Seleção de variáveis em modelo de regressão logística para predição da resistência à brusone do arroz
Conteúdo do artigo principal
Resumo
O arroz (Oryza sativa L.) tem sido um dos alimentos mais consumidos no planeta, com importância econômica e social. Doenças, principalmente a brusone, causadas pelo fungo Pyricularia oryzae, são fatores limitantes para a produção de arroz. O presente trabalho teve como objetivo selecionar covariáveis que possam influenciar a resistência do arroz à brusone, utilizando o método de seleção proposto por Collett. Modelos de regressão logística foram ajustados para prever a resistência à doença, usando a curva ROC para avaliar a capacidade preditiva. Os dados utilizados foram obtidos de uma população de 413 plantas, com informações fenotípicas coletadas em 82 países e classificadas em cinco subpopulações. A pesquisa constatou que, das mais de quinze variáveis incorporadas para avaliar a doença, apenas três se mostraram relevantes para o modelo final ajustado, sendo: largura da folha bandeira (V4), o número médio de ramos primários da panícula (V8) e a quantidade de amilose de grãos moídos (V15). A variável V4 apresentou uma maior influência significativa na resistência à doença. Sendo que, para cada aumento unitário em V4, V8 e V15, espera-se obter aumentos de 279,3, 31,9 e 9,4%, respectivamente, na probabilidade de resistência à brusone.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
ADITYA, J.P.; BHARTIYA, A. Genetic variability, correlation and path analysis for quantitative characters in rainfed upland rice of Uttarakhand Hills. Journal of Rice Research, v.6, n.12, p.24–34, 2013.
AKAIKE,H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, v.19, n.6, p.716–723, 1974.
AYRES, M.; AYRES JUNIOR, M.; AYRES, D.L.; SANTOS, A.S. BioEstat 4.0: Statistical applications in the areas of biological and medical sciences. Belém: Society Civil Mamirauá; Brasília: CNPq, 2005.
BOZDOGAN, H. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, v.52, n.3, p.345–370, 1987.
BURNHAM, K.P.; ANDERSON, D.R. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research, v.33, n.2, p.261–304, 2004.
CASTRO, D.G.; FERNANDES, M.C.N.; FÉLIX, M.R.; CAZASSA, R.S.; TOMÉ, L.M.; BOTELHO, F. B.S. Estimates of association between agronomic characters in the selection of upland rice genotypes. Magistra, v.30, p.359-367, 2019.
COLLETT, D. Modeling survival data in medical research. London: Chapman and Hall, 2nded., 2003. 410p.
COLOSIMO, E. A.; GIOLO, S. R. Análise de Sobrevivência Aplicada. São Paulo: Edgar Blücher, 2006. 392p.
DALCHIAVON, F. C.; CARVALHO, M. P.; COLETTI, A. J.; CAIONE, G.; SILVA, A. F.; ANDREOTTI, M. Correlação linear entre componentes da produção e produtividade do arroz de terras altas em sistema plantio direto. Semina: Ciências Agrárias, v.33, n.5, p.1629–1642, 2012.
GOUVÊA, G. D. R.; OLIVEIRA, F. L. P.; VIVANCO, M. J. F. Event analysis factors: an application to hemodialysis data in the city of Lavras-MG, Rev. Bras. Biom., v.27, n.3, p.491–500, 2009.
HOSMER JUNIOR, D.W.; LEMESHOW, S.; STURDIVANT, R.X. Applied logistic regression, New York: John Wiley & Sons, 3rd ed., 2013. 528p.
JAMALODDIN, M.; DURGA RANI, C. V.; SWATHI, G.; ANURADHA, C.; VANISRI, S.; RAJAN, C. P.D.; et al. Marker assisted gene pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety “Tellahamsa”, PLOS ONE, v.15, n.6, 2020.
JAY, M. Generalhoslem: goodness of fit tests for logistic regression models, 2019. Available in: https://cran.r-project.org/web/packages/generalhoslem/index.html.
KIM, B. Classifying Oryza sativa accessions into Indica and Japonica using a logistic regression model with phenotypic data. PeerJ,v.2019, n.11, 2019.
LAW, J.W.F.; SER, H.L.; KHAN, T.M.; CHUAH, L.H.; PUSPARAJAH, P.; CHAN, K.G.; GOH, B.H.; LEE, L.H. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyriculariaoryzae). Frontiers in microbiology, v.8, n.3. 2017.
MACKILL, A.O.; BONMAN, J.M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, v.82, p.746–749, 1992.
MARCHETTI, M.A.; LAI, X.H.; BOLLICH, C.N. Inheritance of resistance to Pyricularia oryzaein rice cultivars grown in the United States. Phytopathology, v.77, n.6, p.799-804, 1987.
MARTINEZ, E. Z.; LOUZADA-NETO, F.; PEREIRA, B. B. A curva ROC para testes diagnósticos. Cadernos Saúde Coletiva, v.11, n.1, p.7–31, 2003.
ONG, M. H.; BLANSHARD, J. M. V. Texture determinants in cooked, parboiled rice. I: Rice starch amylose and the fine structure of amylopectin. Journal of Cereal Science, v.21, n.3, p.251–260, 1995.
R CORE TEAM. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2020. Available at:https://www.R-project.org/
SILVA-LOBO, V. L.; FILIPPI, M. C. C.; SILVA, G. B.; VENANCIO, W. L.; PRABHU, A. S. Relação entre o teor de clorofila nas folhas e a severidade de brusone nas panículas em arroz de terras altas. Tropical Plant Pathology, v.37, n.1, p.83-87, 2012
SING, T.; SANDER, O.; BEERENWINKEL, N.; LENGAUER, T. ROCR: Visualizing classifier performance inR. Bioinformatics, v.21, n.20, p.78-81, 2005. Available at: http://rocr.bioinf.mpi-sb.mpg.de/.
SOSBAI -Sociedade Sul-Brasileira de Arroz Irrigado. Arroz Irrigado: recomendações técnicas da pesquisa para o Sul do Brasil. 32 Reunião da Cultura do Arroz Irrigado. Farroupilha, RS. Cachoeirinha: Sociedade Sul-Brasileira de Arroz Irrigado, 2018. 205p.
YU, W. B.; CHANG, Y.C.I.; PARK, E. A modified area under the ROC curve and its application to marker selection and classification. Journal of the Korean Statistical Society, v.43, n.2, p.161–175, 2014.
ZHANG, S.; LIU, B.; ZHU, X.; YANG, J.; WU, S.; HEI, L. Relationship between blast resistance and amylose content in a RIL population derived from rice crossed SHZ-2xLTH. Acta Agronomica Sinica, v.32, n.2, p.159–163, 2006.
ZHAO, K.; TUNG, C.W.; EIZENGA, G.C.; WRIGHT, M.H.; ALI, M.L.; PRICE, A.H.; NORTON, G.J.; ISLAM, M.R.; REYNOLDS, A.; MEZEY, J.; MCCLUNG, A.M.; BUSTAMANTE, C.D.; MCCOUCH, S.R.Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, v.2, n.1, p.1–10, 2011. Available at: https://doi.org/10.1038/ncomms1467