EXPONENTIATED DISCRETE WEIBULL DISTRIBUTION FOR CENSORED DATA
Conteúdo do artigo principal
Resumo
This paper further develops the statistical inference procedure of the exponentiated discrete Weibull distribution (EDW) for data with the presence of censoring. This generalization of the discrete Weibull distribution has the advantage of being suitable to model non-monotone failure rates, such as those with bathtub and unimodal distributions. Inferences about EDW distribution are presented using both frequentist and bayesian approaches. In addition, the classical Likelihood Ratio Test and a Full Bayesian Significance Test (FBST) were performed to test the parameters of EDW distribution. The method presented is applied to simulated data and illustrated with a real dataset regarding patients diagnosed with head and neck cancer.
Detalhes do artigo
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).