Modelos de Sobrevivência no contexto de riscos multiplicativos e additivos
Conteúdo do artigo principal
Resumo
In survival analysis, multiplicative and additive hazards models provide the two principal frameworks to study the association between the hazard and covariates. When these models are considered for analyzing a given survival dataset, it becomes relevant to evaluate the overall goodness-of-fit and how well each model can predict those subjects who subsequently will or will not experience the event. In this paper, this evaluation is based on a graphical representation of the Cox-Snell residuals and also on a time-dependent version of the area under the receiver operating characteristic (ROC) curve, denoted by AUC(t). A simulation study is carried out to evaluate the performance of the AUC(t) as a tool for comparing the predictive accuracy of survival models. A dataset from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver is also considered to illustrate the usefulness of these tools to compare survival models formulated under distinct hazards frameworks.
Detalhes do artigo
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).