Estima¸c˜ao de pontos cr´ıticos de uma epidemia por meio do modelo de crescimento log´ıstico.
Conteúdo do artigo principal
Resumo
O estudo de modelos epidemiol´ogicos s˜ao importantes porque auxiliam os pesquisadores a entender e propor poss´ıveis estrat´egias de combate ao v´ırus. No entanto, a maioria da pesquisa naqueles modelos, focam na vari´avel resposta, modelando como ela varia em fun¸c˜ao dos parˆametros epidemiol´ogicos. Neste artigo, por outro lado, focamos na variavel explicativa ”tempo”, examinando os pontos cr´ıticos da curva do modelo log´ıstico. Estes s˜ao: o ponto de acelera¸c˜ao m´axima(map), ponto de inflex˜ao(ip), ponto de desacelera¸c˜ao m´axima(mdp) e ponto de desacelera¸c˜ao assint´otico(adp). Primeiramente estimamos uma s´erie temporal dos casos de infectados por COVID em fun¸c˜ao do tempo e, posteriormente, utilizamos as estimativas acumuladas da s´erie temporal para ajustar uma reparametriza¸c˜ao do modelo log´ıstico. Como exemplo foram utilizados dados da China e da It´alia, relatando os fatores econˆomicos e pol´ıticos com cada intervalo entre os pontos cr´ıticos estimados. As estimativas de cada ponto cr´ıtico para China e It´alia foram respectivamente (map-34.93,50.92; ip-41.68,65.53;mdp-48.43,80.14;adp-57,94). Esta metodologia apresentada se incorpora `a literatura e mostra aos pesquisadores a forma de como os fatores sociais, pol´ıticos, econˆomicos e sanit´arios que foram adotados em cada
um dos pa´ıses influenciaram para que os intervalos entre os pontos cr´ıticos de cada pa´ıs fossem diferentes entre si.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
AKAIKE, H. A new look at the statistical model identification, IEEE T. Automat.Contr., v.19, n.6, p.716-723, 1974.
BISWAS,K.; KHALEQUE, A.; SEN, P. Covid-19 spread: Reproduction ofdata and prediction using a SIR model on Euclidean network, arXiv preprintarXiv: 2003.07063, 2020.
CHEN,Y.-C.; LU,P.-E.; CHANG, C.-S. A time-dependent SIR model for COVID-19, arXiv preprint arXiv:2003.00122, 2020.
CHOWELL, G.; HINCAPIE-PALACIO, D.; OSPINA, J.; PELL, B.; TARIQ,A.; DAHAL, S.; MOGHADAS, S.; SMIRNOVA, A.; SIMONSEN, L.; VIBOUD,V. Using phenomenological models to characterize transmissibility and forecastpatterns and final burden of Zika epidemics, PLoS currents., v.8, 2016.
COCCIA, M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID, Science of the Total Environment, v.729, p.138474, 2020.
Coronavirus, il premier Conte: ”Chiusura fino al 3 maggio, non possiamocedere adesso” (2020). La Repubblica. Avaliable at:https://www.repubblica.it/cronaca/2020/04/10/news/coronavirus_giuseppe_conte_riaperture-253677426/(Accessed: 07/06/2020).
Coronavirus: Italy’s PM outlines lockdown easing measures (2020). BBCNews. Avaliable at:https://www.bbc.com/news/amp/world-europe-52435273(Ac-cessed: 07/06/2020).
Coronavirus, in dieci comuni lombardi: 50 mila persone costrette a restare incasa. quarantena all’ospedale milanese di Baggio (2020).La Repubblica. Avaliable at: https://milano.repubblica.it/cronaca/2020/02/21/news/coronavirus_codogno_castiglione_d_adda_contagiati_misure_sicurezza-249154447/ (Accessed: 07/06/2020).
Coronavirus, scuole chiuse e niente Carnevale di Venezia. i provvedimenti Regioneper Regione (2020).La Repubblica. Avaliable
at:https://www.repubblica.it/cronaca/2020/02/23/news/coronavirus_scuole_chiuse_e_niente_carnevale_tutti_i_provvedimenti-249355737(Accessed: 07/06/2020).
Coronavirus: All sport in Italy to be suspended because of outbreak (2020). BBC Sport. Avaliable at: https://www.bbc.com/sport/51808683(Ac-cessed: 07/06/2020).
Coronavirus, i sindaci toscani scrivono a Conte: Chiudere tuttoci`o chenon `e essenziale (2020). La Nazione. Avaliable at:https://www.lanazione.it/cronaca/coronavirus-sindaci-toscana-chiudere-tutto-1.5076824(Ac-cessed: 07/06/2020).
FERNANDES, F. A. ;ALVES, H. J. P. ; FERNANDES,T. J. ;MUNIZ, J. A. Panorama da fase inicial do crescimento dos números de casos e óbitos causados pela Covid-19 no Brasil. Research, Society and Development, v.9, n.10, p.e1539108560-e1539108560, 2020.
FREITAS, A. D. Curvas de crescimento na produção animal, Revista Brasileira de Zootecnia, v.34, n.3, p.786-795, 2005.
GIORDANO, G.; BLANCHINI, F.; BRUNO, R.; COLANERI, P.; DI FILIPPO,A.; DI MATTEO, A.;COLANERI, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine,v.26,p.855-860, 2020.
GUERZONI, M. Scuole e universit`a di tutta Italia chiuse fino a met`amarzo peril coronavirus (2020). La Repubblica. Avaliable at:https://www.corriere.it/scuola/20_marzo_04/coronavirus-scuole-chiuse-tutta-italia-decisione-governo-entro-stasera-e7ba0614-5e12-11ea-8e26-25d9a5210d01.shtml(Accessed: 07/06/2020).
HENLEY, J. Italy extends lockdown amid signs coronavirus infectionrate is easing (2020). The Guardian. Avaliable at:https://www.theguardian.com/world/2020/apr/01/italy-extends-lockdown-amid-signs-coronavirus-infection-rate-is-easing(Accessed: 07/06/2020)
HYNDMAN, R. J.;KHANDAKAR,Y. Automatic time series forecasting: the forecast package for R, Journal of Statistical Software, v.26, n.3, p.1-22, 2008.
JAMES, N.; MENZIES, M. Cluster-based dual evolution for multivariate timeseries: Analyzing COVID-19,Chaos: An Interdisciplinary Journal of NonlinearScience, v.30, n.6, p.061108, 2020.
JAMES, N.; MENZIES, M. COVID-19 in the United States: Trajectories and second surge behavior.Chaos: An Interdisciplinary Journal of Nonlinear Science.,v.30, n.9, p.091102, 2020.
KLˆOH, V. P.; SILVA, G. D.; FERRO, M.; ARA ́UJO, E.; DE MELO, C. B.;DE ANDRADE LIMA, J. R. P.; MARTINS, E. R. The virus and socioeconomicinequality: An agent-based model to simulate and assess the impactof interventions to reduce the spread of COVID-19 in Rio de Janeiro, Brazil/o vírus e a desigualdade socioeconˆomica: um modelo baseado em agentes para simular e avaliar o impacto de intervenções para reduzir a disseminação do COVID-19 no Rio de Janeiro, Brasil,Brazillian Journal of Health Review, v.3, n.2, p.3647-3673, 2020.
LAI, S.; RUKTANONCHAI, N. W.; ZHOU, L.; PROSPER, O.; LUO, W.; FLOYD,J. R.; WESOLOWSKI, A.; SANTILLANA, M.; ZHANG, C.; DU, X.; YU, H.;TATEM, A. J. Effect of non-pharmaceutical interventions to contain COVID-19 in China,Nature, v.585, n.7825, p.410-413, 2020.
LEUNG, K.; WU, J. T.;LIU, D.;LEUNG, G. M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment,The Lancet,v.395,n.10233, p.1382-1393, 2020.
LI, Q.; FENG, W.; QUAN, Y. Trend and forecasting of the COVID-19 outbreak in China. Journal of Infection, v.80, n.4, p.469-496, 2020.
MANCHEIN, C.; BRUGNAGO, E. L.;DA SILVA, R. M.; MENDES,C.F.;BEIMS,M. W. Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies, Chaos: An Interdisciplinary Journal of Nonlinear Science, v.30, n.4, p.041102, 2020.
MISCHAN,M. M.;PINHO,S. Z. D.;CARVALHO, L. A.-D. R. D. Determination of a point sufficiently close to the asymptote in nonlinear growth functions,ScientiaAgricola, v.68, p.109-114, 2011.
MISCHAN, M. M.;DE PINHO, S. Z.Modelos não lineares: Funções assintóticas de crescimento. São Paulo: Cultura Acadˆemica, 2014, 186p.
QIU, Y.;CHEN, X.;SHI, W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China, Journal of Population Economics, v.33, n.4, p.1127-1172, 2020.
R Core Team,R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020.
SALES, J. H. Epidemic COVID mathematical model. Int. J. Lat. Res. Sci. Tech,v.72, n 2, p.1-5, 2020
SEBER, G. A. F.; WILD, C. J. Nonlinear Regression. John Wiley & Sons, Inc.,1989, 768p.
SEVERGNINI, C. La conferenza stampa di Conte: Dati incoraggianti, corriamo unrischio calcolato (2020).Corriere della Sera.Avaliable at:https://www.corriere.it/politica/20_maggio_16/discorso-conte-conferenza-stampa-oggi-decreto-18-maggio-1e810142-9785-11ea-ba09-20ae073bed63.shtml(Accessed: 07/06/2020).
SHAIKH, A. S.; SHAIKH, I. N.; NISAR, K. S. A mathematical model ofCOVID-19using fractional derivative: outbreak in India with dynamics of transmission and control.Advances in Difference Equations, v.2020, n.1, p.1-19, 2020.
Timeline of China’s battle against COVID-19 pandemic (2020). Global Times, Avaliable at:https://www.globaltimes.cn/content/1190796.shtml(Accessed:01/06/2020).
World Health Organization and others (2020).Coronavirus disease(COVID-2019) situation reports, Avaliable at:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf(Accessed:02/07/2020).
WEISSMAN, G. E.; CRANE-DROESCH, A.; CHIVERS, C.; LUONG, T.;HANISH, A.; LEVY, M. Z.; LUBKEN, J.; BECKER, M.; DRAUGELIS, M. E.;ANESI, G. L.; BRENNAM, P. J.; CHRISTIE, J. D.; HANSON, W.; MIKKELSEN,M. E.; HALPERN, S. D. Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic, Annals of internal medicine,v.173, n.1,p.21-28, 2020.
WU, K. ;DARCET, D.; WANG, Q.; SORNETTE, D. Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world, Nonlinear dynam., v.101, n.3, p.1561-1581,2020.
ZHANG, X.; MA, R.; WANG, L. Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries. Chaos Solitons Fract., v.135,p.109829, 2020.
ZHOU, X.;MA, X.;HONG,N. ;SU, L.; MA,Y. ;HE, J.;JIANG, H.;LIU, C.; SHAN,G.;ZHU, W.;ZHANG,S.;LONG,Y. Forecasting the worldwide spread of COVID-19 based on logistic model and SEIR model, medRxiv, 2020.