BAYESIAN ALGORITHMS FOR ANALYSIS OF CATEGORICAL ORDINAL DATA
Conteúdo do artigo principal
Resumo
This study describes and evaluates a package that implements extensions of the algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG) with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also
implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also
considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for
both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties.
implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also
considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for
both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties.
Detalhes do artigo
Como Citar
CORRÊA, F. M., SILVA, J. W. da, FERREIRA, D. F., & BUENO FILHO, J. S. de S. (2016). BAYESIAN ALGORITHMS FOR ANALYSIS OF CATEGORICAL ORDINAL DATA. REVISTA BRASILEIRA DE BIOMETRIA, 34(4), 597–620. Recuperado de http://ftpnucleo.ufla.br/index.php/BBJ/article/view/251
Edição
Seção
Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).