CLASSIFICATION AND IDENTIFICATION OF THE CAUSES OF ABSENTEEISM IN A PUBLIC TRANSPORT COMPANY USING CLUSTER ANALYSIS AND PRINCIPAL COMPONENTS TECHNIQUES

Conteúdo do artigo principal

Laryssa Ribeiro CALCAGNOTO
Tiago Viana Flor SANTANA
Rodrigo Rosseto PESCIM

Resumo

Absenteeism is the practice or custom of an employee to be absent from workplace. Its causes are diverse and may aect the workers income as well as to cause operational disruption, stress the administration and also nancial losses for the company. Cluster analysis is a multivariate tool that can be used to determine groups in the sense that each group has its own characteristics in terms of the observed variables.
In this sense, that technique can be used as a support to show which characteristics may contribute to absenteeism. We use the Ward hierarchical algorithm to build the clusters and to compare the groups the Kruskal-Wallis nonparametric test is adopted. Finally, a study on the strength of association among the variables is developed using Spearman's correlation and for the relationship among those variables related to absence and social aspects, we use the principal component analysis. Moreover, the study indicates the possibility to determine three heterogeneous groups in the company and to show characteristics in those groups which are potential factors that cause absenteeism to a greater or lower extent.

Detalhes do artigo

Como Citar
CALCAGNOTO, L. R., SANTANA, T. V. F., & PESCIM, R. R. (2021). CLASSIFICATION AND IDENTIFICATION OF THE CAUSES OF ABSENTEEISM IN A PUBLIC TRANSPORT COMPANY USING CLUSTER ANALYSIS AND PRINCIPAL COMPONENTS TECHNIQUES. REVISTA BRASILEIRA DE BIOMETRIA, 39(1), 25–44. https://doi.org/10.28951/rbb.v39i1.493
Seção
Articles

Referências

ALMEIDA, D. R. O; NASCIMENTO, I. G; SILVA NETO, J. M.; ALMEIDA, A. G. B.Causas e desvantagens do absente ́ısmo: O Caso da Empresa Auto Center 24 Horas emPorto Velho. In: CONGRESSO NACIONAL DE EXCELˆENCIA EM GESTÃO. 2015.Proceedings, Rio de Janeiro:RJ, 2015.

BEWICK, V; CHEEK, L; BALL, J. Statistics review 10: Further nonparametric methods.Critical Care, v.8, n.196, 2004.

CALAIS, S. L.; ZANELATO, L. S.; Manejo de estresse e outros fatores em diferentespopula ̧c ̃oes adultas. In: VALLE, TGM., and MELCHIORI, LE.,Sa ́ude e desenvolvimentohumano. São Paulo: Editora UNESP, 2010. 217-236.

CHATFIELD, C.; COLLINS, A. J.Introduction to multivariate analysis, Springer, 2013.246p.

FERREIRA, D. F.Estatıstica multivariada, 1 ed., Lavras: ed. UFLA, 2008. 662p.

HECKE, T. V. Power study of anova versus Kruskal-Wallis test.Journal of statistics andmanagement systems, v.15, n.2-3, p.241-247, 2012.

JOHNSON, R. A; WICHERN, D. Wa. Do. Applied multivariate statistical analysis, 6 ed.,Londres: Prentice Hall, 2007. 800p.

MANLY, B. J. F.Métodos estatísticos Multivariados: uma introdução, 3 ed., Porto Alegre:Bookman, 2008. 229p.

MINGOTI, S. A.An ́alise de dados através de métodos de estatística multivariada: Uma abordagem aplicada. Belo Horizonte: Editora UFMG, 2005. 297p.

PENATTI, I.; QUELHAS, O.; ZAGO, J. S. Absenteısmo: As consequˆencias na gestão de pessoas. In: SIMPOSIO DE EXCELˆENCIA EM GEST ̃AO E TECNOLOGIA. 2006.

Proceedings, Resende:RJ, 2006.

QUICK,T. C.;LAPERTOSA, J. B. Análise do absenteısmo em usina siderúrgica.Rev. Bras.Sa ́ude Ocupacional, v.10, n.40, p.62-67, 1982.

R Core Team.R: A language and environment for statistical computing.R Foundation forStatistical Computing, Vienna, Austria, 2018.

RStudio Team.RStudio: Integrated Development for R.RStudio, Inc., Boston, MA , 2016