, 2016.

COCCIA, M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID, Science of the Total Environment, v.729, p.138474, 2020.

Coronavirus, il premier Conte: ”Chiusura fino al 3 maggio, non possiamocedere adesso” (2020). La Repubblica. Avaliable at:https://www.repubblica.it/cronaca/2020/04/10/news/coronavirus_giuseppe_conte_riaperture-253677426/(Accessed: 07/06/2020).

Coronavirus: Italy’s PM outlines lockdown easing measures (2020). BBCNews. Avaliable at:https://www.bbc.com/news/amp/world-europe-52435273(Ac-cessed: 07/06/2020).

Coronavirus, in dieci comuni lombardi: 50 mila persone costrette a restare incasa. quarantena all’ospedale milanese di Baggio (2020).La Repubblica. Avaliable at: https://milano.repubblica.it/cronaca/2020/02/21/news/coronavirus_codogno_castiglione_d_adda_contagiati_misure_sicurezza-249154447/ (Accessed: 07/06/2020).

Coronavirus, scuole chiuse e niente Carnevale di Venezia. i provvedimenti Regioneper Regione (2020).La Repubblica. Avaliable

at:https://www.repubblica.it/cronaca/2020/02/23/news/coronavirus_scuole_chiuse_e_niente_carnevale_tutti_i_provvedimenti-249355737(Accessed: 07/06/2020).

Coronavirus: All sport in Italy to be suspended because of outbreak (2020). BBC Sport. Avaliable at: https://www.bbc.com/sport/51808683(Ac-cessed: 07/06/2020).

Coronavirus, i sindaci toscani scrivono a Conte: Chiudere tuttoci`o chenon `e essenziale (2020). La Nazione. Avaliable at:https://www.lanazione.it/cronaca/coronavirus-sindaci-toscana-chiudere-tutto-1.5076824(Ac-cessed: 07/06/2020).

FERNANDES, F. A. ;ALVES, H. J. P. ; FERNANDES,T. J. ;MUNIZ, J. A. Panorama da fase inicial do crescimento dos números de casos e óbitos causados pela Covid-19 no Brasil. Research, Society and Development, v.9, n.10, p.e1539108560-e1539108560, 2020.

FREITAS, A. D. Curvas de crescimento na produção animal, Revista Brasileira de Zootecnia, v.34, n.3, p.786-795, 2005.

GIORDANO, G.; BLANCHINI, F.; BRUNO, R.; COLANERI, P.; DI FILIPPO,A.; DI MATTEO, A.;COLANERI, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine,v.26,p.855-860, 2020.

GUERZONI, M. Scuole e universit`a di tutta Italia chiuse fino a met`amarzo peril coronavirus (2020). La Repubblica. Avaliable at:https://www.corriere.it/scuola/20_marzo_04/coronavirus-scuole-chiuse-tutta-italia-decisione-governo-entro-stasera-e7ba0614-5e12-11ea-8e26-25d9a5210d01.shtml(Accessed: 07/06/2020).

HENLEY, J. Italy extends lockdown amid signs coronavirus infectionrate is easing (2020). The Guardian. Avaliable at:https://www.theguardian.com/world/2020/apr/01/italy-extends-lockdown-amid-signs-coronavirus-infection-rate-is-easing(Accessed: 07/06/2020)

HYNDMAN, R. J.;KHANDAKAR,Y. Automatic time series forecasting: the forecast package for R, Journal of Statistical Software, v.26, n.3, p.1-22, 2008.

JAMES, N.; MENZIES, M. Cluster-based dual evolution for multivariate timeseries: Analyzing COVID-19,Chaos: An Interdisciplinary Journal of NonlinearScience, v.30, n.6, p.061108, 2020.

JAMES, N.; MENZIES, M. COVID-19 in the United States: Trajectories and second surge behavior.Chaos: An Interdisciplinary Journal of Nonlinear Science.,v.30, n.9, p.091102, 2020.

KLˆOH, V. P.; SILVA, G. D.; FERRO, M.; ARA ́UJO, E.; DE MELO, C. B.;DE ANDRADE LIMA, J. R. P.; MARTINS, E. R. The virus and socioeconomicinequality: An agent-based model to simulate and assess the impactof interventions to reduce the spread of COVID-19 in Rio de Janeiro, Brazil/o vírus e a desigualdade socioeconˆomica: um modelo baseado em agentes para simular e avaliar o impacto de intervenções para reduzir a disseminação do COVID-19 no Rio de Janeiro, Brasil,Brazillian Journal of Health Review, v.3, n.2, p.3647-3673, 2020.

LAI, S.; RUKTANONCHAI, N. W.; ZHOU, L.; PROSPER, O.; LUO, W.; FLOYD,J. R.; WESOLOWSKI, A.; SANTILLANA, M.; ZHANG, C.; DU, X.; YU, H.;TATEM, A. J. Effect of non-pharmaceutical interventions to contain COVID-19 in China,Nature, v.585, n.7825, p.410-413, 2020.

LEUNG, K.; WU, J. T.;LIU, D.;LEUNG, G. M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment,The Lancet,v.395,n.10233, p.1382-1393, 2020.

LI, Q.; FENG, W.; QUAN, Y. Trend and forecasting of the COVID-19 outbreak in China. Journal of Infection, v.80, n.4, p.469-496, 2020.

MANCHEIN, C.; BRUGNAGO, E. L.;DA SILVA, R. M.; MENDES,C.F.;BEIMS,M. W. Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies, Chaos: An Interdisciplinary Journal of Nonlinear Science, v.30, n.4, p.041102, 2020.

MISCHAN,M. M.;PINHO,S. Z. D.;CARVALHO, L. A.-D. R. D. Determination of a point sufficiently close to the asymptote in nonlinear growth functions,ScientiaAgricola, v.68, p.109-114, 2011.

MISCHAN, M. M.;DE PINHO, S. Z.Modelos não lineares: Funções assintóticas de crescimento. São Paulo: Cultura Acadˆemica, 2014, 186p.

QIU, Y.;CHEN, X.;SHI, W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China, Journal of Population Economics, v.33, n.4, p.1127-1172, 2020.

R Core Team,R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020.

SALES, J. H. Epidemic COVID mathematical model. Int. J. Lat. Res. Sci. Tech,v.72, n 2, p.1-5, 2020

SEBER, G. A. F.; WILD, C. J. Nonlinear Regression. John Wiley & Sons, Inc.,1989, 768p.

SEVERGNINI, C. La conferenza stampa di Conte: Dati incoraggianti, corriamo unrischio calcolato (2020).Corriere della Sera.Avaliable at:https://www.corriere.it/politica/20_maggio_16/discorso-conte-conferenza-stampa-oggi-decreto-18-maggio-1e810142-9785-11ea-ba09-20ae073bed63.shtml(Accessed: 07/06/2020).

SHAIKH, A. S.; SHAIKH, I. N.; NISAR, K. S. A mathematical model ofCOVID-19using fractional derivative: outbreak in India with dynamics of transmission and control.Advances in Difference Equations, v.2020, n.1, p.1-19, 2020.

Timeline of China’s battle against COVID-19 pandemic (2020). Global Times, Avaliable at:https://www.globaltimes.cn/content/1190796.shtml(Accessed:01/06/2020).

World Health Organization and others (2020).Coronavirus disease(COVID-2019) situation reports, Avaliable at:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf(Accessed:02/07/2020).

WEISSMAN, G. E.; CRANE-DROESCH, A.; CHIVERS, C.; LUONG, T.;HANISH, A.; LEVY, M. Z.; LUBKEN, J.; BECKER, M.; DRAUGELIS, M. E.;ANESI, G. L.; BRENNAM, P. J.; CHRISTIE, J. D.; HANSON, W.; MIKKELSEN,M. E.; HALPERN, S. D. Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic, Annals of internal medicine,v.173, n.1,p.21-28, 2020.

WU, K. ;DARCET, D.; WANG, Q.; SORNETTE, D. Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world, Nonlinear dynam., v.101, n.3, p.1561-1581,2020.

ZHANG, X.; MA, R.; WANG, L. Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries. Chaos Solitons Fract., v.135,p.109829, 2020.

ZHOU, X.;MA, X.;HONG,N. ;SU, L.; MA,Y. ;HE, J.;JIANG, H.;LIU, C.; SHAN,G.;ZHU, W.;ZHANG,S.;LONG,Y. Forecasting the worldwide spread of COVID-19 based on logistic model and SEIR model, medRxiv, 2020.