Conceitos fundamentais e aplicações recentes de desenhos estatísticos factoriais
Conteúdo do artigo principal
Resumo
Planejamentos fatoriais têm sido cada vez mais utilizados em investigações científicas e no desenvolvimento tecnológico. Os delineamentos, por meio da utilização de matrizes com todas as combinações de tratamentos, têm sido capazes de caracterizar efetivamente as relações entre as variáveis de experimentos multifatoriais, avaliar as variabilidades experimentais e derivar funções matemáticas que representam o comportamento das respostas. Os delineamentos fatoriais foram fracionados, o que reduziu substancialmente o número de tratamentos sem a perda de informações relevantes. A adição de pontos centrais e estrela às matrizes fatoriais conferiu a eles as características de ortogonalidade e rotatividade, frequentemente utilizadas para ajustar modelos com curvatura e identificar regiões críticas de interesse. De acordo com os relatos da literatura os delineamentos fatoriais, também chamados de experimentos fatoriais, foram aplicados com sucesso em diferentes tipos de investigações, incluindo avaliações de custos e estudos de séries temporais. Eles foram capazes de estimar características importantes dos experimentos tais como efeitos individuais e combinados dos fatores, a magnitude dos resíduos, além de expressar as relações das variáveis em equações polinomiais, desenhar gráficos de superfície e contorno de resposta e determinar combinações ótimas de parâmetros. Nesta revisão, os aspectos fundamentais dos planejamentos Fatoriais Completo, Fracionado, Rotacional Composto Central e Assimétrico foram apresentados e as aplicações recentes dessas ferramentas poderosas foram descritas.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
AGRAWAL, S.; KHANDELWAL, U.; BAJPAI, N. Anthropomorphism in advertising: the effect of media on audience attitude. Journal of Marketing Communications, p.1–17, 2020.
AL-DAWALIBI, A.; AL-DALI, I. H.; ALKHAYYAL, B. A. Best marketing strategy selection using fractional factorial design with analytic hierarchy process. MethodsX, v.7, p.100927, 2020.
ALTMAN, D. G.; BLAND, J. M. Standard deviations and standard errors. BMJ, v.331, n.7521, p.903, 2005.
ANDERSON, M. J.; WHITCOMB, P.J. Design of Experiments. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, 2010.
ANGELOPOULOS, P.; EVANGELARAS, H.; KOUKOUVINOS, C. Run orders for efficient two level experimental plans with minimum factor level changes robust to time trends. Journal of Statistical Planning and Inference, v.139, n.10, p.3718–3724, 2009.
ASKIN, R. G.; GOLDBERG, J. B. Economic Optimization in Product Design.Engineering Optimization, v.14, n.2, p.139–152, 1988
BELLOTTI, D.; CASSETTARI, L.; MOSCA, M.; MAGISTRI, L. RSM approach for stochastic sensitivity analysis of the economic sustainability of a methanol production plant using renewable energy sources. Journal of Cleaner Production, v.240, p.117947, 2019.
BEZERRA, M. A.; SANTELLI, R. E.; OLIVEIRA, E. P.; VILLAR, L. S.; ESCALEIRA, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, v.76, n.5, p.965–977, 2008.
BHOWMIK, A.; VARGHESE, E.; JAGGI, S.; VARGHESE, C. Minimally changed run sequences in factorial experiments. Communications in Statistics -Theory and Methods, v.46, n.15, p.7444–7459, 2017.
BOX, G. E. P.; HUNTER, J. S. Multi-Factor Experimental Designs for Exploring Response Surfaces. Annals of Mathematical Statistics, v.28, n.1, p.195–241, 1957.
BOX, G. E. P.; HUNTER, J. S. The 2 k—p Fractional Factorial Designs. Technometrics, v.3, n.3, p.311–351, 1961.
BOX, G. E. P.; WILSON, K. B. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society. Series B (Methodological), v.13, n.1, p.1–45, 1951.
BOX, G. E.; JENKINS, G. M.; REINSEL, G. C.; LJUNG, G. M. Time series analysis: forecasting and control. John Wiley & Sons, 2015.
BROWNLEE, K. A. Statistical theory and methodology in science and engineering. Wiley, 1965.CAI, Q. Q.; WU, M. Y.; LI, R.; DENG, S. H.; LEE, B. C. Y.; ONG, S. L.; HU, J. Y. Potential of combined advanced oxidation –Biological process for cost-effective organic matters removal in reverse osmosis concentrate produced from industrial wastewater reclamation: Screening of AOP pre-treatment technologies. Chemical Engineering Journal, v.389, p.123419, 2020.
CÂMARA, A. K. F. I.; OKURO, P.K.; SANTOS, M.; PAGLARINI, C. de S.; DA CUNHA, R. L.; RUIZ-CAPILLAS, C.; HERRERO, A. M.; POLLONIO, M. A. R. Understanding the role of chia (Salvia Hispanica L.) mucilage on olive oil-based emulsion gels as a new fat substitute in emulsified meat products. European Food Research and Technology,v.246, n.5, p.909–922, 2020.
CATARCI, M.; BERLANDA, M.; GRASSI, G. B.; MASEDU, F.; GUADAGNI, S. Pancreatic enzyme supplementation after gastrectomy for gastric cancer: a randomized controlled trial. Gastric Cancer, v.21, n.3, p.542–551, 2018.
CHANDRASEKARAN, R.; QIAN, X.; LEE, S. Thermal performance evaluation and analysis of the efficient and sustainability shell and tube heat exchanger system. Journal of Construction Project Management and Innovation, v.11, n.1, p.151–159, 2021.
CHENG, C.-S.;MARTIN, R. J.; TANG, B. Two-Level Factorial Designs with Extreme Numbers of Level Changes. The Annals of Statistics, v.26, n.4, p.1522–1539, 1998.
CHRISTENSEN, R. Analysis of Variance, Design, and Regression: Applied Statistical Methods. CRC Press, 1996.
CONAGIN, A. Delineamentos “compostos centrais ortogonais, rotacionais e divisíveis em blocos”. Bragantia, v.41, n.1, p.49–56, 1982.
COOK, R. D. Detection of Influential Observation in Linear Regression.Technometrics, v.19, n.1, p.15–18, 1977.
COX, D. R.; HINKLEY, D. V.Theoretical Statistics. CRC Press, 1979.
D’AGOSTINO, R.B. Goodness-of-Fit-Techniques.CRC Press, 1986.
DA SILVA, F. G. F.; BARBOSA, R. B. Applying Factorial Models to Forecast Ports Demands. SSRN Scholarly Paper, n.ID 3520285. Rochester, NY: Social Science Research Network, 2020.
DAS NEVES, C. A.; DE MENEZES, L. H. S.; SOARES, G. A.; DOS SANTOS REIS, N.; TAVARES, I. M. C.; FRANCO, M.; DE OLIVEIRA, J. R. Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Conversion and Biorefinery, 2020.
DE SOUZA, T. D.; BORGES, A. C.; BRAGA, A. F.; VELOSO, R. W.; TEIXEIRA DE MATOS, A. Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: An optimization study. Chemosphere, v.234, p.402–408, 2019.
DRAPER, N.R.; SMITH, H. Applied Regression Analysis. John Wiley & Sons, 1998.
FAGUNDES, M. B.; ALVAREZ-RIVERA, G.; VENDRUSCOLO, R. G.; VOSS, M.; DA SILVA, P.A.; BARIN, J.S.; JACOB-LOPES, E.; ZEPKA, L. Q.; WAGNER, R. Green microsaponification-based method for gas chromatography determination of sterol and squalene in cyanobacterial biomass. Talanta, v.224, p.121793, 2021.
FISHER, R. A. Design of Experiments. British Medical Journal, v.1, n.3923, p.554–554, 1936.
FISHER, R. A. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, v.52, n.2, p.399–433, 1919.
GALTON, F. Natural Inheritance. Macmillan and Company, 1889.
GAUTÉRIO, G. V.; DA SILVA, L. G. G.; HÜBNER, T.; DA ROSA RIBEIRO, T.; KALIL, S. J. Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. Biocatalysis and Agricultural Biotechnology, v.23, p.101511, 2020
GRUBBS, F. E. Sample Criteria for Testing Outlying Observations. Annals of Mathematical Statistics, v.21, n.1, p.27–58, 1950.
GUNST, R. F.; MASON, R. L. Fractional factorial design.WIREs Computational Statistics, v.1, n.2, p.234–244, 2009.
GYULAI, O.; KOVÁCS, A.; SOVÁNY, T.; CSÓKA, I.; AIGNER, Z. Optimization of the Critical Parameters of the Spherical Agglomeration Crystallization Method by the Application of the Quality by Design Approach. Materials, v.11, n.4, p.635, 2018.
HENN, J. G.; STEFFENS, L.; DE MOURA SPEROTTO, N.D.; DE SOUZA PONCE, B.; VERÍSSIMO, R. M.; BOARETTO, F. B. M.; HASSEMER, G.; PÉRES, V.F.; SCHIRMER, H.; PICADA, J. N.; SAFFI, J.; MOURA, D. J. Toxicological evaluation of a standardized hydroethanolic extract from leaves of Plantago australis and its major compound, verbascoside. Journal of Ethnopharmacology, v.229, p.145–156, 2019.
HILOW, H. Comparison among run order algorithms for sequential factorial experiments. Computational Statistics & Data Analysis, v.58, p.397–406,2013.
HINKELMANN, K.; KEMPTHORNE, O. Design and Analysis of Experiments (Vol. 1). New York: Wiley, 2007.
HOAGLIN, D. C.; MOSTELLER, F.; TUKEY, J. W. Fundamentals of Exploratory Analysis of Variance. John Wiley & Sons, 1991.
HOOPER, D.; COUGHLAN, J.; MULLEN, M. R. Structural Equation Modelling: Guidelines for Determining Model Fit. Electronic Journal of Business Research Methods, v.6, n.1, p.53–60, 2008.
KALINOWSKI, P.; FIDLER, F. Interpreting Significance: The Differences Between Statistical Significance, Effect Size, and Practical Importance. Newborn and Infant Nursing Reviews, v.10, n.1, p.50–54, 2010.
KANT, K.; NITHYANANDAM, K.; PITCHUMANI, R. Analysis and Optimization of a Novel Hexagonal Waveguide Concentrator for Solar Thermal Applications. Energies, v.14, n.8, p.2146, 2021.
KARAMATI-NIARAGH, E.; ALAVI MOGHADDAM, M. R.; EMAMJOMEH, M. M.; NAZLABADI, E. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM. Journal of Environmental Management, v.230, p.245–254, 2019.
KARNA, S. K.; SAHAI, R. An overview on Taguchi method. International journal of engineering and mathematical sciences, v.1, n.1, p.11-18, 2012.
KEIJOK, W. J.; PEREIRA, R. H. A.; ALVAREZ, L. A. C.; PRADO, A. R.; DA SILVA, A. R.; RIBEIRO, J.; DE OLIVEIRA, J. P.; GUIMARÃES, M. C. C. Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Scientific Reports, v.9, n.1, p.16019, 2019.
KUMAR, A.; BHOPLE, S.; KUMAR, N.; TIWARI, V.K. Effect of Ageing, Moisture Contents and Storage Structures on Nutritional and cooking characteristics of brown rice during storage. Chemical Science Review and Letters, v.6, n.22, p.793-800, 2017.
KUTNER, M. H.; NACHTSHEIM, C. J.; NETER, J.; LI, W. Applied Linear Statistical Models. McGraw-Hill Irwin, 2005.
LABIDI, A.; TANABE, I.; TAKAHASHI, S. A study on extending technologies lifespan for the environment safety. Journal of Machine Engineering, p.109–120, 2021.
LARA, L. A.; MANCIPE, D. L.; PINEDA, Y.; MORENO, J. J.; PEÑA-RODRÍGUEZ, G. Design and characterization of a magneto-dielectric composite in high frequency with aligned magnetite powders. Journal of Physics: Conference Series, v.1386, p.012103, 2019.
LIM, J. J.; GOH, J.; RASHID, M. B. M. A.; CHOW,E. K.-H. Maximizing Efficiency of Artificial Intelligence-Driven Drug Combination Optimization through Minimal Resolution Experimental Design. Advanced Therapeutics, v.3, n.4, p.1900122, 2020.
LV, S.; HE, Z.; QUEVEDO, A. V.; MIRABILE, Y. Z.; VINING, G. G. Process optimization using sequential design of experiment: A case study. Quality Engineering, v.31, n.3, p.473–483, 2019.
MASON, R. L.; GUNST, R. F.; HESS, J. L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science.John Wiley & Sons, 2003.
MILES, J.; SHEVLIN, M. A time and a place for incremental fit indices. Personality and Individual Differences, Special issue on Structural Equation Modeling. v.42, n.5, p.869–874, 2007.
MISE, K.; MARUYAMA, R.; MIYABARA, Y.; KUNITO, T.; SENOO, K.; OTSUKA, S. Time-series analysis of phosphorus-depleted microbial communities in carbon/nitrogen-amended soils. Applied Soil Ecology, v.145, p.103346, 2020.
MOGHAZY, R. M.; LABENA, A.; HUSIEN, Sh.Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. International Journal of Biological Macromolecules, v.134, p.330–343, 2019.
MONTGOMERY, D. C. Design and Analysis of Experiments. John Wiley & Sons, 2017.
MORETTIN, P.A.; BUSSAB, W. O. Estatística Básica.Saraiva Educação S.A., 2017.
MULAIK, S. A.; JAMES, L. R.; VAN ALSTINE, J.; BENNETT, N.; LIND, S.; STILWELL, C. D. Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, v.105, n.3, p.430–445, 1989.
NAKAGAWA, S.; CUTHILL, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews, v.82, n.4, p.591–605, 2007.
NAKAGAWA, S.; SCHIELZETH, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, v.4, n.2, p.133–142, 2013.
NAZIEF, A. M.; HASSAAN, P.S.; KHALIFA, H. M.; SOKAR, M. S.; EL-KAMEL, A. H. Lipid-Based Gliclazide Nanoparticles for Treatment of Diabetes: Formulation, Pharmacokinetics, Pharmacodynamics and Subacute Toxicity Study. International Journal of Nanomedicine, v.15, p.1129–1148, 2020.
NOORDIN, M. Y.; VENKATESH, V.C.; SHARIF, S.; ELTING, S.; ABDULLAH, A. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology, v.145, n.1, p.46–58, 2004.
OCHOA, D. H.; BRAGA, J. W. B.; MACHADO, F. Optimization of the Functional Characteristics of Cleaning Products Through Experimental Design.Journal of Surfactants and Detergents, v.20, n.2, p.467–481, 2017.
ONYIAH, L. C. Design and Analysis of Experiments: Classical and Regression Approaches with SAS. CRC Press, 2008.
PAN, N.C.; BIZ, G.; BALDO, C.; CELLIGOI, M. A. P.C. Factorial design in fermentation medium development for hyaluronic acid production by Streptococcus zooepidemicus. Acta Scientiarum. Technology, v.42, p.e42729–e42729, 2019.
PATEL, G. B.; SHAH, K. R.; SHINDHAL, T.; RAKHOLIYA, P.; VARJANI, S. Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained Actinomycete. Environmental Technology & Innovation, v.23, p.101724, 2021.
PATINO, C. M.; FERREIRA, J. C. Confidence intervals: a useful statistical tool to estimate effect sizes in the real world. Jornal Brasileiro de Pneumologia, v.41, n.6, p.565–566, 2015.
PEARSON, K. Contributions to the Mathematical Theory of Evolution. Philosophical Transactions of the Royal Society of London, v.185, p.71–110, 1894.
PLACKETT, R. L.; BURMAN, J. P.The design of optimum multifactorial experiments. Biometrika, v.33, n.4, p.305–325, 1946.
PORTER, S. C.;VERSEPUT, R. P.; CUNNINGHAM, C. R. Process optimization using design of experiments. Pharmaceutical technology, v.21, n.10, p.60-71, 1997.
PORTO, M. B.; PORTELA, D. G.; NETO, A. F. de A. Temperature, current density and cobalt concentration effects on electrodeposited anticorrosive cobalt-tungsten alloys using factorial experiment design and ANOVA techniques. Transactions of the IMF, v.97, n.6, p.305–311, 2019.
RAVINDRAN, B.; KASSIM, M. A.; MOHAMED, M. S. Screening of Medium Constituents for the Cultivation of Scenedesmus dimorphusUTEX 1237 using 2 kFactorial Design Approach. IOP Conference Series: Materials Science and Engineering,v.716, p.012003, 2020.
ROCHA, L. S.; SOUSA, É. M. L.; GIL, M. V.; OLIVEIRA, J. A. B. P.; OTERO, M.; ESTEVES, V.I.; CALISTO, V. Producing Magnetic Nanocomposites from Paper Sludge for the Adsorptive Removal of Pharmaceuticals from Water—A Fractional Factorial Design.Nanomaterials, v.11, n.2, p.287, 2021.
RODRIGUES, M. I.; IEMMA, A. F. Planejamento de Experimentos e Otimização de Processos: Uma Estratégia Sequencial de Planejamentos.Casa do Pão Editora, 2005.
SHESKIN, D. J. Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition.CRC Press, 2011.
SIVAKUMAR, K.; SARAVANAN, R.; NOORUL HAQ, A. Cost-tolerance modelling and optimisation of machining tolerance design through intelligent techniques. International Journal of Machining and Machinability of Materials, v.3, n.1–2, p.162–189, 2008.
STEIGER, J. H. Structural Model Evaluation and Modification: An Interval Estimation Approach. Multivariate Behavioral Research, v.25, n.2, p.173–180, 1990.
STEINBERG, D. M. Factorial Experiments With Time Trends. Technometrics, v.30, n.3, p.259–269, 1988.
TACK, L.; VANDEBROEK, M. Trend-resistant and cost-efficient cross-over designs for mixed models. Computational Statistics & Data Analysis, v.46, n.4, p.721–746, 2004.
TAGUCHI, G. Quality engineering in Japan.Communications in Statistics -Theory and Methods, v.14, n.11, p.2785–2801, 1985.
TAHERI, B. M.; RAMEZANIANPOUR, A. M. Optimizing the mix design of pervious concrete based on properties and unit cost. Advances in concrete construction, v.11, n.4, p.285-298, 2021.
TAKEDA, P.Y.; GOTARDO, J. T.; GOMES, S. D. Anaerobic co-digestion of leachate and glycerol for renewable energy generation.Environmental Technology, p.1–11, 2020.
TSAI, C.-L.; CAI, Z.; WU, X. The Examination of Residual Plots. Statistica Sinica, v.8, n.2, p.445–465, 1998.
TUKEY, J. W. The Future of Data Analysis. The Annals of Mathematical Statistics, v.33, n.1, p.1–67, 1962.
VAN GERREWEY, T.; AMELOOT, N.; NAVARRETE, O.; VANDECRUYS, M.; PERNEEL, M.; BOON, N.; GEELEN, D. Microbial activity in peat-reduced plant growing media: Identifying influential growing medium constituents and physicochemical properties using fractional factorial design of experiments. Journal of Cleaner Production,v.256, p.120323, 2020.
VANHATALO, E.; BERGQUIST, B.; VÄNNMAN, K. Towards Improved Analysis Methods for Two-Level Factorial Experiments with Time Series Responses: Analysis Methods for Experiments with Time Series Responses. Quality and Reliability Engineering International, v.29, n.5, p.725–741, 2013.
VIEIRA, F. G. N.; CHRIST, D.; GRACIANO, L.; CORRÊA, J. M.; KADOWAKI, M. K.; SILVA, J. L. da C.; GANDRA, R. F.; MALLER, A.; POLI, M. de L. T. de M.; SIMÃO, R. de C. G. Experimental Design for Optimization of β-Xylosidase Production by A. fumigatus Isolated from the Atlantic Forest (Brazil). Journal of Advances in Biology & Biotechnology, p.1–16, 2019.
VILLA MONTOYA, A. C.; DA SILVA MAZARELI, R. C.; DELFORNO, T. P.; CENTURION, V.B.; DE OLIVEIRA, V.M.; SILVA, E. L.; VARESCHE, M. B. A. Optimization of key factors affecting hydrogen production from coffee waste using factorial design and metagenomic analysis of the microbial community. International Journal of Hydrogen Energy, v.45, n.7, p.4205–4222, 2020.
WAKJIRA, T. G.; NEHDI, M. L.; EBEAD, U. Fractional factorial design model for seismic performance of RC bridge piers retrofitted with steel-reinforced polymer composites. Engineering Structures, v.221, p.111100, 2020.
WANG, S.-M.; TAYLOR, P.R.; FAN, J.-H.;PFEIFFER, R. M.; GAIL, M. H.; LIANG, H.; MURPHY, G. A.; DAWSEY, S. M.; QIAO, Y.-L.; ABNET, C. C. Effects of Nutrition Intervention on Total and Cancer Mortality: 25-Year Post-trial Follow-up of the 5.25-Year Linxian Nutrition Intervention Trial. JNCI: Journal of the National Cancer Institute, v.110, n.11, p.1229–1238, 2018.
WEISE, D. R.; SACKETT, S. S.; HAASE, S. M.; JOHNSON, N.Effects of fire rotation interval and overstory type on ambient soil temperatures in ponderosa pine forests in Arizona. Canadian Journal of Forest Research, v.49, n.10, p.1320–1328, 2019.
WEISSMAN, S. A.; ANDERSON, N.G. Design of Experiments (DoE) and Process Optimization.A Review of Recent Publications. Organic Process Research & Development, v.19, n.11, p.1605–1633, 2015.
WU, J.; GUPTA, M.; HUSSEIN, A. I.; GERSTENFELD, L. Bayesian modeling of factorial time-course data with applications to a bone aging gene expression study. Journal of Applied Statistics, v.48, n.10, p.1730–1754, 2021.
YULE, G. U. On the Theory of Correlation. Journal of the Royal Statistical Society, v.60, n.4, p.812–854, 1897.
ZANCAN, G. T. Educação científica: uma prioridade nacional. São Paulo em Perspectiva, v.14, n.3, p.3–7, 2000.
ZANI, S. H. M.; ASRI, F. M.; AZMI, N.S.; YUSSOF, H. W.; ZAHARI, M. A. K. M. Optimization of process parameters for bioethanol production from oil palm frond juice by Saccharomyces cerevisiae using response surface methodology as a tool. IOP Conference Series: Materials Science and Engineering,v.702, p.012003, 2019.
ZWILLINGER, D.; KOKOSKA, S. CRC Standard Probability and Statistics Tables and Formulae. CRC Press, 1999.